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This paper presents a systematic approach to the problem of photorealistic 3-D
model acquisition from the combination of range and image sensing. The input is
a sequence of unregistered range scans of the scene and a sequence of unregistered
2-D photographs of the same scene. The output is a true texture-mapped geometric
model of the scene. We believe that the developed modules are of vital importance
for a flexible photorealistic 3-D model acquisition system. Segmentation algorithms
simplify the dense datasets and provide stable features of interest which can be
used for registration purposes. Solid modeling provides geometrically correct 3-D
models. Finally, the automated range to an image registration algorithm can increase
the flexibility of the system by decoupling the slow geometry recovery process from
the image acquisition process; the camera does not have to be precalibrated and
rigidly attached to the range sensor. The system is comprehensive in that it addresses
all phases of the modeling problem with a particular emphasis on automating the
entire process interaction. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

The recovery and representation of 3-D geometric and photometric information of the
real world is one of the most challenging and well-studied problems in computer vision
and robotics research. There is a clear need for highly realistic geometric models of the
world for applications related to virtual reality, telepresence, digital cinematography, digital
archeology, journalism, and urban planning. Recently, there has been a large interest in
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reconstructing models of outdoor urban environments [29]. The areas of interest include
geometric and photorealistic reconstruction of individual buildings or large urban areas
using a variety of acquisition methods and interpretation techniques, such as ground-base
laser sensing, air-borne laser sensing, and ground and air-borne image sensing. The ultimate
goal is the reconstruction of detailed models of urban sites (digital cities). The creation of
digital cities drives other areas of research as well: visualization of very large data sets,
creation of model databases for GIS (geographical information systems), and a combination
of reconstructed areas with existing digital maps.

Recent developments in range sensing have made possible the acquisition of accurate 3-D
scans of outdoor scenes. Range sensors have proven their effectiveness in controlled labo-
ratory environments (e.g., [16, 44]). Taking these methods out of the controlled laboratory
environment and using them on large geometrically complex outdoor scenes poses many
difficult challenges. In this paper, we present an integrated system for creating geometrically
and photometrically correct 3-D models of large outdoor structures.

The problem we attack can be described as follows: Given a set of dense 3-D range
scans of a complex real scene from different viewpoints and a set of 2-D photographs of
the scene, (a) create the 3-D solid model which describes the geometry of the scene, (b)
recover the positions of the 2-D cameras with respect to the extracted geometric model, and
(c) photorealistically render the scene by texture-mapping the associated photographs on
the model.

The integrated system we developed for the production of photorealistic geometric mod-
els of large and complex scenes is described in Fig. 1. We start with a set of range and
brightness images which cover the measured site. The range images are first segmented,
and 3-D features of interest are extracted (Section 3). After all range images are expressed
in the same coordinate system a volumetric solid geometric model which expresses the ge-
ometry of the scene is computed (Section 4). Finally, the relative positions of the brightness
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FIG. 1. System for building geometric and photometric correct solid models.
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cameras with respect to the 3-D model are automatically recovered and the photographs
are mapped on the geometric model in order to provide a photorealistic view of the scene
(Section 5).

2. RELATED WORK

There are two major approaches in the photorealistic reconstruction of urban 3-D scenes:
purely geometric (extraction of dense geometry via range sensing or extraction of sparse and
irregular geometry via stereo techniques) and image-based rendering methods (extrapolating
geometry in the rendering phase via resampling the captured light field of the scene).
Representative systems whose goal is the photorealistic reconstruction of real scenes by
the utilization of 2-D imagery only are [6, 17, 46]. In those cases the necessary human
interaction and the a priori geometric constraints imposed by the human operator lead to
a lack of scalability with respect to the number of processed images of the scene and to
the computation of simplified geometric descriptions of the scene. Teller’s approach [52]
addresses the limitations of the previously described methods by acquiring and processing
a large amount of pose-annotated high-resolution spherical imagery of the scene. The end
result consists of vertical facades with associated textures [15] along with relief estimation
[51]. The automatic computation of the transformation between nearby mosaics [2, 3] is
achieved. The whole project is very promising; methods based on images alone, however,
are not able to capture highly detailed architectural environments.

Systems which extract dense and regular geometry must rely on accurate range measur-
ments. Representative approaches include the VIT group [7, 20, 54], the Digital
Michelangelo project [37], the Pietá project [8], Fitzgibbon et al. [23], Zhao [57], and
Sequiera [45].

Zisserman’s group in Oxford [24] works toward the fully automatic construction of
graphical models of scenes when the input is a sequence of closely spaced 2-D images
(video sequence). Their system couples the matching of 2-D point features in triples of
consecutive images with the computation of the fundamental matrices between pairs of im-
ages and trifocal tensors between triples of images (projective reconstruction). This work
shows how far purely image-based methods have gone but also points out the following
inherent limitations: (a) Sparse depth estimates which depend on the texture and geometric
structure of the scene, and (b) The resulting CAD model which is a crude approxima-
tion in the areas which do not support 3-D measurements. In more recent work of the
same group, a priori knowledge regarding the scene is utilized in the 3-D extraction phase
[4, 38].

3. SEGMENTATION AND 3-D FEATURE DETECTION

The individual range images which the range sensor provides are the result of dense
sampling of visible surfaces in large urban scenes. Using a Cyrax laser scanner, we get
1K by 1K range samples (∼1 million range samples) with a spatial resolution of a few
centimeters. Smoothly varying parts of the scene (e.g., planar or cylindrical surfaces) are
sampled with the same rate as nonsmooth surfaces (e.g., parts of the scene with orienta-
tion discontinuities). If we are able to identify those smoothly varying parts then we can
represent them with a fewer number of parameters. In this section, we formulate the range
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FIG. 2. Cluster boundaries defined as sequence of points on the rectangular grid over which the range image
is defined.

segmentation and 3-D feature detection problems. Further details on these methods can be
found in [48, 49].

3.1. Segmenting Dense Range Data

We follow the formulation introduced by [9]. Our goal is to segment the range image
{r (i, j), i = 1 . . . N , j = 1 . . . M}1 into a set of clusters {Cnull, C1, . . . , Cn}. Each cluster
Ci , i ≥ 1 is defined over a connected domain {r (i, j)} of 3-D points and it corresponds
to a smoothly varying surface Si of the object. Also, no two clusters overlap; that is,
Ci ∩ C j = ∅, ∀i, j : i �= j . Finally the number of points that support each cluster is larger
than a user defined threshold Tsize. The special symbol Cnull corresponds to the cluster of
3-D points which cannot be classified to any surface.

Each cluster Ci , i ≥ 1 is represented by a set of parametersP(Si ) which define the surface
Si of infinite extent where the points of the cluster lie and by the sequence of those range
points {r (i, j)} ⊂ Ci which define the outer and inner boundaries of the cluster (see Fig. 2).
A range point belongs to the boundary of the cluster if at least one of its 8-neighbors in the
2-D grid is not a member of the cluster. The outer boundaryO(Si ) is the one that encloses all
range points of the cluster, whereas the inner boundaries Ik(Si ) are holes inside the cluster.
So, a cluster is represented as follows:

Ci = (P(Si ) |O(Si ), I0(Si ), . . . IK (Si )).

Our final goal is to extract 3-D curves of finite extent at the intersections of adjacent
surfaces Si . That is, our goal is to generate a list of curves

L = {L(Si0, Sj0),L(Si1, Sj1), . . . ,L(SiW , SjW )}.

The symbol L(Si K , Sj K ) corresponds to the curve of finite extent which is the intersection
of the surfaces Si K and Sj K . Those surfaces have defined boundaries according to the
formulation described above.

1 The indices i, j define the position and orientation of the laser-beam which produces the 3-D point r (i, j).
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FIG. 3. Neighborhood of points inside a cluster. The local planes fit around each point are very close with
respect to each other.

The outline of our segmentation algorithm is the following:

Point classification: A local plane is fit in the k × k neighborhood of every 3-D point.
The normal np of the computed plane corresponds to the smallest eigenvector of the 3 by 3
matrix A = �N

i=1((vi − m)T · (vi − m)) where m is the centroid of the set of k × k vertices
vi. The smallest eigenvalue (least-squares fit) of the matrix A expresses the deviation d of
the points vi from the fitted plane; that is, it is a measure of the quality of the fit. If the
fit is acceptable the point is classified as locally planar (when the deviation d is below a
user-specified threshold Pthresh); otherwise is classified as nonplanar. Finally if the number
of sensed points in the k × k neighborhood is not enough to produce a reliable fit the point
is classified as isolated.

Cluster initialization: Create one cluster for every locally planar point.
Cluster merging: Merge clusters from the initial cluster list. Each cluster in the final

list is defined as a set of 3-D points which are connected and lie on the same surface. Formally,
the points of every final cluster represent segmented surfaces that can be approximated by
small local patches of similar position and orientation at the point-level. That is, the local
planes of every pair of neighboring points are very close with respect to each other (see
Fig. 3).

Surface fit: Fit a plane (using the same algorithm described in the point classification
phase) to the points of each cluster.

Boundary extraction: Extract the boundaries of each cluster.2 Each boundary is thus a
sequence of 2-D grid points: B = {(i0, j0), (i1, j1), . . . , (im, jm)}. The actual 3-D boundary
is just B3D = {r (i0, j0), r (i1, j1), . . . , r (im, jm)} where r (i, j) is the 3-D position which
corresponds to the grid point (i, j). We are also computing the 3-D axis-aligned bounding
box BOUND3D of the set B3D. The bounding box is used for a fast estimation of the
extension of the 3-D boundary in space and is used in the algorithms for 3-D line extraction
(Section 3.2).

The merging of neighboring clusters is driven by a metric of conormality and coplanarity
of two planar patches. Two adjacent locally planar points are considered to lie on the same
planar surface if their corresponding local planar patches have similar orientation and are
close in 3D space. Figure 4 displays two local planar patches which have been fit around the
points P1 and P2 (point classification). The normals of the patches are n1 and n2, respectively.
The points P ′

i are the projections of the points Pi on the patches. The two planar patches are
considered to be part of the same planar surface if the following two conditions are met:

Conormality measure: The first condition claims that the patches should have iden-
tical orientation (within a tolerance region); that is, the angle α = cos−1 (n1 · n2) is smaller
than a threshold αthresh.

2 A range point belongs to the boundary of the cluster if at least one of its 8-neighbors is not a member of the
cluster.
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FIG. 4. Coplanarity measure. Two planar patches fit around points P1 and P2 at a distance |r12|.

Coplanarity measure: The second condition is that the patches lie on the same infinite
plane. The distance between the two patches is defined as d = max(|r12· n1|, |r12 · n2|),
where r12 is the vector connecting the projections of P1 and P2 on their corresponding local
planes (see Fig. 4). This distance should be smaller than a threshold dthresh.

Thus, we defined the predicate CoPlanar (P1, P2 | αthresh, dthresh) which decides whether
two points P1 and P2 could be part of the same planar surface within a tolerance defined by
the thresholds αthresh and dthresh.

The cluster-merging is a sequential-labeling algorithm [5] of the 3-D points into 8-
connected regions, where the metric of similarity between neighboring points is the predicate
defined in the previous paragraph. This algorithm has complexity O(N ) where N is the total
number of range points (in our experiments N ∼ 106).

The segmentation algorithm is automatic. The user, though, has to provide three thresh-
olds. The threshold Pthresh is used to decide whether a 3-D point can be part of a smoothly
varying surface (Point Classification phase). Points, whose local planes produce fitting
errors3 above this threshold, are consider to lie on a local discontinuity. Thus, they are re-
jected from further consideration. The thresholds αthresh and dthresh are used to decide whether
two planar patches have similar orientation and position in space (cluster-merging phase).
Local patches whose angular distance is greater than αthresh or whose positional distance
is greater than dthresh are not considered to be parts of the same smoothly varying surface.
Thus, by changing those thresholds we are able to achieve different segmentation results.

3.2. Extracting 3-D Linear Features from Segmented Range Images

At a second level of abstraction the 3-D range dataset is represented as a set of 3-D curves.
Those curves are the result of an intersection of neighboring bounded 3-D surfaces which
have been extracted by the range segmentation module. We implemented the extraction of
3-D lines as a result of planar surface intersections. Those 3-D features are used for the
registration between 3-D datasets and between 3-D datasets and 2-D images.

The extraction of 3-D lines involves three steps:

1. Intersection of neighboring 3-D planes to produce 3-D lines of infinite extent4

(Fig. 5a).
2. Verification of the infinite 3-D lines. This step involves the computation of the

distance between the bounded surfaces and the produced 3-D line (Fig. 5b).

3 Minimum least square errors.
4 A measure of closeness which utilizes the 3-D bounding boxes of the planes is used.
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FIG. 5. (a) Infinite 3-D line as intersection of neighboring planes, (b) distance of bounded surfaces from line,
and (c) verified 3-D linear segment.

3. Generation of 3-D linear segments out of the infinite 3-D lines. This is done by
keeping the parts of the infinite 3-D lines which are verified by the range dataset (Fig. 5c).

Thus the 3-D line extraction algorithm works as follows: For every pair (Si , Sj ) of neigh-
boring 3-D surfaces generate the infinite 3-D lines L(Si , Sj ) as the intersection of those
surfaces. Then verify the existence of that line by computing its distance from the two
surfaces Si and Sj . Finally, extract the verified 3-D linear segment LS(Si , Sj ) out of the
infinite 3-D line (for more details see [47, 48]).

3.3. Segmentation Results

The segmentation algorithms have been tested on range scans of urban structures. We have
chosen four buildings. Two of them, the Casa Italiana and Teacher’s College Building, are
part of the Columbia University campus in New York City and are typical urban structures.
These are buildings with planar façades and regular patterns of windows and doors. We also
scanned the front of the Guggenheim Museum in New York City,5 a one-of-a-kind building
with conical façades. Our final scanned building is the Flat-Iron Building, a trademark of
New York’s early 20th century architecture.

The range and segmented scan of one view of Casa Italiana (a photograph of the building
can be seen in Fig. 18a) and segmented scans of two additional views of the same building
are shown in Fig. 6. Range and segmented scans of Teacher College are shown in Fig. 7,
whereas photographs and range and segmented scans of the Guggenheim museum and of
the Flat-Iron Building are shown in Figs. 8 and 9, respectively. Each segmented surface is
displayed with a different color. The points which failed the initial Point Classification step
are displayed in red.

The segmentation algorithm correctly extracts planar regions. In the case of Casa Italiana,
all major walls have been extracted as well as small bricks and window borders. The same
is true in the case of Teachers College, where we are able to extract parts of the roof
and window shades. The first view of the Flat-Iron Building has been segmented into two
major planar regions and a large number of window borders have been identified. In the
second view one major wall has been extracted. Finally, in the case of the Guggenheim
Museum the segmentation algorithm is able to extract conical façades. Thus, the algorithm
can extract slowly varying smooth surfaces and not exclusively planes. This is because in
the Cluster-Merging phase we are using a local region-growing decision which does not
force the extracted regions to lie on a plane.

5 Designed by Frank Lloyd Wright, one of the most famous architects of the 20th century.
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FIG. 6. Casa Italiana. Top row: Range and segmented images (first view). Bottom row: Segmented images
(second and third view). Each segmented surface is displayed with different color. The points which failed the
initial Point Classification step are displayed in red (the large segmented wall on the second view is not red). Color
versions of all images of this paper can be found at http://www.cs.columbia.edu/robotics/CVIU.

Figure 10 displays the results of the line extraction algorithm for the first views of the
Casa Italiana and Teachers College. It is clear that major linear features (borders of large
walls) as well as borders of windows have been extracted correctly.

The segmentation algorithms are very efficient. The surface extraction algorithm has a
complexity of O(N ) where N is the total number of range points. The feature extraction
algorithm has a complexity of O(M2) where M is the number of extracted 3-D planes.

Once we have extracted the segmented surfaces from the original dense range scan, we
can use them as input to the full 3-D CAD modeling phase of the system (Section 4). We can
also use the extracted 3-D linear features for range-to-range and range-to-image registration
(Section 5).

4. SOLID MODELING

In general, 3-D modeling systems are based either on mesh-based or on volumetric ap-
proaches. In the mesh-based approaches, each range image is transformed into a mesh of
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FIG. 7. Teachers College. Range (top) and segmented (bottom) image of the scene. Each segmented surface
is displayed with a different color. The points which failed the initial Point Classification step are displayed in red.

triangular faces and all range images are merged by averaging surface elements on the
mesh level. The final result is a triangular mesh which approximates the outer surface of
the sensed object ([53] is a representative approach). Volumetric approaches, on the other
hand, combine individual range images into a 3-D volume. The underlying representation
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FIG. 8. Guggenheim Museum. Top row: Two-dimensional photograph and dense range scan (first view).
Bottom row: Segmented range scans (first and second view). Each segmented surface is displayed with a different
color. The points which failed the initial Point Classification step are displayed in red.

is the 3-D volume which approximates the actual volume the sensed object occupies
(see [16, 43] for representative approaches). Volumetric approaches are considered su-
perior to mesh-based methods, since they can model and fill holes in the final models.
Holes can destroy the photorealistic appearance of the scene and thus are highly undesi-
rable.

Our solid modeling system involves the following:

1. Individual range-image acquisition from different viewpoints.
2. Registration of all images into a common frame of reference.
3. Transformation of each range image into an intermediate volumetric-based repre-

sentation using a sweeping operation.
4. Merging of all swept range images into a common representation.

4.1. Modeling System

We have extended the modeler which is based on an earlier work by Reed and Allen [43].
The innovative principle of this approach is the representation of each individual range image
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FIG. 9. Flat-Iron Building. Top row: Two-dimensional photograph and dense range scan (first view). Bottom
row: Segmented range scans (first and second view). Each segmented surface is displayed with a different color.
The points which failed the initial Point Classification step are displayed in red.

FIG. 10. 3-D lines produced by intersection of neighboring 3-D planes. Major features (such as wall and
window borders) have been captured. Teachers College (left) and first view of Casa Italiana (right).
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FIG. 11. Solid modeling concept. (a) Solid block being sensed, (b) Mesh generated by the measured 3-D
points. (c) Partial solid model construction formed by sweeping mesh surfaces along the sensing direction.

with a solid volume. Each cloud of range points is transformed into a triangular surface
mesh, and that mesh is then swept or extruded to a solid volume. The volumes elegantly
capture the sensed and “yet to be explored” parts of the scene. The difficult problem of
merging individual registered range images transforms to the computation of volumetric
boolean set intersections between the partial solid volumes which represent each individual
view of the scene. The modeling concept is described in Fig. 11. A triangular surface mesh
(Fig. 11b) is constructed from the raw range image of the sensed object (Fig. 11a). That
mesh is swept toward the sense direction and the resulting solid model is shown in Fig. 11c.
A part of the reconstructed triangular mesh of an object is shown in Fig. 12a. Each triangular
mesh element is extruded along the sensing direction creating a triangular prism (Fig. 12b).
The final swept volume is the result of the boolean unification of the individual triangular
prisms (Fig. 12c).

4.2. Modeling Outdoor Structures

Reed’s method works well in a carefully calibrated laboratory setting, where objects
placed on a turntable are scanned from accurately calibrated range-sensor positions. In
order to extend the system to outdoor environments we need to provide a method for the
registration of the individual range scans. Indoor model recovery typically uses calibrated
stations which we do not have access to outdoors. However, since urban scenes provide
very reliable 3-D linear features (see Section 3 for our 3-D line extraction method), we
decided to use those linear features for range registration. The registration (computation
of the rotation matrix R and translation vector T) between the coordinate systems of the
nth and first range image is possible if at least two line6 matches are given. The rotation
is calculated according to the closed-from solution described in [21]. After the rotation is
known a linear system can be formed for the computation of the translation [47]. Currently,
the match between features is manual. The automation of this process could be possible by
the utilization of the RANSAC framework described in Section 5 in the context of range-
to-image registration. Another issue which we need to consider is the fact that parts of the
model may be missing due to transparent objects in the scene (such as windows). Those
parts need to be interpolated from neighboring samples. Finally, the simplification of the
dense mesh surfaces becomes important for efficient 3-D modeling and efficient rendering
of the scene. A key contribution of our work is the incorporation of segmentation as the
necessary stage of early 3-D modeling. The generation and unification of every individual

6 Infinite 3-D line without endpoints.
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FIG. 12. Sweeping triangular mesh elements. (a) Triangular mesh surface, (b) one triangular element swept
towards sensing direction, (c) all triangular elements swept.

triangular prism in order to create the final solid model (see Fig. 12) can be avoided with
the use of polygonal prisms in the areas where planar surfaces have been extracted. Instead
of creating one triangular prism for each individual mesh element, we can create prisms for
the large planar polygonal areas extracted by the segmentation process. Parts of the scene
which cannot be segmented into planar regions are treated as triangular prisms swept toward
the sensing direction. That means that nonplanar parts, such as columns and cupolas, are
kept as dense swept meshes.

Figure 13 demonstrates the result of sweeping the outer polygonal, hole, and triangular
elements in the sensing direction. In the top row a presentation of sweeping when no holes
exist is shown. Polygonal and triangular prisms are unified in order to create a partial solid
model. The extent of the sweep operation is determined by the computation of an adequate
far plane distance that will envelope the building’s extent. For the Italian house experiment
we swept each volume back by 120 m.7 A complication arises in the presence of hole
elements. This complication is demonstrated on the bottom row of Fig. 13. Holes inside
large polygonal elements must be handled differently; the prisms created by sweeping the
holes can be thought of as negative prisms. That means that a hole defines a void space. This
is naturally implemented by the subtraction of the swept volume generated by the holes
from the final partial solid model.

4.3. 3-D Modeling Results

We have tested this method on a building on Columbia University’s campus. The ac-
quired range scans are segmented, registered, and finally transformed to a nonredundant
volumetric solid representation. The segmentation of each range scan is done by means of
the segmentation algorithm described in Section 3. We manually match pairs of automat-
ically extracted 3-D lines in order to align the scans on the same coordinate system (see
Section 4.2).

The original range scans of the building Casa Italiana are subsampled and then segmented
into polygonal planar regions. The unification of those two types of sweeps (sweeps pro-
duced by polygonal and sweeps produced by triangular faces) provides the final solid sweep
for the first view of the building. The final solid sweeps for the three views of Casa Italiana
and their volumetric boolean intersections which result in a topologically correct and geo-
metrically accurate solid model of the scene are shown in Fig. 14.

Table 1 shows the reduction on the number of polygons used in the solid modeling phase.
That reduction and increased efficiency is the result of the involvement of the segmentation

7 The spatial extent of the building can be easily computed from the registered 3-D point clouds. The 3-D
bounding box of the cloud is computed (by finding the extreme 3-D points of the set in the X, Y, and Z direction).
The maximum dimesion of this box is used as the sweeping distance.
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FIG. 13. Extension of solid modeler. Top row: (left) Polygonal face (without holes) and triangular mesh
elements. (middle) One polygonal element swept toward the sensing direction. (right) All elements swept. The
union of all prisms is the resulted partial solid volume. Bottom row: same concept. Now, though, the polygonal
face has holes.

FIG. 14. Modeling Casa Italiana. Three volumetric sweeps of the segmented range scans. The volumetric set
intersection of the three sweeps leads to the final composite solid model (bottom right image).



108 STAMOS AND ALLEN

TABLE 1

Results from Modelers Extension: Reduction on Number of Triangular Prisms

After segmentation
Before segm.

Viewpoint Triang. prisms Triang. prisms Polyg. prisms Reduction

1 79,596 41,864 32 52.6 %
2 58,116 24,480 19 42.1 %
3 81,192 41,245 34 50.8 %

process in the modeling phase. The reduction in the number of triangular faces as a result of
the segmentation is shown for the three range scans. The second column presents the number
of triangular prisms that would be used for modeling if segmentation was not used. The
third and fourth column show the number of triangular and polygonal prisms that are used
for modeling after the segmentation of the range scans (triangular prisms are still needed for
the unsegmented parts of the scene). The last column shows the amount of reduction on the
number of triangular prisms due to the segmentation process. The reduction in the spatial
complexity of the sweeps is very large (on the order of 50%). That reduced complexity
greatly simplifies the task of boolean intersection. It also increases the time-efficiency of
the solid modeling phase.

The data simplification and segmentation of each individual range image before merging
translates to simplified intermediate volumetric representations. Merging those intermediate
representations is the hardest part of modeling. Thus, the decreased complexity of the
individual volumes results in increased efficiency in the solid modeling phase. This is
exactly the kind of efficiency that is highly desirable in the context of modeling large
outdoor scenes. The method scales well with the increased sampling density of measured
3-D scenes and is thus appropriate for handling the complexity of scenes of large scale.

5. 2-D IMAGE REGISTRATION WITH RANGE DATA

Our next goal is to enhance the geometric model with photographic observations taken
from a freely moving 2-D camera by automatically recovering the camera’s position and
orientation with respect to the model of the scene and by automatically calibrating the
camera sensor. Most systems which recreate photorealistic models of the environment by a
combination of range and image sensing [41, 45, 54, 57] solve the range to image registration
problem by fixing the relative position and orientation of the camera with respect to the
range sensor (that is the two sensors are rigidly attached on the same platform). The major
drawbacks of this approach are (i) lack of 2-D sensing flexibility, since the limitations of
range sensor positioning (standoff distance, maximum distance) translate to constraints on
the camera placement, and (ii) static arrangement of sensors, which means that the system
cannot dynamically adjust to the requirements of each particular scene (the camera sensor is
precalibrated off-line). Also, the fixed approach cannot handle the case of mapping historical
photographs on the models, something our method is able to accomplish.

We provide a solution to the automated pose determination of a camera with respect to a
range sensor without placing artificial objects in the scene and without a static arrangement of
the range-camera system. This is done by solving the problem of automatically matching 3-D
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and 2-D features from the range and image datasets. Our approach involves the utilization of
parallelism and orthogonality constraints that naturally exist in urban environments in order
to extract 3-D rectangular structures from the range data and 2-D rectangular structures from
the 2-D images.

The problems of pose estimation and camera calibration are of fundamental importance in
computer vision and robotics research since their solution is required or coupled with stereo
matching, structure from motion, robot localization, object tracking, and object recognition
algorithms. There are numerous approaches for the solution of the pose estimation problem
from point correspondences [18, 19, 22, 39, 42] or from line correspondences [14, 27, 33].
Works in automated matching of 3-D with 2-D features include [13, 26, 28, 30, 32, 36, 40,
55] whereas in [56] the automated matching is possible when artificial markers are placed
in the scene. Finally, Ikeuchi [34] utilizes the reflectance response of the laser range sensor
in order to provide an automated solution to the problem.

5.1. 2-D Camera Pose Estimation

The camera pose estimation involves the following stages:

1. Extraction of two feature sets F3D and F2D (3-D and 2-D linear segments from the
range and image datasets) (see Section 3).

2. Grouping of the 3-D and 2-D feature sets into clusters of parallel 3-D lines L3D and
converging 2-D lines8 L2D (Section 5.1.1).

3. Computation of an initial pose estimate P0 (rotation and internal camera parameters)
by utilizing the directions defined by the sets L3D and L2D (Section 5.1.2).

4. Grouping of the 3-D and 2-D line segments into higher level structures of 3-D
and 2-D rectangles R3D and R2D and extraction of 3-D and 2-D graphs G3D and G2D of
rectangles (repetitive pattern of scene and image rectangles) (Section 5.1.3).

5. Automatic selection of a matched set of rectangular features Co and computation of
a pose Po =A(Co | P0) by running a pose estimator algorithm A (computation of a coarse
pose estimate). Refinement P R = R(Po, L3D, L2D) of the estimated pose Po by using all
available information computed so far (computation of a fine pose estimate) (Section 5.1.4).

5.1.1. Vanishing Point Extraction and Clustering 3-D Lines

In the 2-D domain the extraction of vanishing points provides a natural clustering of lines
into sets which correspond to parallel 3-D lines whereas in the 3-D domain the clustering
into sets of parallel 3-D lines is direct. The end result of this module is the extraction of
major vanishing points VP = {v1, . . . , vn}. Each vanishing point is supported by a set of
2-D lines9 and the desired clustering L2D = {L2D1 , . . . , L2Dn } has been accomplished. If the
number of major vanishing points Nvps is known a priori then we can select the Nvps largest
clusters from the set L2D as our result. Computing the number Nvps is an easy task (it is
equivelant to identifying the major modes of the 1-D histogram of directions of 2-D lines on
the plane [35]). There are many methods for the automatic computation of the major image
vanishing points (see [3, 12, 35]). Our approach involves the computation of all pairwise

8 Those lines define vanishing points on the image space.
9 We are using a Canny edge detector with hysteresis thresholding [11] for extracting 2-D edges. Those edges

are grouped into linear segments via orthogonal regression.
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FIG. 15. Two vanishing points. The 2-D lines which correspond to parallel 3-D lines of direction ni intersect
at a common vanishing point Vi on the image plane.

intersections between the extracted image lines and the creation of a 2-D histogram of those
intersections. For details see [47, 50].

For the clustering of the extracted 3-D lines into sets of parallel lines we are using
a classic unsupervised nearest neighbor clustering algorithm [31]. The Nvps larger clus-
ters of 3-D lines provide the desired grouping of 3-D lines into clusters of parallel lines
L3D = {L3D1 , . . . , L3DNvps

} along with the average 3-D direction of each cluster U3D =
{V3D1 , . . . , V3DNvps

}.

5.1.2. Computing Camera Rotation and Internal Camera Calibration

The rotation computation is based on the fact that the relative orientation between two 3-D
coordinate systems O and O ′ can be computed if two matching directions between the two
systems are known. In this case there is a closed-form solution for the rotation [21] and we
can write R = R(n1, n′

1 | n2, n′
2), where ni and n′

i are corresponding orientations expressed
in the coordinate systems O and O ′. In our case, the direction of the 3-D lines which
produce the vanishing point vi is the unit vector ni = (vi − COP)/‖(vi − COP)‖ (COP is
the center of projection of the camera), expressed in the coordinate system of the camera
sensor. This direction can be matched with a scene direction n′

i which is expressed in the
coordinate system of the range sensor and which has been provided by the 3-D clustering
module (Section 5.1.1). So, the rotation computation is reduced to the problem of finding
two pairs of matching 3-D directions and 2-D vanishing points (see Fig. 15).

The camera center of projection (principal point and focal length) can be computed by
three such pairs of directions10 (see [6, 12]).

5.1.3. Computing Translation by Extracting 3-D and 2-D Rectangles

Calculating the translation requires the exact matching of local 3-D and 2-D features
and global properties alone are not enough. Since 3-D points are hard to localize in

10 The camera calibration is performed before the computation of the rotation, since the rotation computation
assumes a calibrated camera.
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FIG. 16. 3-D rectangle formed by lines parallel to the scene directions Vver and Vhor and its corresponding
2-D quadrangle formed by 2-D lines which meet at the image vanishing points vver and vhor.

the 3-D dataset and since we have already developed a method for the reliable and
accurate extraction of 3-D lines [48] we will match 2-D with 3-D linear features. In or-
der to reduce the search-space of possible matches we move up in the feature hierar-
chy and group the 3-D and 2-D lines into graphs of rectangular and quadrangular struc-
tures.

The geometry of the projection of a 3-D rectangle on a 2-D image quadrangle is shown in
Fig. 16. Three-dimensional rectangles which are formed by pairs of lines of directions (Vver,
Vhor) have corresponding 2-D quadrangles which are formed by pairs of 2-D lines which
converge to the vanishing points (vver,vhor). That means that in order to extract corresponding
3-D rectangles and 2-D quadrangles we need to utilize the extracted clusters of 3-D and
2-D lines. For the following discussion we will call one of the two scene directions vertical
(Vver) and the other one horizontal (Vhor). Analogously we call vver and vhor the vanishing
points which correspond to the directions Vver and Vhor.

We can formulate the 3-D and 2-D rectangle extraction problem as follows: The input
is two pairs of 3-D directions Vver, Vhor ε U3D and 2-D vanishing points vver, vhor ε VP
along with the 3-D L3D0 , L3D1 ε L3D and 2-D L2D0 , L2D1 ε L2D (Section 5.1.1) clusters that
support them. The output is a set of 3-D rectangles and 2-D quadrangles R3D and R2D and
two corresponding graphs G3D and G2D describing the spatial relationship among structures
in R3D and R2D , respectively.

Following this notation, a 3-D rectangle is a planar 3-D structure whose sides can be
tagged as lup or ldown if they are parallel to the Vhor direction and as lleft or lright if they
are parallel to the Vver direction (Fig. 16). Also we can define three relationships between
rectangles which lie on the same scene plane: right of, top of, and in or out of. The exact
same representation can be used for the 2-D quadrangles. In order to use the same notation
and define spatial relationships between 2-D quadrangles we need to transform them to 2-D
rectangles. This can be done if we rotate the two vanishing points vver and vhor (and similarly
transform all 2-D lines which support them) such that they are parallel to the image plane.
More details on the rectangle-extraction algorithm can be found in [47].
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5.1.4. Matching 3-D and 2-D Rectangles

The last part of the pose computation module is the calculation of the camera translation
with respect to the range sensor by matching local 3-D and 2-D features between the range
and image datasets. In Section 5.1.2 3-D scene directions are matched with 2-D image
vanishing points in order to solve for the camera rotation.

Matching between a set of 3-D and 2-D rectangles will provide us a coarse pose estimate.
Exploring every possible combination of matches is an intractable problem since we need to
consider an exponentially large number of possibilities. In order to solve the problem we fol-
low the RANSAC framework introduced in [22]. Instead of considering all possible matches
we are randomly sampling the search space (R3D1 × R2D1 ) ∪ (R3D2 × R2D2 ) ∪ . . . ∪
(R3DM × R2DM ) of 3-D and 2-D rectangular structures.11

Each sample Cran consists of a fixed number nran of pairs of 3-D and 2-D rectangles, where
nran is the minimum number of matches that can produce a reliable pose-estimate. Every
sample Cran produces a pose estimate which is verified by projecting the 3-D rectangles on
the 2-D image. A matching score Qmatch is computed, and we select as correct the match
which produces the maximum score. Our algorithm sets the score Qmatch to equal the number
of 3-D rectangles which map (when projected to the image) to an extracted 2-D quadrangle
(larger is better). What remains to be defined is how we decide when two 2-D rectangles
are close with respect to each other.12 This decision is based on an adaptive threshold which
depends on the relative size of pairs of rectangles [47]. Finally, the pose estimation algorithm
A from a set of matched 3-D and 2-D lines (we can view each rectangle as a set of four
lines) is described in detail in [33]. In the implementation of the RANSAC procedure the
pose estimator A optimizes only with respect to the translation since the rotation is already
known to us (Section 5.1.2).

If we want to ensure with probability Pr that at least one of our random selections
corresponds to a valid match then the maximum number of steps is Nmax = log(1 − Pr)/
log(1 − b) where b is the probability of randomly selecting a sample of nran correct matches
[22]. If we assume that in our scene there are K pairs of 3-D and 2-D rectangles that can
be correctly matched then b = (K/L)nran and L = |(R3D1 × R2D1 ) ∪ (R3D2 × R2D2 ) ∪ . . . ∪
(R3DM × R2DM )| is the number of all possible pairs of 3-D and 2-D rectangles. K is unknown,
so we set it equal to 1/3L for our experiments. Note that the lower the probability of correct
matches b the larger the number of required steps N max.

The coarse estimate computed using the RANSAC method is very important because
it provides an initial solution which can be subsequently refined to yield a final pose
estimate. The refinement involves the projection of all 3-D lines of the extracted
clusters L3D on the 2-D image assuming the coarse pose estimate Po and so a set of
projected 3-D lines P(L3D) is formed. Each individual projected cluster is compared
with the groups of extracted 2-D lines L2D and new line matches among the 3-D and
2-D datasets are verified. The increased number of line matches results in better pose
estimation.

11 N matches (n′
i, ni) between scene and image directions produce M = ( N

2
) pairs of the form ((n′

i, ni), (n′
j, nj)).

In Section 5.1.3 we described a method to compute 3-D and 2-D rectangles (R3Dk , R2Dk ) from clusters of 3-D and
2-D lines, and pairs of the above pairs of matched scene and image directions.

12 Note that 2-D quadrangles are transformed into 2-D rectangles when we extract the vanishing points which
produce them.
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FIG. 17. (a,b) Clusters of 3-D lines (color encodes different directions) and extracted 3-D rectangles (rectan-
gles are rendered as solids of different color for clarity). Two different views of the building.

5.2. Range-Image Matching Results

The results of the 3-D line and rectangle extraction from two range scans of Casa Italiana
(Fig. 6) are shown in Figs. 17a and 17b. For clarity, different rectangles are rendered with
different colors. Also there are three major clusters of parallel lines (encoded with the colors
red, green, and blue). In the 2-D domain, the three major vanishing points and clusters of
2-D lines (for two views of the building) are shown in Figs. 18a and 18b. The automatically
computed principal point of the cameras is also shown; it is the point of intersection of
vanishing point directions on the image. The next set of figures (18c, 18d) displays the
results of extracting 2-D quadrangles from the 2-D images. The extracted quadrangles from
two different views are overlaid on the 2-D images. Notice that in some cases we introduce
false boundary edges to complete the quadrangles. However, these false boundaries do not
affect the matches, since RANSAC filters out correlations between 3-D and 2-D rectangles
which do not produce a valid pose estimate.13

The outcome of the coarse pose estimation algorithm (RANSAC algorithm) is presented
next in Figs. 18e and 18f. The extracted 2-D rectangles (red in color or black in black-
and-white printing) are shown overlaid with the projection (green in color or white in
black-and-white printing) of those 3-D rectangles which produce the maximum matching
score Qmatch (Qmatch is 9 for the first view and 8 for the second view). The final pose
(Section 5.1.4) is visually verified in Figs. 19a and 19b where the extracted 3-D lines shown
in Figs. 17a and 17b respectively are projected on the 2-D images. The extracted 2-D lines
are shown in red and the projected 3-D lines in green. As you can see the projected 3-D
lines are very well aligned with the 2-D data-sets, which means that both the registration
and the feature extraction algorithms produce accurate results. The number of samples the
RANSAC algorithm tried was 8457 (6.0 s on an SGI Onyx2) for the first view and 223831
(2 min and 29 s) for the second view.

Finally, Figs. 20a and 20b present the final texture-mapped 3-D models using the com-
puted calibration parameters and pose estimate on the two views of the model. The texture
map visually verifies the accuracy of our method and presents the true geometric model of
the scene enhanced with the photometric observations.

13 A false match results to a pose estimate which is not verified when the 3-D rectangles are projected on the
2-D image, since most 3-D rectangles will be projected far away from their 2-D counterparts.
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FIG. 18. Results. (Top row) 2-D images and clusters of 2-D lines, where different colors correspond to different
vanishing points (two views of the building shown). (Middle row) Extracted 2-D quadrangles. (Bottom row) Extra-
cted 2-D quadrangles (shown in red in color or black in black-and-white printing) and Qmatch matched 3-D rectang-
les projected on images after coarse pose estimation (shown in green in color or white in black-and-white printing).

FIG. 19. Results. Projected 3-D lines on the images after final pose estimation (shown in green in color or white
in black-and-white printing). The extracted 2-D lines are shown in red in color or black in black-and-white printing.
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FIG. 20. Results. Images texture-mapped on 3-D model assuming final pose (two views of the model). The
texture map, visually verifies the accuracy of our method and presents the true geometric model of the scene
enhanced with the photometric observations.
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6. CONCLUSIONS

Our system addresses one of the most difficult problems in computer vision and robotics
research in a unique and effective manner. We believe that the developed modules are of
vital importance for a flexible photorealistic 3-D model acquisition system. Segmentation
algorithms simplify the dense datasets and provide stable features of interest which can
be used for registration purposes. The solid modeling provides geometrically correct 3-D
models. The automated range-to-image registration can increase the flexibility of the system
by decoupling the slow geometry recovery process from the image acquisition process; the
camera does not have to be precalibrated and rigidly attached to the range sensor. The system
is comprehensive in that it addresses all phases of the modeling problem with a particular
emphasis on automating the entire process without manual interaction.

Due to the scope of the system, there are still a number of open technical issues that need
to be addressed: (i) The segmentation routines fit planes to the extracted clusters of points.
Fitting of general smoothly varying surfaces is needed in nonplanar parts of the scene.
Also a number of thresholds have to manually be set by the user in order to customize
the segmentation. It is unclear how the current system will work with scenes that do not
contain large amounts of planar surfaces. (ii) The solid modeling part requires very accurate
registration between the range images. Also the whole object must be in the field of view of
the sensor at each scanning operation. This problem can be attacked if we replace the boolean
intersection of the solid sweeps with the unification of the complements of the sweeps. (iii)
Our algorithm operates in scenes which contain linear features with strong orthogonality
constraints. We are able to exploit the unique features found in urban environments; it is yet
to be determined how it will extend to more general 3-D scenes. (iv) Currently we do not
merge multiple images (textures) on the 3-D model but we texture-map only one brightness
image per view. There are methods to attack the problem (i.e., view-dependent texturing
[17], statistical texture estimation [15], or the unstructured lumigraph method [10]). All
approaches implement heuristics though and the research problem is still open.

Our future work includes investigation in the area of sensor planning along the lines of
[44]. In order for this module to be operational on outdoor scenes, a navigational module
in a partial known world is needed. This module is currently under development in our lab
[25] and it runs on a mobile robot where the laser range scanner is located. The integrated
project (called AVENUE) [1] contains all the necessary modules (mobile robot navigation,
partial 3-D and 2-D maps of the environment of Columbia University’s campus, sensor
planning, and site modeling) which can enable a completely autonomous site exploration
system.
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