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Abstract

This paper addresses the problem of mobile robot lo-
calization in urban environments. Typically, GPS is
the preferred sensor for outdoor operation. However,
using GPS-only localization methods leads to signifi-
cant performance degradation in urban areas where tall
nearby structures obstruct the clear view of the satel-
lites. In our work, we use vision-based techniques to
supplement GPS and odometry and provide accurate
localization. The wvision system identifies prominent
linear features in the scene and matches them with a
reduced model of nearby buildings, yielding improved
pose estimation of the robot.

1 Introduction

The problem of accurate localization is fundamental to
mobile robotics. A mobile robot’s ability to correctly
estimate its current pose is essential to its successful
autonomous operation. Without a good sense of po-
sition and orientation, key navigation tasks, such as
path planning and motion control, are impossible to
perform and inevitably result in the robot getting lost.
On a higher level, applications, such as environmental
modeling, surveying, or transportation, will produce
unusable or even undesired results.

A very popular way to address the problem of outdoor
localization is by using GPS. GPS-based systems are
attractive because they provide very accurate global
location measurements and are becoming affordable.
Using GPS in urban areas, however, poses a signifi-
cant challenge. Tall buildings in the vicinity tend to
obstruct the clear view of the sky. The signals of fewer
satellites reach the receiver which results in unstable
or even no estimates at all. The signal-to-noise ratio
could be attenuated by trees or large structures stand-
ing in the way. Very difficult to deal with are signal
reflections and the multipath phenomenon.
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Our experience confirms the observations above. We
built an urban site modeling robot, called AVENUE,
which localizes itself by using GPS and odometry [2,
9]. Our tests showed that while it performed well in
open areas, GPS failed to provide accurate positioning
at many locations, such as between tall buildings. The
conclusion was that, although GPS is very useful, it
alone can not provide adequate coverage in a highly-
urbanized area. Additional sensors are needed.

We have now expanded our system with vision. As
we have seen, GPS performs well in open areas; it is
around buildings where it fails. The knowledge of hav-
ing buildings in the vicinity allows us to exploit their
typical characteristics, such as horizontal and vertical
principal directions and abundance of parallel lines.
These features are easily captured by a camera and
their linear nature facilitates the difficult and compu-
tationally expensive task of image processing.

In this paper, we address the limitations of a pure
GPS-based localization system. Our focus here is on
improving the overall performance in areas where GPS
fails. The proposed method consists of the integration
of GPS and odometry with vision, and the utilization
of a simple and compact model of the working envi-
ronment. After a brief discussion of the related work
in the next section, our method is described in detail
and experimental results are presented.

2 Related Work

GPS is typically used in combination with inertial sen-
sors and proper filtering techniques. A good example
of this strategy with a focus on fault detection has
been shown by Sukkarieh et al [16]. Another typical
example is the autonomous mower built by Aono et
al [3] whose accuracy the authors estimate to be 0.2m
based on accurate GPS data and simulating noise with
standard deviation of 1m.

Various methods for camera pose estimation have
been adapted to robot localization. Some of them
make assumptions about the environment that are
not easily met outdoors (e.g. constant illumination).



Appearance-based methods need extensive training
sets and huge storage requirements [12, 17]. Others re-
quire closely following previously traversed paths [19].
A good systematic approach to recovering the relative
poses of multiple cameras in urban environments can
be found in [1].

Despite the strong interest in the use of GPS and cam-
eras for mobile robot localization, there does not seem
to be much work on the integration of these two sen-
sors. Kotani et al built a system using GPS, vision,
and a fiber optic gyro for localization [10], however,
they use GPS to only establish the initial pose of the
robot. Chen and Shibasaki have also observed the
problems with using GPS in urban sites and have ad-
dressed them by supplementing GPS with additional
sensors, including a camera [5]. In addition, their solu-
tion requires the availability of a comprehensive geode-
tic information system.

Various other approaches to mobile robot localiza-
tion have been proposed and are being investigated.
Among them are the idea of simultaneous localization
and map building [4, 7, 11, 18], the probabilistic ap-
proaches [13, 18], and Monte Carlo localization [6].

An advantage of our approach is that it makes selec-
tive use of the camera and, thus, avoids wasting pre-
cious CPU power on image processing when GPS and
odometry perform well on their own. Further, it does
not require modifications of the working environment.
It uses a simple environmental model that is already
available by the site-modeling application it coexists
with. This provides opportunities to actively seek the
best portion of the environment to image and process.

3 Overview of the method

The work presented here is a part of AVENUE' — a
large project to produce an automated system for 3D
geometric and photometric modeling of urban sites [2].
Our hardware platform is an ATRV-2 robot equipped
with a number of sensors, including a real-time kine-
matic GPS, a color CCD camera mounted on a pan-tilt
unit, and a laser range finder (Figure 1).

The robot’s task is to go to desired locations and ac-
quire 3D range scans and images of selected buildings.
The locations are determined by our view planning
system and are used by the path planning system to
compute a good trajectory which the robot then fol-
lows [2]. When the robot arrives at a chosen location,
it acquires the requested scans and images and hands

LAVENUE stands for Autonomous Vehicle for Exploration
and Navigation in Urban Environments

Figure 1: Mobile robot for automated site modeling

them over to the 3D modeling system which regis-
ters them and incorporates them into the model of
the site [14, 15]. After that, the view planning system
determines what portions of the site are not yet mod-
eled and decides upon the next best data acquisition
location. The process starts from a certain location
and gradually expands the area it has covered until a
complete model of the site is obtained.

In order to follow the desired trajectories and posi-
tion itself accurately at the target locations, the robot
needs to have a precise estimate of its pose at all
times. As stated in the introduction, the combina-
tion of odometry and high-accuracy GPS works suf-
ficiently well in open areas. Thus, we need to em-
ploy image-based pose estimation only in proximity of
buildings. This also means that we can use the build-
ings — specifically, their abundance of linear features
— as cues to our visual localization. Further, our cam-
era is better suited for localization than our scanner
because of the scanner’s slow acquisition speed (15-20
min), the amount of data it returns (1 milion points),
and the lack of control due to a closed proprietary
interface.

Given the above considerations, the robot uses GPS
and odometry most of the time since they both provide



frequent updates and require minimal computational
power. Their estimates are tagged with a confidence
factor of their accuracy based on the discrepancies be-
tween their readings and the plant model of the robot’s
motion [9]. If this confidence is sufficiently high, we ac-
cept the result and bypass the image processing step,
thus saving time and computational resources. Oth-
erwise, we are likely close to a building that is caus-
ing the degraded GPS accuracy and we attempt our
image-based pose estimation algorithm.

4 Visual Pose Estimation

Our visual pose estimation is based on matching an
image of a building taken by the camera with a model
of that building. The model consists of linear segments
which are both abundant in a typical urban landscape
and easy to detect and process using 2-D image op-
erators. We use a separate model for each building’s
facade and store all models in a data base. A view of
the models of our test area is shown in Figure 4.

We should point out that the models we use for local-
ization are not the detailed full-featured models that
are ultimately built by AVENUE but ones that are of
very low complexity and are easy to create from rela-
tively few key measurements, even manuallly. In our
case, we are also able to obtain reduced-complexity
models from available full-featured ones.

When visual pose estimation is attempted, we still
have a rough estimate of the robot’s location from
recent accurate GPS data and odometry. We use this
rough estimate to search our data base for the best
model to use. Models outside of the working range
(10—30m) or viewed at a very low angle (< 30 deg) are
eliminated from consideration. The rest are sorted by
their euclidian distance and the closest one is picked.
Then, we turn the camera toward that building’s fa-
cade and take a snapshot.

At this stage, we have an image of the facade and a
model of it and we need to determine the pose of the
robot. Since the pose of the camera is tracked by a
pan-tilt unit rigidly affixed to the robot, if we find
the pose of the camera, we can easily derive the pose
of the robot. Thus our focus in this section is the
computation of the camera pose.

We do this by using matching features, specifically,
linear segments in the image and the model. The 3D
linear features are explicitly represented in the model
so the first step is to find their 2D counterparts. We
apply a Canny edge detector to locate edge pixels and
then use the incremental line fitting technique to con-
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Figure 2: Error metric used for pose estimation

nect them in straight line segments. Only the longest
few of the line segments are retained.

The difficulty in the next step comes from the well-
known data association problem. We need to cor-
rectly match a subset of the edge segments from the
image with the 3D line segments that we have in our
model. A brute-force approach is not feasible because
of its extreme computational requirements. Instead,
we have adapted the RANSAC paradigm which has
proven very efficient in solving matching problems [8].
The basic idea is to solve the pose estimation problem
a number of times using randomly chosen matches be-
tween a minimum number of 2D and 3D line segments.
In our case we pick four pairs and compute an estimate
for the camera pose. This is done by minimizing an
error function that quantifies the displacement of a
3D line segment from the plane passing through the
center of projection of the camera and its matching
2D edge segment [14]. Specifically, if N; is the normal
of the plane formed by the i-th edge segment and the
camera center of projection, and R and T are the ro-
tation and translation that align the world coordinate
system with the one of the camera, then

di;j = (Ni-(R(Pj1) +T))* + (Ni- (R(P;2) +T))* (1)

gives us the sum of squared distances of the end points
P; 1 and Pj of the j-th 3D line segment to that plane
(Figure 2). The error function that we minimize is the
sum of d; ; for the four matching pairs.

Next, we need to determine the consensus set, i.e. all
matching pairs of 2D edge segments from the image
and 3D line segments from the model that agree with
the computed pose. To do this, we need a proximity
measure that tells us how “close” a 3D line segment
and a 2D edge segment are from the perspective of the
current camera pose. Using the metric in equation 1
here is not a good idea because it only measures how
well the 2D line and its 3D match are aligned. Two
line segments can be perfectly aligned (collinear) but
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Figure 3: Distance metric used for matching.

still far apart in the direction of their orientation. We
use the computed R and T to project all 3D lines
on the image and perform the matching in 2D space.
The metric that we use is the sum of squared distances
from each end of the projected 2D edge to the closest
point on the 3D line segment projection (as opposed
to the infinite line). That is, if we have an edge line [;
with end points ();,1 and @;2 and the projection of a
3D line segment, s;, the metric is

di,j = d?:St(Qiil, Sj)2 + dist(Qi,z, Sj)2 (2)

where dist(Q, s) is the distance from the point @ to
the closest point P on the line segment (Figure 3).

When the 2D line edge does not extend much past
the 3D line’s projection (Figure 3, top), this metric is
the same as the “alignment” metric above. However,
when the two lines are mostly collinear but far from
each other (Figure 3, bottom), the metric will return
a reasonably high distance.

For each 3D line segment on the model, we search in
a neighborhood of its projection on the image for 2D
edges and compute their distance according to this
metric. The 2D edge with the smallest distance is
taken to be the match, if that distance is less than a
threshold. If no such 2D edge is found, then the 3D
line segment is assumed to have no match.

The consensus set consists of all matches found. If it
contains all but very few lines from the model (which
might be occluded or simply not detected) and the to-
tal error is less than a threshold, we have found a good
pose candidate. A sanity check is done whether this
new pose is within the expected error from the esti-
mate of the other sensors and, if it is, the new pose is
accepted and the random sampling process is termi-
nated. Otherwise, we continue with the next sample
until a good match is found or a certain number of
iterations are performed.

In a typical RANSAC implementation, a certain prob-
ability of success is decided upon and then the number

Figure 4: Our 3-D models used for localization shown on
a 2-D map of the test area.

of required iterations is computed to guarantee suc-
cess with that probability. However, this can only be
done if the probability for a given match being cor-
rect is known. In our case, this is extremely difficult
to estimate, especially when anomalies like occlusions
and misdetections need to be considered. Instead of
relying on an imprecise heuristic for the number of it-
erations, we run the process for an allotted amount
of time and if no good solution is found within this
period, the robot repeats the process a little farther
along its route with a new set of images.

5 Experiments

To test the accuracy of our method, we performed two
kinds of tests: one that compares the result for each
test location with ground truth data, and another,
that compares the two results the algorithm produced
on two different images taken from the same location.

In both kinds of tests, we wanted to measure the qual-
ity of the location estimation alone and minimize the
interference from inaccuracies in the model. Thus we
took care to create accurate models of the buildings
we imaged by scanning their prominent features with
a high-quality electronic theodolite with nominal ac-
curacy of 2 mm . The features we modeled were win-
dows, ledges and decorations — all commonly found
and abundant in urban structures and easy to find
using 2D image operators (Fig. 4).

We drove the robot to a number of locations in our
test area and at each location we took an image with
the robot’s camera of a modeled face of a nearby build-
ing. We chose locations at which we have previously
had problems receiving stable GPS data. A sketch of
the test area with the test locations and directions in
which the images were taken is shown in Figure 5.
The first test consisted of 6 images taken at locations 1
through 5 (two images were taken at location 5). The
input and the output of the localization system for



Figure 5: A map of the area where the experiments were
conducted showing camera locations and orientations.

each run are illustrated in Figures 6 and 7 (top). The
left image in each pair shows the model used projected
onto the image using the initial inaccurate estimate of
the camera pose (that comes from GPS, odometry, or
as a guess). The image to the right shows the model
projected on the image after the camera pose was com-
puted. In all cases the alignment of the model and the
image is very accurate. The resulting errors in transla-
tion for these six runs were 0.306, 0.148, 0.369, 0.186,
0.147, and 0.211m respectively. The distance to the
buildings were 10 —30m. These errors are comparable
to what many accurate GPS systems provide in prac-
tice and are acceptable for our kind of outdoor mobile
robot application.

The purpose of the second test was to confirm that
the algorithm does not generate contradictory results
when used on different facades from the same location.
We took a pair of images of two faces of the same build-
ing at locations 5 and 6 by simply panning and tilting
the camera. We processed both pairs of images with
their corresponding models (Figure 7) and the errors
in translation were 0.064 and 0.290 m — again within
reasonable expectations for mobile robot navigation.
In these tests, we focused primarily on the accuracy
of the location estimates and not so much on the ori-
entation. This is partially because it is difficult to
obtain reliable ground truth for the orientation. It
is obvious, however, from the resulting alignment of
model and image shown in the figures, that the cam-
era orientation was recovered correctly and more than
adequately for robot navigation.

6 Summary and Future Work

We have described our approach to mobile robot local-
ization in outdoor urban environments. This method
is a part of a larger project aiming the automation of

Figure 6: Pose estimation at locations 1 through 4: Each
pair shows the model projected on the image using the
initial pose of the camera (left), and the resulting pose of
the camera (right) for the corresponding test location.

the process of building accurate photo-realistic and ge-
ometrically correct models of urban sites. The system
depends on GPS and computer vision to compensate
for the long-term unreliability of the robot odometry.
Our image-based solution makes use of data and as-
sumptions that are already present in the context for
which the entire mobile robot application is designed.
No environmental modifications are necessary. A sim-
ple database of models of building faces is available
that allows us to actively decide where to point the
camera when taking an image.

Currently, our system works with a single “best”
building’s face even if a number of alternatives exist.
We are extending it to use all visible modeled buildings
in the vicinity in a single pose estimation step. The
matching part extends trivially, except that we need
to take care to match lines in an image with ones in the
corresponding model only. The consensus set will con-
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Figure 7: Initial and final alignments in the pose estimation tests with a pair of images taken from the same location.

sist of all matching segments across all image-model
pairs. Optimizing across multiple images/models will
result in higher accuracies and improved reliability.

An interesting research direction that we would like to
pursue is an improved integration of GPS, odometry,
and vision. Pose estimates from vision are typically
not isotropic and it can be beneficial to utilize what-
ever approximate estimates are available from other
sensors. This is very important in situations when
GPS produces inaccurate but usable data.

References

[1] The MIT City Scanning Project. http://city.lcs.mit.edu.

[2] P. Allen, I. Stamos, A. Gueorguiev, E. Gold, and P. Blaer.
AVENUE: Automated site modeling in urban environ-
ments. In 3rd Int. Conf. on Digital Imaging and Modeling,
Quebec City, pages 357-364, May 2001.

[3] T. Aono, K. Fujii, S. Hatsumoto, and T. Kamiya. Position-
ing of vehicle on undulating ground using GPS and dead
reckoning. In IEEE ICRA, pages 34433448, 1998.

[4] J. A. Castellanos, J. M. Martinez, J. Neira, and J. D. Tar-
dos. Simultaneous map building and localization for mobile
robots: A multisensor fusion approach. In IEEE ICRA,
pages 1244-1249, 1998.

[5] T. Chen and R. Shibasaki. High precision navigation for
3-D mobile GIS in urban area by integrating GPS, gyro
and image sequence analysis. In Proceedings of the Inter-
national Workshop on Urban 3D/Multi-media Mapping,
Tokyo, Japan, pages 147-156, 1999.

[6] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte
Carlo localization for mobile robots. In IEEE ICRA, pages
1322-1328, 1999.

[7] H. Durrant-Whyte, M. Dissanayake, and P. Gibbens. To-
ward deployment of large scale simultaneous localization
and map building (SLAM) systems. In Proc. of Int. Simp.
on Robotics Research, pages 121-127, 1999.

[8] M. Fischler and R. Bolles. Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image
Analysis and Automated Cartography. In DARPA, pages
71-88, 1980.

[9] A. Gueorguiev, P. K. Allen, E. Gold, and P. Blaer. Design,
control and architecture of a mobile site-modeling robot.
In IEEE ICRA, pages 32663271, 2000.

[10] S. Kotani, K. Kaneko, T. Shinoda, and H. Mori. Mobile
robot navigation based on vision and DGPS information.
In IEEE ICRA, pages 2524-2529, 1998.

[11] J. Leonard and H. J. S. Feder. A computationally efficient
method for large-scale concurrent mapping and localiza-

tion. In Proc. of Int. Simp. on Robotics Research, pages
128-135, 1999.

[12] R. Sim and G. Dudek. Mobile robot localization from
learned landmarks. In Proc. of IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, October 1998.

[13] R. Simmons and S. Koenig. Probabilistic robot naviga-
tion in partially observable environments. In IJCAI pages
1080-1087, 1995.

[14] I. Stamos and P. K. Allen. Integration of range and image
sensing for photorealistic 3D modeling. In IEEE ICRA,
pages 11:1435-1440, 2000.

[15] I. Stamos and P. K. Allen. Registration of 3D and 2D im-
agery in urban environments. In International Conference
on Computer Vision, Vancouver, Canada, 2001.

[16] S. Sukkarieh, E. Nebot, and H. F. Durrant-Whyte. Achiev-
ing integrity in an INS/GPS navigation loop for au-
tonomous land vehicle applications. In IEEE ICRA, pages
3437-3442, 1998.

[17] S. Thrun. Finding landmarks for mobile robot navigation.
In IEEE ICRA, pages 958-963, 1998.

[18] S. Thrun, W. Burgard, and D. Fox. A probabilistic ap-
proach to concurrent mapping and localization for mobile
robots. Autonomous Robots, 5:253—-271, 1998.

[19] J. Y. Zheng and S. Tsuji. Panoramic representation for
route recognition by a mobile robot. International Journal
of Computer Vision, 9(1):55-76, 1992.



