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Abstract— We present a joint demonstration between the
Robotics, Autonomous Systems, and Controls Laboratory
(RASCAL) at UC Davis and the Columbia University Robotics
Group, wherein a human-in-the-loop robotic grasping platform
in the Columbia lab (New York, NY) is controlled to select and
grasp an object by a C3-C4 spinal cord injury (SCI) subject in
the UC Davis lab (Davis, CA) using a new single-signal, multi-
degree-of-freedom surface electromyography (sEMG) human-
robot interface. The grasping system breaks the grasping task
into a multi-stage pipeline that can be navigated with only
a few inputs. It integrates pre-planned grasps with on-line
grasp planning capability and an object recognition and target
selection system capable of handling multi-object scenes with
moderate occlusion. Previous work performed in the RASCAL
lab demonstrated that by continuously modulating the power
in two individual bands in the frequency spectrum of a single
sEMG signal, users were able to control a cursor in 2D for
cursor to target tasks. Using this paradigm, four targets were
presented in order for the subject to command the multi-
stage grasping pipeline. We demonstrate that using this system,
operators are able to grasp objects in a remote location using
a robotic grasping platform.

I. INTRODUCTION

Grasping objects is critical to many activities of daily life
that present challenges to people with upper limb mobility
impairments. This work presents an assistive grasping system
using a human-in-the-loop for a disabled user to grasp objects
from a table using a novel, non-invasive sEMG based input
device even in somewhat cluttered scenes. The novel device
measures only a single differential sEMG signal at one
muscle site on the user. The system puts the user in control of
a multi-stage grasping pipeline that includes object recogni-
tion, integrated pre-planned and on-line grasp planning with
feedback to help the user plan robust grasps in near real
time. We show that an impaired user can successfully use
this system to grasp objects using a real robotic grasping
platform. The key contributions of this work include: a) In-
tegration with a novel sEMG input device which relies on
only a single muscle site. b) A new UI that improves the
disabled user’s ability to understand the scene and produce
correct grasps in complex, cluttered environments. c) Online
reachability analysis and feedback. d) Online assessment of
the desired approach direction. e) Evaluation of this system
on an impaired user in a remote location. f) A demonstration
that this new UI is descriptive enough for the user to operate
in an environment that they have never seen.
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Fig. 1: An impaired subject in the UC Davis RASCAL
lab (top) operating our sEMG-Assistive Grasping interface
to grasp a shaving gel bottle in the Columbia Robotics
Group Laboratory (bottom right). The two small black clips
behind the subject’s ear (bottom left) are surface EMG
electrodes (used in differential mode) to detect activation of
the Auricularis Posterior (AP) muscle to direct the system to
pick up the object in this multi-object scene.

Fig. 1 gives an overview of the system described in this
paper. In previous work [1], we presented a human-in-the-
loop grasp planning system using an Emotiv Epoc EEG
headset, a low throughput human input device that reads
facial gestures and EEG signals. We used the Epoc to provide
input that demonstrated user intent to a grasp planner that
would plan grasps in near real time. We showed with a cohort
of five subjects that within a few half hour long sessions,
subjects were able to learn to produce stable grasps for a
variety of objects.

While the Emotiv is relatively low cost and convenient for
devices of this type, it is bulky and prone to signal problems
from the electrodes losing reliable contact with the subject’s
scalp. It is time consuming to find an initial position which
maintains solid contacts, and it is frequently necessary to
pause the experiment to re-seat the head set and retrain the
system briefly. Furthermore, it uses several electrodes and a
head mounting frame that could encumber the users.

Our novel input device uses only a single electrode-pair
that can be placed securely in a noninvasive location behind
the ear. The signal is divided into multiple power bands
which are then processed into two simultaneous control
channels [2], [3]. The user controls a cursor which selects
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among four options that control the grasp planning pipeline.
To accommodate the high visual processing demands of

this paradigm, we have developed a more streamlined UI
with only a few grasp options at a time. Earlier work [1]
gave the user ten options. The user had to determine whether
a grasp was reachable and reliable. With fewer options, it is
important that we present the user with more valuable grasps
first. Additionally, the subjects in [1] were able to see the
experiment area to assess the reachability of different grasps
using their own intuition. However, an impaired user may
not be able to look around the room on their own. In this
paper, we show that a user in a remote location can use the
system using only the information conveyed by the interface.

To accomplish this, we have developed a more sophis-
ticated approach to filtering grasps to make sure that the
options presented are reachable and to let the user know
whether the current approach direction is tenable. Using this
system, an operator in the UC Davis Rascal lab (Davis, CA)
was able to pick up objects in a multi-object scene remotely
in the Columbia University Robotics lab (New York, NY).

II. RELATED WORK

There is a considerable body of work on assistive robotics
and controlling robots using inputs derived from electro-
physiological signals. In [4], we presented a more complete
review of the available literature.

Recently, [5] showed that an immobilized subject could
use the BrainGate cortically implanted electrode to control
a robotic manipulator. However, implanted devices enable
access to many high quality channels of control, but require
highly invasive surgeries that may not be suitable for many
users. Alternatively, others have explored noninvasive inter-
faces that are restricted to a lower bandwidth. The two most
commonly used signal sources are electromyography (EMG)
signals from muscles activation, and electroencephalography
(EEG) signals generated by brain activity. One common
source of EMG signals is the forearm muscles. Some exam-
ples of this include [6], in which the authors used forearm
signals to control a manipulator to pick up and place objects
on a table, and several works ([7], [8], [9], [10], [11]), in
which forearm muscle activation is used to preshape a hand
for grasping tasks.

Many more patients retain control over the muscles in their
heads and faces than forearm muscles, including those which
control eye gaze direction. This makes these signals a more
appropriate target for authors investigating assistive control
[12], [13], [14], [15]. These works have generally focused
on low level cartesian control of the end effector appropriate
for simple tasks. The novelty of the interface presented in
this paper is that it is generally even less invasive than those
in previous works and yet allows higher level capabilities.
This system records sEMG signals from a single muscle site,
requiring only a single recording electrode pair.

Previous work has shown that users prefer higher level
interfaces that assume some of the burden of planning how
to accomplish the task [16]. In [17], the authors demonstrated
using such a system for retrieving arbitrary objects from

flat surfaces using a laser pointer. These systems require
less input from the user, and are thus more appropriate
for lower bandwidth input signals such as EEG. [18], [19]
and [20] presented work using EEG signals in which the
subject selects grasp targets and placement locations, and
leaves the grasping and trajectory planning completely up
to the automated part of the system. In [21], the authors
describe using such a system to guide the whole pipeline of
a complex task which allowed the user to accomplish tasks
with many stages. Menu driven pipelines for accomplishing
such complex tasks using low bandwidth interfaces were
discussed in more detail by [22], [23].

More recent work [24], [25] has introduced a more flexible
interpretation of assistive control of grasp planning, termed
human-in-the-loop planning, in which the planner is guided
by a user and then presents the user with options for how
to complete the rest of the task. This work builds on this
interpretation to extend it to the lower bandwidth signals
available from many assistive interfaces such the sEMG
device used in this paper.

III. THE SEMG DEVICE

In [3], [2], [26], we showed that subjects can learn to nav-
igate a cursor on a screen by making fine-tuned contractions
of the Auricularis Superior (AS) - the ear wiggling muscle
located above the ear and the Extensor Pollicis Longus (EPL)
- a muscle of the wrist used to stretch the thumb. In this study,
we used the Auricularis Posterior (AP), which is a muscle
similar to the AS but behind the ear rather than above it. The
skin behind the ear has less hair, so it is easier to securely
attach the electrode and get a strong sEMG signal there.

As even the most severely paralyzed individuals typically
have access to muscles that are innervated at the brainstem
(such as the AS and the AP), our device has the potential
to support this user group in their daily lives by allowing
them to manipulate the external environment through very
low isomorphic contractions of a spared muscle.

We collected sEMG signals from the AP muscle with two
surface Ag-AgCl cup electrodes connected to a model Y03
preamplifier (www.motion-labs.com) with input impedance
higher than 108Ω, 15-2000 Hz signal bandwidth and a gain
of 300. The electrodes were placed behind the subject’s left
ear along the axis of the muscle with approximately 1.5 cm
inter-electrode distance (see Fig. 1). A third electrode was
placed on the elbow as a reference. The cup electrodes were

Fig. 2: The single sEMG signal is first processed through a
60 Hz noise filter. It is then run through two different band
pass Buttersworth filters to extract two separate signals. The
bands are then linearly combined to compute the x and y
cursor positions according to Equation 1.
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of the type EL254S from Biopac Systems Inc. held in place
with Ten20 conductive paste.

The processing to extract control signals from the sEMG
is outlined in Fig. 2. The signal is filtered using a series
of notch filters as in [27] to filter out 60 Hz noise and its
harmonics. The total powers of two different frequency bands
of the single sEMG signal were computed using two band
pass filters for 80-100 Hz (Band 1) and 130-150 Hz (Band
2). These bands were selected ad-hoc, based on previous
experience. The output of the two filters produced com-
parable powers. The filter outputs were combined linearly
as described in Equation 1. Without this transformation the
cursor could not reach points along the x or y axis as there
can never be zero power in either of the frequency bands.
The gains for each band are set for each subject after a short
calibration procedure, as described in [3] to establish the
subject’s comfort level maintaining a large enough voluntary
muscle contraction to move the cursor to any part of the
screen.

xpos = 1.75
ChannelPower1

gain1
−0.75

ChannelPower2

gain2
(1a)

ypos = 1.75
ChannelPower2

gain2
−0.75

ChannelPower1

gain1
(1b)

The cursor position is further filtered through a low-pass
filter with a cutoff frequency of .5 Hz. This produces a new
position at 4 Hz. To smooth the visualization of the cursor
motion, we linearly interpolate 7 intermediate positions be-
tween each successive update, increasing the refresh rate of
the visualization from 4 Hz to 32 Hz. This makes the system
feel significantly more interactive, at the cost of a .25 second
delay between the calculated position and the visualization.

There are currently many different systems that pro-
vide assistive technologies to severely paralyzed persons.
These operate through the use of head or muscle function
still available, such as the tongue[28], eye gaze[29], facial
expressions[1], voice operation[30], or breath control[31].
Although these systems are useful for many, they rely on
functions that are needed for other vital functions or that
may be impaired due to the person’s condition. For many
of these systems the user is prevented from being able to
naturally interact with others. For example, tongue-operated
systems prevent speech. Facial expression controlled systems
prevent the user from making natural facial expressions such
as laughing. In the case of severe paralysis many of these
muscles are not available. Tongue and breath controlled sys-
tems can not be used when the user is on a respirator. The use
of sEMG sensors for prosthetics and assistive systems control
provides a noninvasive way for paralyzed persons to regain
some control of their environment. Traditionally, multiple
muscle sites are used to provide multiple degree-of-freedom
control[32], [33], [34]. However, in many cases, such as
when a paralyzed person must lay in a specific position,
multiple muscle sites may not be available. Eye tracking
devices may be difficult to set up for these constrained
environments. For these reasons, a single muscle site in a
location that does not compromise vital activities was chosen
for our system. A system like this is useable even by severly
impaired individuals like the one in [2], who used a previous
version of this system as a TV remote in his own home.

IV. THE SEMG INTERFACE

To send signals to the grasping system, the user controls
a cursor to hit one of four targets presented, which are
overlayed on the grasp planning scene, as seen in Fig. 3. The
user begins in a rest area and moves the cursor to one of the
targets, each representing a different input option. When the
target is hit, the cursor changes colors to reflect the user’s
selection. The user returns the cursor to the rest area, at
which point the input option selected is activated. After a
selection, the other targets are disabled for four seconds. If
an unintended target is selected, the user can avoid returning
to rest for these four seconds, canceling the selection.

For the red and green inputs, denoted input 1 and input
2, the input is activated a single time when the user returns
to rest. For inputs 3 and 4, the magenta and black targets
respectively, the activation is sent continuously until the user
exits the rest area again. This allows the user to do near
continuous control over the approach direction.

In general, input 1 serves as a ’no’ and in some stages
is used to indicate that the current grasp is not suitable and
proceed to the next grasp. Input 2 indicates a ’yes’ and is
used to allow the user to proceed to the next stage. Inputs
3 and 4 control the planner by moving a rendered image
of the robot hand that indicates the user’s desired approach
direction around the x and z axes of the target object,
respectively. We call this hand the demonstration hand. This
is explained in more detail in section V. The rationale
behind this control scheme is based on prior experience from
[2], where we compared a 2 dimensional target selection
paradigm with a simpler 1 dimensional paradigm in which
the user was asked to hold a contraction as the system cycled
through a set of options. While conceptually simpler, there
is a tradeoff between how long the user has to signal their
acceptance of a given option and how long the selection
takes. With a 4 option list, the user’s average time to reach
the fourth target was around 8 seconds. In comparison, after
practice using a 3 target 2 dimensional paradigm similar
to ours, the user was able to select any target with an
average time below 5 seconds. However, accuracy suffered
significantly, dropping from 100% to around 75% for the
worst case target. In this work, we have designed the pipeline
that the user controls to be robust to occasional errors in
target selection and implement the faster, more responsive
paradigm, rather than the slower but more reliable one.

V. THE GRASPING PIPELINE

In our scenario, the user is presented with a live pointcloud
of a table with several objects to be grasped. The user
is asked to select an object and attempt to lift it off the
table using the sEMG interface. Central to this method is
the use of our grasping simulator, GraspIt! [35]. GraspIt!
allows us to simulate robot configuration using data from
a vision system that acquires pointclouds in real-time. This
simulation environment allows us to evaluate grasps using
various quality measures, which we use to synthesize good
grasps. Then we can present the user with a visualization of
potential grasps aligned to the live vision data. Combined
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Fig. 3: The sEMG Interface: (a) Hitting one particular target changes the color of the cursor to reflect the selection and makes the other
targets unavailable. (b) If the user does not return to the rest area after a few seconds, the selection times out and is deselected and all
targets become available again for selection. (c) The user interface is composed of 4 targets overlayed on the grasping scene. Target 1
usually signals acceptance of the current option. Target 2 toggles the next option. Targets 3 and 4 provide input to the planner.

Fig. 4: The Grasp Planning Interface: (a) Object Selection: The subject is able to see the planning scene in the main UI window. The
window on the bottom tells the user the current phase and what the green and red inputs will do in this phase. In this phase, the subject
sees the the pointcloud and hits the red target until the object they wish to grasp is highlighted in green. Then they hit the green target to
proceed to the next phase. (b) Initial Review Phase: After the subject selects the object, the Grasp View pane on the right is populated
with a set of grasps from a database. Grasps that are reachable appear on a green background, while unreachable grasps are red. A robot
hand appears that the user moves to demonstrate a desired starting pose. This demonstration hand is constrained to follow the two circular
guides around the z and x axes of the object shown above. The top most grasp in the grasp view window is the currently selected grasp,
which is rendered in the planning scene with the planner hand.

with a real time, on-line grasp planner, this allows the user
to interface with the real scene interactively by guiding the
quasi-autonomous system through a grasping pipeline.

The grasping pipeline is divided into a number of stages:
Object recognition and initialization, target selection, initial
grasp review, planner initialization, on-line grasp refinement,
final grasp review, and grasp choice confirmation. This
pipeline is controlled via the four inputs described above.
Fig. 4 shows the window presented to the user during this
process. In each phase, the current phase can be seen in
the user input prompt window on the bottom. The result
of hitting the red and green targets is described in the
corresponding fields of the window.

A. Pipeline
1) Initialization: The grasp planning scene is initially

populated by an object recognition system based on [36].
First, a pointcloud generated by a Microsoft Kinect is added
to the scene. Then, a set of objects from a 3D model database
are recognized and aligned to the scene using a variant
of RANSAC with oriented pairs of points as features. We
assume a friction coefficient of 1.0. The inertial parameters of
the model are approximated by assuming a uniform density

of the surface of the model as in [35]. The object models are
added to the planning scene in the simulator to complete the
shape detected by the pointcloud for collision detection and
grasp quality analysis. The user can see the objects in the
simulator and select the target object for the grasp planner.
The other objects are treated as obstacles to be avoided. The
user sends input 1 to activate the object recognition system.
If the recognized objects align well with the point cloud sent,
they can accept the results with input 1. If not, they can rerun
the recognition system with input 2.

2) Object Selection: The first object is highlighted as the
target object. To select an object as a target, the user sends
input 2. To switch to the next object in the recognized object
list the user sends input 1.

3) Initial Review: The user is presented with a list of pre-
planned grasps from a precomputed database. The database
is built by an offline planner, described in subsection V-B,
that can compute the best stable grasps for an object based
on a grasp quality measure. By precomputing a set of stable
grasps offline from many directions, we can often present the
user with a good grasp choice immediately. The user sends
input 1 to increment through the grasp list. When the user
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finds a reasonable looking grasp, they send input 2 to select
the grasp.

4) Planner Initialization: The user is presented with the
choice to either accept the grasp from the third stage with in-
put 1, proceeding straight to the Grasp Choice Confirmation
stage or they can send input 2 to refine their chosen grasp
further.

5) Grasp Refinement: In order to refine their chosen
grasp, the user is able to position the demonstration hand
which shows the planner the approximate approach direction
the user wants to grasp the object from. The grasp is
refined by starting the online Eigengrasp planner described in
subsection V-B using the selected grasp’s approach direction.
The planner then generates a set of stable grasps, and the
user selects their desired grasp from among them. The user is
able to rotate the demonstration hand around the x axis of the
object using input 3 and around the z axis using input 4. The
planner re-ranks the grasps to prioritize those closer to the
demonstrated approach direction. New grasps are generated
using the demonstrated hand direction as a seed and added to
the available grasp list. If the planner is not able to generate
reachable grasps from the demonstrated pose, the hand is
tinted red to indicate to the user that there is a problem.
Sending input 2 stops the planner and proceeds to the Final
Grasp Review stage.

6) Final Grasp Review: The user sends input 1 to select
the next grasp on the grasp list. They send input 2 to select
that grasp.

7) Grasp Choice Confirmation: The user sends input 1 to
go back to the Grasp Refinement stage and input 2 to send
the grasp for execution on the robot.

B. Grasp Planner
Grasps are planned using our previously developed Eigen-

grasp Grasp Planner[37]. This planner is used both to pop-
ulate our grasp database[38] and to refine grasps on-line at
the user’s direction. The planner uses simulated annealing
on a lower dimensional representation of the joint angles
of the hand. The objective function used attempts to align
a set of predetermined contact points on the hand to the
object. In this case, a desired contact location is placed on
the center of each fingertip and inner finger link. There are
four additional contacts on the palm, one in the center of
each quadrant. For each desired contact point, the planner
projects along the direction normal to the hand to find any
contacts with the target object. If the distance to the palm
is greater than .05 m or the angle between the normals is
more than 45◦, the projected contact is discarded. Otherwise,
the magnitude of the maximum wrenches produced by this
contact point are scaled proportionately to their distance
and angle to the contact object, and the epsilon quality[39]
of the wrench space produced by these projected contact
points is calculated. Grasps that have a better quality than
the current best solution are added to the list of potential
grasp candidates.

For these grasp candidates, a more computational expen-
sive second quality measure is calculated in which the hand

moves along a predetermined approach direction, closes the
fingers, and then calculates the epsilon quality of the actual
simulated contacts, rather than the projection of them.

In this work, we introduce a final step to the grasp
ranking to test for reachability among the obstacles in the
current workspace. We use the CBiRRT motion planner[40]
to attempt to find an arm trajectory to reach the grasping
pose. Previous iterations of this planner used a simpler, built
in inverse kinematics solver to reject unreachable states. In
contrast, this version checks that an entire valid trajectory
can be generated. Unreachable grasps are placed at the end
of the list of grasps and colored red in the grasp preview
window (see Fig. 4b). We maintain the list of unreachable
grasps so that we can reject nearby grasps without running
more computationally expensive analyses. The valid grasps
are ranked by their distance to the demonstration hand and
alignment to its approach direction. This makes the planner
more responsive in cluttered scenes. The list is re-sorted as
the demonstration hand is moved.

The results of the reachability test are also used to train
a nearest neighbors classifier. When the user moves the
demonstration hand, we find the five grasps for which the
normal of the palm of the hand is closest to the normal of
the demonstrated pose. If at least 50% of these grasps are
unreachable, we designate the current demonstration pose as
being in an unreachable region, which is indicated to the
user by highlighting the demonstration hand in the planner
interface in red. These measures are crucial for a naive user
that is not familiar with the kinematics of the robot arm and
may not understand that the region they are trying to grasp
from is not within the robots workspace.

VI. EXPERIMENT
A. Setup

1) Hardware: Our grasping platform consists of a Staubli
TX60L robot arm with a BarrettHand. Pointclouds are gath-
ered by the object recognition system using a Microsoft
Kinect. Communication between the user interface at UC
Davis and the grasping platform at Columbia University is
through standard TCP/IP sockets using common message
passing libraries. Delays in communication over the remote
link are not considerable, and are not the focus of this paper.

2) Task: The subject was asked to make three attempts
to pick up an object from a cluttered, multi-object scene.
In the first two attempts, the user was asked to use the on-
line planner to refine one of the pre-planned grasps. In the
first attempt, the subject grasped the laundry detergent bottle.
In the second attempt, the subject grasped the shaving gel
bottle. In the third attempt, the subject was asked to grasp the
detergent bottle using one of the pre-planned grasps directly
from the grasp database. Other than the image in the planner
interface, the subject was not given any information about
the objects they were to grasp. However, they are all well
known, household objects.

During the task, the subject reported which target they
were trying to reach and we tracked the number of mistaken
target activations, which would lead the user to loop back
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Fig. 5: Above is the subject confirming a grasp for the handle of
the detergent bottle at the RASCAL lab. Below is the realized grasp
of the successfully lifted detergent bottle at Columbia University.

through part of the pipeline. After the grasp is selected, the
target object is lifted off of the table automatically so that
the user can see whether the grasp is stable. If no part of
the target object remains on the table, we consider the trial
a success.

3) Training: In this preliminary experiment, we had one
C3-C4 spinal cord injury patient with limited upper limb
mobility who has had extensive prior experience with this
sEMG device. All testing was approved by the Institutional
Review Board of the University of California, Davis under
Protocol 251192-10. To familiarize the subject with the
interface, we demonstrated the pipeline two times with the
subject just watching and asking questions along the way.
We then went through the pipeline with the subject two
more times while verbally instructing them on which target
to hit while the experimenter controlled the cursor with a
computer mouse. This allowed the subject to familiarize
themself with the pipeline and navigate their way through it
without having to also focus on the task of hitting targets with
the sEMG interface. Once they appeared to be conversant
with the system, we turned over control to the subject’s
sEMG interface.

B. Results

The results of the experiment are shown in Table I. The
subject was able to grasp the objects successfully on every

Grasp Time # Inputs # Timeouts Mistaken Selection
Detergent 1 564 14 14 2
Detergent 2 609 9 50 0
Shaving Gel 910 12 11 1

TABLE I: Experiment Results

attempt. On average, it took the subject 694 seconds to grasp
each object, including about 60 seconds for the vision system
to detect the objects in the scene. There were 75 timeouts,
and 3 mistakenly selected targets. Timeouts are an expected
part of this interface, which allows the user to re-select their
intended target if the initially selected target is incorrect.
Occasional mistaken selections are also expected, and the
pipeline is designed to be robust to these errors, allowing the
user to go back to previous step where necessary to correct
mistakes. Several mistakes in a row are necessary to actually
realize mistaken actions on the robot.

These results demonstrate a reasonable level of success
for an impaired subject operating a novel system, although
they indicate that future revisions of the system should try to
reduce accidental target selections that lead to timeouts by
increasing the target size or modifying the target layout. Fig.
5 shows one of the objects being grasped in the Columbia
Robotics laboratory after being planned at the RASCAL
lab in UC Davis. Although performance of this particular
impaired subject was somewhat slow, experience with other
impaired subjects leads us to believe that with additional
practice and improvements in system calibration, perfor-
mance may be significantly improved. A video explaining
the system and demonstrating the user’s performance can be
found here: http://robotics.cs.columbia.edu/
jweisz/sEMGGraspingIROS2014

VII. DISCUSSION AND FUTURE WORK

These results demonstrate that the grasping system we
have described can be used by an impaired subject even
without the subject having had previous experience with
the robot in question, and without ever being in the same
room with it. This shows that the subject doesn’t need
any input other than what the user interface presents to
successfully grasp an object, demonstrating that our grasp
analysis is producing reasonable results. In our prior work[1],
the subjects were able to see the real robot and scene,
and we found that the subject’s own intuition played an
important role in helping them filter the presented grasps to
find successful grasps. Here, we have replaced much of that
intuition with a richer user interface and smarter planning.
This interface was successful in spite of the additional visual
complexity of overlaying the sEMG user interface on the
planning scene. The novel device is easier to place on the
user and proved more reliable. Additionally, it is suitable for
subjects with a higher level of impairment. We see this work
as an initial step towards a full featured interface to a mobile
robotic assistive system for highly impaired individuals.

Even at this early stage of development, user feedback has
been important. Prior to the successful trials described above,
the subject attempted the experiment with much less success.
We learned that it was important to train the subject by first
explaining to him the entire pipeline of events, so that he
would understand the big picture, rather than guiding them
step by step. Small software changes in the interface also
made large improvements in usability. In early experiments,
selecting a target did not deactivate the other targets. This
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setup proved to be very difficult for the subject to correctly
choose the target they were attempting to hit. In many cases
the correct target would be hit but an incorrect target would
be hit on the cursor’s way back to the rest area, resulting
in the wrong command being triggered. Simply deactivating
non-selected targets while the cursor returned to the rest area
greatly improved performance.

Our design choices were motivated by previous experience
with a different impaired subject using a similar device in
[2]. The subject in this paper’s performance was significantly
slower than the subject reported in that previous work. In
future work, we will need to explore why that was the case
for this subject and whether it is reasonable to have an
optional switch that allows the user to change to something
similar to the 1-D paradigm described in section IV, or even
if this shift should occur automatically based on how many
options are relevant for the current stage of the pipeline or
subject performance. Clearly, the tradeoffs in different design
choices are important and will be a subject of future research.
Our future work will continue to explore these issues and
advances in user training and UI design. In order to make
this interface more useful, we will need to extend it beyond
the acquisition of target objects for grasping to more complex
tasks. We will also explore more complex signal processing
strategies to improve subject performance, extending this
device to a three dimensional cursor, and improving the
accuracy of target selection by recalibrating the gains of the
system on-line.
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W. Cheung, R. P. N. Rao, C. Neuper, and M. Pr, “Non-invasive
brain-computer interfaces: enhanced gaming and robotic control,” in
Advances in Computational Intelligence, June 2011, vol. 6691.

[23] P. Gergondet, A. Kheddar, C. Hintermuller, C. Guger, and M. Slater,
“Multitask humanoid control with a brain-computer interface: user
experiment with hrp-2,” in Proc. ISER. Springer, 2012.

[24] A. Leeper, K. Hsiao, M. Ciocarlie, L. Takayama, and D. Gossow,
“Strategies for human-in-the-loop robotic grasping,” in HRI, 2012.

[25] T. Chen, M. Ciocarlie, S. Cousins, P. M. Grice, K. Hawkins, K. Hsiao,
C. Kemp, C.-H. King, D. Lazewatsky, A. E. Leeper, H. Nguyen,
A. Paepcke, C. Pantofaru, W. Smart, and L. Takayama, “Robots
for humanity: A case study in assistive mobile manipulation,” IEEE
Robotics & Automation Magazine, vol. 20, 2013.

[26] I. Skavhaug, R. Bobell, B. Vernon, and S. Joshi, “Pilot study for
a brain-muscle-computer interface using the extensor pollicis longus
with preselected frequency bands,” in EMB. IEEE, August 2012.

[27] R. G. T. Mello, L. F. Oliveira, and J. Nadal, “Digital butterworth filter
for subtracting noise from low magnitude surface,” Computer Methods
and Programs in Biomedicine, no. 1, pp. 28–35, Nov. 2007.

[28] X. Huo and M. Ghovanloo, “Evaluation of a wireless wearable
tonguecomputer interface by individuals with high-level spinal cord
injuries,” J. Neural Eng., vol. 7, pp. 1–12, 2010.

[29] R. Barea, L. Boquete, M. Mazo, and E. López, “System for assisted
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