
Computing swept volumes

By Steven Abrams*{ and Peter K. Allen
..

The swept volume problem is practical, dif®cult and interesting enough to have received a

great deal of attention over the years, and the literature contains much discussion of

methods for computing swept volumes in many situations. The method presented here

permits an arbitrary polyhedral object (given in a typical boundary representation) to be

swept through an arbitrary trajectory. A polyhedral approximation to the volume swept

by this moving object is computed and output in a typical boundary representation. A

number of examples are presented demonstrating the practicality of this method.

Copyright # 2000 John Wiley & Sons, Ltd.

Received: 15 February 1999; Revised: 15 November 1999

Introduction

Swept volumes have been used in a wide variety of

applications. While useful in such varied contexts as

designing the core and cavity of injection-moulded and

die-cast components1 and robot workspace genera-

tion,2 most applications relate to virtual simulations

of real-world motions for one purpose or another.

These include collision avoidance,3 NC tool path

veri®cation,4±6 computing the `removal envelopes' of

mechanical parts (to facilitate maintainability design in

complex mechanical systems)7 and virtual assembly

where articulated parts can be virtually prototyped and

assembly plans tested and modi®ed without resorting

to physically building objects.8 As it is one of the topics

within computational geometry which is at once

interesting, practical and challenging, it has received

quite a bit of investigation over the years.

This paper presents a new method for computing the

volumes swept by moving polyhedral objects as they

travel through arbitrary trajectories in space. Our

interest in swept volumes came from our ongoing

research in sensor planning. We have been looking at

methods of computing viewpoints which allow the

monitoring of speci®ed object features while other

objects in the environment are moving.9±11 We have

developed a method based on temporal intervals in

which a portion of the task is selected to be monitored.

The system computes the volumes swept by all moving

objects during this interval and computes viewpoints

which avoid occlusion by these swept volumes. Such

viewpoints would be valid for the entire task interval. By

examining appropriate time intervals, we break the

dynamic sensor planning problem down into a series of

static problems. Therefore the swept volume computa-

tion is central to our sensor planning work. Our initial

swept volume efforts were reported in Reference 12.

This paper presents a more robust and ef®cient algo-

rithm than our earlier work, along with a more thorough

discussion of the underlying theory.

Swept Volume De®nitions

A `swept volume' is a fairly intuitive concept. Never-

theless, it is important to establish a formal de®nition

so as to clarify exactly what we will be computing. Let

M\Rd be the object to be swept through Rd. Let H be a

(d+1)-dimensional transformation matrix de®ning a

position and orientation in Rd. Such matrices are of the

form

H~
R

0 . . . 0
T
1

� �
�1�

where R is a d-dimensional orthonormal rotation

matrix and T is a dr1 translation vector.

We can now de®ne MH to be M transformed by the

transformation matrix H, i.e.

MH~ Hm: m[Mf g �2�

*Correspondence to: S. Abrams, IBM T. J. Watson Research
Center, Department of Mathematical Sciences, Yorktown Heights,
NY 10598, USA. E-mail: abrams@watson.ibm.com
{ The research described in this paper was performed while this
author was at the Columbia University Department of Computer
Science.

THE JOURNAL OF VISUALIZATION AND COMPUTER ANIMATION

J. Visual. Comput. Animat. 2000; 11: 69±82...

...
Copyright # 2000 John Wiley & Sons, Ltd.

The trajectory of M as it moves can be described as

a time-varying transformation matrix Q=H(t) de®ned

over a time interval [t0, t1]. Q yields a new position and

orientation at every time t.

We can now de®ne the sweep of M\Rd (often called

the generator) over an arbitrary trajectory Q (notated

S(M, Q) as

S M;Q� �~ S
t[t0;t1� �

MH t� � �3�

Intuitively, we are dragging M through a path,

possibly twisting and turning it as we go.

The cases which will be most interesting to us are

those in which the transformations H(t) change

continuously over time, since that is the way in which

objects moveÐcontinuously. The formal way of stating

what we mean by `moving continuously' is

Vm[M; lim
Dt?0

D H t� �m;H tzDt� �m� �~0 �4�

where D(a, b) is the Euclidean distance metric in Rd.

Because of the nature of the analysis which we will

be doing for sensor planning, we will be concerned

with computing a boundary representation of a

polyhedral approximation to the volume swept by M.

Related Sweeping Research

As we have mentioned, the swept volume problem has

received quite a bit of investigation over the years.

Here we review a representative set of the literature,

beginning with approaches that handle only transla-

tional motion of polyhedra, and progressing to work

which handles arbitrary motions of non-rigid bodies.

Translational Sweeps

The sweep of an object A as it moves along a purely

translational trajectory B is the Minkowski sum of A

and B (written ACB). A Minkowski sum is a vector

sum de®ned as

A+B: azb a[A; b[Bjf g �5�
The Minkowsi sum is useful for `growing' objects,

since if, for example, B is a ball of radius r, ACB is A

`grown' by r. Kaul13 has developed algorithms for

computing the Minkowski sums of polyhedral objects

ef®ciently and robustly. One of the component steps in

computing these Minkowski sums is sweeping the

polyhedron along the edge of a polygon. Therefore his

methods can be applied to computing the volumes

swept by the piecewise linear translational motion of

polygons. Translational sweeps of non-polyhedral

objects can be computed using a polyhedral approx-

imation.

A very different method of computing the transla-

tional sweeps of objects is presented in Reference 14.

Here the generator is represented using an array,

similar in concept to a Z-buffer. Each entry in the

array contains a list of depth elements or `dexels'

representing the range of depths containing the object

at that pixel location. This is a form of an image space

representation of the object. Hui14 computes piecewise

linear translational sweeps directly in this image space

by computing the straight lines swept by each dexel

using a 3D scan conversion process. These dexels are

merged using Boolean operations in image space,

yielding a dexel representation of the swept object.

They apply their sweeping methods to the visual

veri®cation of NC tool paths.

Rotations

In one of the earlier applications of swept volumes to

robotics problems, Korein uses swept volumes to

compute robot workspace bounds.2 He computes a

polyhedral approximation to the volume swept by a

polyhedron rotating about a single axis or radially

rotating about a point. To accomplish this, he examines

extreme features with respect to the axis of rotation

and connects them with a piecewise planar approx-

imation to the curved surface patch which would

result from sweeping these features. This yields a

superset of the boundary elements of the swept

volume. The members of this superset are intersected

with each other, and the outermost boundary is

found by using a graph traversal algorithm. Korein's

methods can therefore be used to compute approx-

imate rotational sweeps of polyhedra. Though limited

to rotational sweeps, we will later show how this basic

technique can be generalized to arbitrary trajectories.

General Three-dimensional Motion

A number of researchers have used envelope theory for

studying or computing swept volumes. Wang and

Wang4 examine the volumes swept by convex gen-

erators, considering each moving boundary of the

generator as de®ning a family of surfaces, and discuss

the computation of the envelope of this family to

bound the swept volume. For convex generators,

S. ABRAMS AND P.K. ALLEN
...Visualisation &

Computer Animation

...
Copyright # 2000 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2000; 11: 69±8270

bounded by regular surfaces, undergoing piecewise

differentiable paths, they compute the envelope by

sweeping a set of critical curves and edges on the

boundary faces of the generator. Considering a family

of surfaces expressed by e=r(u (v, t), v, t), any point on

the envelope satis®es the property

Lr

Lu

Lr

Lv

Lr

Lt

���� ����~0 �6�

This can be used to ®nd the family of critical curves

whose motion de®nes the boundary of the swept

volume. They have implemented their theory for

spherical and cylindrical generators and apply it to

the graphical veri®cation of NC tool paths.

Hu and Ling15 also employ envelope theory in

computing the volumes swept by generators modelled

with the natural quadrics (planes, spheres and circular

cylinders and cones). They use the instantaneous screw

axis to describe the motion of the generator.

Martin and Stephenson16 present a theoretical

foundation for computing swept volumes of a three-

dimensional object as it moves along an arbitrary path,

also by using envelope theory. Their theory extends to

all surfaces de®ned by an implicit equation of the form

f (x, y, z)=0. When this surface moves, it de®nes a

family of surfaces (parametrized by t), F(x, y, z, t)=0.

The envelope must simultaneously satisfy this equa-

tion and hF(x,y,z,t)/ht=0. They explain that simply by

eliminating t one can (in principle) obtain an implicit

equation for the envelope surface, of the form e(x, y,

z)=0. They additionally explain how one might

combine the envelopes generated by sweeping the

individual surfaces of a solid body to form a solid

model of the swept volume.

They present only the theory and recognize that

there are many degenerate cases which must be

handled. Also, they explain that methods of computer

algebra may or may not be able to eliminate t and

produce an implicit equation that is useful for

representing the swept volume. In addition, their

technique will often require the employment of

exponential algorithms in computer algebra for com-

puting even simple sweeps of simple surfaces. As they

note, further work is needed to determine what types

of surfaces and motions can be realistically computed

using their proposed methods.

Weld and Leu17 set forth some theory for computing

the volume swept by a moving polyhedron. They

prove in general terms that the volume swept by a

compact n-manifold as it moves through Rn is equal to

the union of the volumes swept by its (nx1)-dimen-

sional boundary elements, combined with one location

of the n-manifold during the sweep. Notably, when

n=3, this implies that the volume swept by a moving

polyhedron A can be computed by unioning the

volumes swept by the boundary elements of the

polyhedron (i.e. its faces) together with one location

of the polyhedron itself during the sweep. (If it is

possible to ®nd two times i and j during the sweep

where AimAj=B, they show that the addition of a

copy of the polyhedron is unnecessary.) Thus an

important step in computing the volume swept by a

moving polyhedron is to compute the volume swept

by each of its moving polygonal faces.

To solve this subproblem, they observe that the

volume swept by a polygon moving in 3-space is

bounded by the ruled surfaces swept by the moving

edges of the polygon, copies of the polygon at its initial

and ®nal positions, and sometimes by the volume

swept by the interior points of the polygon. They

observed that these points from a polygon's interior

appear on the boundary of the swept volume only if

there are successive instances of the polygon at times t

and t+e which intersect each other. The moving

polygon's plane is a one-parameter family of planesÐ

this parameter is time. The envelope of a one-

parameter family of planes is known to be a develop-

able surface. They found that in these cases of

successive intersections, portions of this developable

surface may appear on the boundary of the swept

volume. See, for example, Figure 1. They also present

point-wise tests for determining which points of the

ruled surface segments and the developable surfaces

are in fact on the boundary of the swept volume.

We have found that their condition for determining

if portions of this developable surface can appear on

the boundary of the swept volume is not a necessary

condition. We shall examine this further in our

discussion of what we call `sliding motion' later.

Weld and Leu's work also stops short of de®ning the

Figure 1. This ®gure shows the volume swept by a square as

it moves left to right, rotating as it translates. Notice that as

it passes the middle of its trajectory it can be seen to be

instantaneously `sliding' across the page. In this vicinity

there are clearly points on the boundary of the swept volume

which came from the interior of the polygon.

COMPUTING SWEPT VOLUMES
...Visualisation &
Computer Animation

...
Copyright # 2000 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2000; 11: 69±8271

actual boundary representation for the swept volumes.

They explain that this would require computing all the

surface±surface intersections between the ruled and

developable surface segments to form a set of surface

patches, a subset of which would be the boundary of

the swept volume. Their point-wise tests, while of

theoretical interest, do not seem to be of practical use

for this purpose.

Sambandan18 and Sambandan and Wang19 employ

envelope theory by directly solving the envelope

equations for speci®c sweep generatorsÐspeci®cally,

those used for NC cutting tools (spheres, hemispheres

and ®llet surfaces). Since the envelopes are solvable for

simple geometries such as these, their approach makes

sense for NC veri®cation. However, they too make a

simpli®cation based on a `successive intersection' test

that, like the Weld and Leu17 test, is not a necessary

condition.

Other Representations

Other researchers have considered implicit or func-

tional representations of solids and the volumes swept

by them, such as Schroeder et al.7 In this work a

function f (p)=0 de®nes the surface of a solid to be

moved, where f () de®nes the distance from a point p

to the surface of the object in R3. The swept volume is

computed by sampling the transformed implicit model

as it is swept along the trajectory (using interpolation

for anti-aliasing), producing an array of distance

values making up the workspace volume. The swept

surface is extracted via the marching cubes surface

extraction algorithm20 and reduced using a decimation

algorithm.21 A bene®t of their method is its automatic

handling of self-intersections. However, their method

does not automatically handle the extraction of multi-

ple surfaces on the boundary of the swept volume.

Another approach using implicit models is taken by

Sourin and Pasko.22 They consider unions of function-

ally de®ned moving solids, de®ned by a function f (x, y,

z, t)o0, and attempt to compute a functional repre-

sentation of the swept solid, F (x, y, z)i0. They

propose two different approaches. The ®rst uses

unions of the object at discrete time intervals dxt,

using R-unions23 for the analytical computations of the

set-theoretic union operation. To this they add a

blending function to avoid aliasing artefacts.

Secondly, they consider methods of directly comput-

ing a functional representation of the envelope of the

moving solid. They present a numerical algorithm for

®nding the envelope de®ning function and use this for

computing the swept volume. Interestingly, owing to

the generality of their method, theirs is the only

method seen which can handle arbitrary motions of

non-rigid bodies, i.e. objects which deform as they

move. They claim that their method is the ®rst to

handle, within a single algorithm, the sweeps of

arbitrary variable-shape solids with procedural de®n-

ing functions, the creation of solids via CSG-like

schemes, and the sweeps of arbitrarily complex

objects over arbitrary motions while handling self-

intersections. We have also not found any other

method which handles all these problems. They also

point out the primary shortcoming of their method,

which is its speed, a common problem in all sweeping

methods.

Blackmore et al.6 combine implicit representations

with envelope theory and present the derivation of the

sweep envelope differential equation (SEDE) for com-

puting swept volumes along with a description of its

implementation. Essentially, they compute a discrete

approximation to the grazing set by triangulating the

surface of the object, identifying an initial set of

grazing points which satisfy the SEDE, and discretely

stepping these points along their approximate trajec-

tories. This set is trimmed and triangulated (via linear

interpolation), yielding an approximation of the swept

volume. Their method requires representing the

generator by a continuous function f (x, y, z)=0

(approximating it if necessary). Their implementation

demonstrates that this technique works well for

smooth generators, although they did not describe

how their triangulation handles self-intersecting swept

surfaces.

Menon et al.24 employ a ray representationÐa set of

ray segments classi®ed as `in', `on' or `out' of the object

being representedÐto handle a number of geometric

operations. Their highly parallel ray-casting engine can

ef®ciently compute approximate Boolean operations on

ray-reps of objects, including Booleans. They then

compute swept volumes by a set of discrete unions of

the generator at several positions along its trajectory.

Why Find Another Method

The research described above can be divided into three

categories. The ®rst category contains research that

discusses theoretical foundations and properties of

general swept volumes. The second category contains

those approaches which restrict the classes of motion

permitted, the class of shapes being swept, or both.

These produce useful results in speci®c domains, as is

S. ABRAMS AND P.K. ALLEN
...Visualisation &

Computer Animation

...
Copyright # 2000 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2000; 11: 69±8272

the case in References 4 and 19. The work of Blackmore

et al.6 also falls into this category. Their excellent

extensions of envelope theoryÐand their successful

implementation of those ideasÐare very useful in

domains where the generator object has a continuous

surface, such as NC cutting tools which can often be

approximated by spheres or cylinders. In the third

category are those methods which can handle arbitrary

shapes but require input and/or yield outputs in

inconvenient forms. Each of the above sets of con-

straints is appropriate in particular domains. However,

in many applications it is important to allow arbitrary

polyhedral models to move through arbitrary trajec-

tories while maintaining a typical boundary repre-

sentation of the input and output. The algorithm

presented below accomplishes this task.

Approximating the Swept
Volume

As Weld and Leu17 showed, the boundary of the swept

volume may contain portions of polygonal surfaces,

ruled surfaces (from the moving edges) and develop-

able surfaces (the envelope of the moving polygons'

planes). An exact computation of the volume swept by

a moving polygon would therefore require computing

an intersection graph of these surfaces. Once done, the

intersection graph can, in theory, be traversed to ®nd

the boundary of the swept volume. As Martin and

Stephenson16 showed, simply employing computer

algebra techniques to ®nd equations for the envelopes

may not be tractable. Further, even if a representation

for these surfaces can easily be found for an arbitrarily

moving polygon, they all need to be intersected with

one another. This process itself is an expensive

proposition with many robustness problems, and may

not even be possible, depending on the types of motion

undergone. This, combined with the fact that the

visibility computation employed as part of the sensor

planning process requires polyhedral inputs, led us to

focus on methods of computing polyhedral approx-

imations to these volumes.

Our basic approach has been to approximate the

ruled surfaces with triangulated meshes and to

approximate the developable surfaces with copies of

the object's polygons stepped through their trajectories.

We combine these meshes and polygons and compute

their total arrangement, and ®nally traverse the outer

cell in this arrangement to ®nd the boundary repre-

sentation of the swept volume. In this section we

present the details of an algorithm which follows this

approach.

Approximating the Ruled Surface

The surface swept by a moving edge is a ruled surface

given by the equation

r(t; s)~p(t)� s:v(t) �7�
where the position and orientation of the ruling line

segment are parametrized by t and the position along

the line segment is given by s. At parameter values t0

and t1 the rulings can be drawn and the corresponding

end points can be connected by line segments. Another

line can then be drawn between one opposite pair of

end points, creating two triangles approximating the

surface. See Figure 2. When t=t0, the ruling line AD is

exactly on the surface. When t=t1, line BC is exactly on

the surface. As drawn, A and B are points with the

same s parameter value (say s0) and C and D have a

second parameter value (s1). Connecting correspond-

ing vertices A and B with a line segment, correspond-

ing vertices C and D with a segment and then opposite

vertices D and B with another segment yields two

triangles DABD and DDBC. These triangles approx-

imate the ruled surface on the parametric interval

([t0, t1], [s0, s1]).

In this fashion, each edge of each polygon of the

polyhedron to be swept can be stepped through its

trajectory, creating a triangulated mesh approximating

the ruled surface swept by each edge. Figure 3 shows

an example of one edge being stepped through its

trajectory, and the resulting triangle mesh approximat-

ing the ruled surface. In general, however, all edges

need not be considered at all steps.

In particular, the ruled surface swept by a moving

edge during a given time interval can only contribute

to the boundary of the swept volume if the edge's

motion is towards the `outside' of the polygons

Figure 2. Approximating a patch of a ruled surface.

COMPUTING SWEPT VOLUMES
...Visualisation &
Computer Animation

...
Copyright # 2000 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2000; 11: 69±8273

incident at that edge and if the motion of the edge is

not subsumed by the motion of the faces. For example,

see Figure 4, which shows faces F1 and F2 adjacent to

one another at an edge e. Each face separates the world

into two half-spaces, i.e. the front and back sides of its

plane. The pair of faces F1 and F2 divides the world

into four quadrants. Let us label the `outside' or `front'

of each plane the positive half-space, and the `inside'

or `back' of each plane the negative half-space. The

four quadrants can now be labelled according to these

signs.

First let us examine convex edges* considering

only their instantaneous translational motion for the

moment. When an edge is moving into the (x,x)

quadrant, then the edge's motion is to the interior of

the polyhedron. Therefore the ruled surface swept by

this edge need not be considered. When an edge's

motion is to the (+,+) quadrant, then the edge's

motion will be subsumed by that of the adjacent faces.

If, however, the edge moves into either the (+,x) or

(x,+) quadrant, then the surface swept by the edge

may appear on the boundary and therefore needs to be

considered. When rotations as well as translations are

permitted, then it is possible that motions into the

(+,+) quadrant may cause the surface to appear on

the outside. Therefore, in the general case, we can only

exclude edges which are, at a given step, locally

moving into the (x,x) quadrant. As we are discretely

stepping each edge, we can compute the motion of the

edge by computing the motion of its end points

between times ti and ti+1. If these motion vectors are

into the (x,x) quadrant, then the triangulated sur-

faces need not be computed between these two times.

This test must be performed looking at the quadrants

formed by the faces at both times ti and ti+1.

Re¯ex edges, however, can never create ruled sur-

faces which contribute to the boundary of the swept

volume, because these ruled surfaces are always sub-

sumed by the motion of the incident faces. See

Figure 5. The motions of these edges are either towards

Figure 4. Determining if an edge is needed at a given moment. Faces F1 and F2 are incident at edge e. If e is, during the given

step, sweeping locally `into' the object, then the ruled surface generated by that edge during that step will not be on the

boundary of the swept volume. The ®gure on the right shows a cutaway view looking down on edge e.

*That is, edges for which the incident faces meet such that the
interior dihedral angle is less than 180u. When this angle is greater
than 180u, the edge is called a re¯ex edge.

Figure 3. The edge is stepped through its trajectory. The resulting triangulated mesh approximates the ruled surface.

S. ABRAMS AND P.K. ALLEN
...Visualisation &

Computer Animation

...
Copyright # 2000 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2000; 11: 69±8274

the interior of the polyhedron or towards the (+,+)

quadrant, and owing to the re¯ex angle, the motion of

the edge is always subsumed by that of the incident

faces.

Therefore it is only necessary to consider certain

convex edges of the polyhedron. Interestingly, the tests

applied to determine which edges are necessary here

in the sampled domain seem analogous to the tests

used in Reference 6 to determine grazing sets in the

continuous domain.

Approximating the Envelope Surface

In addition, as we said, there are times when the

envelope of the moving polygon's interior appears on

the boundary of the swept volume as well. This can

happen, as Weld and Leu17 found, when successive

copies of the polygon instantaneously intersect one

another, as we illustrated in Figure 1. However, it is

not necessary for such a successive intersection to take

place.

A condition which is necessary is that there must be

some point of the polygon whose velocity in the

direction normal to the plane of the polygon is zero.

That is to say, point r, an interior point of the polygon,

will appear on the boundary of the swept volume

only if there exists a time t at which v(r, t)en?t~0

(where v(r, t) is the instantaneous velocity of point r at

time t and n?t is the polygon's normal at time t) (R. T.

Farouki, personal communication, 23 May 1994). Note

that this is not a suf®cient condition, as there are points

which will meet this criterion but not appear on the

boundary of the swept volume.

That this condition is necessary can be shown via a

proof by contradiction. Assume that there is a point r

on the interior of the polygon which appears on the

boundary of the swept volume at time t. Further

assume that it does not meet the condition stated

above, i.e. assume that v(r, t)en?tl0. That means that

at time t, the moment at which this interior point of

the polygon appears on the boundary of the swept

volume, its velocity is non-zero in the direction of the

polygon's normal. Let Pt be the polygon positioned as

it would be at time t and let rt be the position of point r

at time t. Since its velocity at t is non-zero in the

direction of nt, there exists some small e for which rtxe

is on one side of polygon Pt and rt+e is on the other

side of Pt.

Furthermore, since r is an interior point of P, then

there is a neighbourhood of points around r and PÐa

small disc in the plane of PÐwhich are all on one side

of Pt at txe and on the other side of Pt at t+e. All these

points together make up a neighbourhood in three

dimension around rt, and this entire neighbourhood is

clearly part of the swept volume. Since rt is interior to

this neighbourhood, it is interior to the swept volume

and cannot be on the boundary of the swept volume.

Therefore, if an interior point r of P appears on the

boundary of the swept volume, there must be some

time t at which v(r, t)en?t necessarily must be zero.

When there exists such a point r at time t, we

say that the polygon is undergoing `sliding' motion,

because the polygon is sliding in its own plane, at least

locally. Refer again to Figure 1. In this ®gure a square

is translating from left to right, rotating as it goes. As it

passes the middle of its trajectory, it can be seen to be

instantaneously `sliding' in front of us. In this vicinity

there are clearly points on the boundary of the swept

volume which came from the interior of the polygon.

This sort of motion meets Weld and Leu's17 criterion of

`successive intersections' as well.

However, Figure 6 shows a square that is translating

in a semicircular trajectory without rotation. The plane

of the semicircle is perpendicular to the plane of the

square. That is, the trajectory goes `into' the page. In

this example, when the square is at the mid-point of its

trajectory, there are clearly points on the boundary of

the swept volume which came from the polygon's

interior. For example, the centre of the square is on the

back boundary of the swept volume. There can be no

Figure 5. If edge e is not a convex edge, the ruled surface

generated by its motion is always subsumed by the motion of

the incident faces.

Figure 6. Another example of sliding motion.

COMPUTING SWEPT VOLUMES
...Visualisation &
Computer Animation

...
Copyright # 2000 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2000; 11: 69±8275

successive intersections, since all successive copies of

the polygon are parallel to one another. However, at

that same farthest point in the trajectory the instanta-

neous velocity of the polygon is zero in the direction of

the surface normal, thereby meeting our criterion.

Again, the face is, at that moment, `sliding' in front of

us.

When sliding motion takes place, we need to include

an approximation to the envelope of the family of

planes given by the moving polygon. We have seen

that sliding motion takes place when some point on the

polygon has zero velocity in the polygon's normal

direction. Looking at the polygon's motion at the same

discrete steps as we looked at each edge above, we can

determine if sliding motion took place between t and

t+Dt. The following algorithm will compute S. A set

of faces which will be useful for approximating the

developable surface formed by the interior of a moving

polygon p when that polygon undergoes sliding

motion.

Sliding Motion Test

1. Compute the motion of each vertex of p from ti to

ti+1 relative to p's normal at time ti. The vertex will

be moving forward, backward or in the plane of p.

For each vertex vj let sti
(vj) be +1 (forward), x1

(backward) or 0 (in the plane), depending on its

motion at ti.

2. If any face has vertices moving in different direc-

tions, i.e. if s (vj)ls (vk) for any vj and vk of p (such

as if the face is rotating about an axis in its plane), or

if there are any vertices vl for which s (vl)=0, the

face is undergoing sliding motion between ti and

ti+1. Add copies of the face at both ti and ti+1 to S.

3. If for any vertex vj of p, stix1
(vj)lsti

(vj), i.e. if any

vertex has changed direction from the previous

interval (relative to the face's plane, that is), the face

is undergoing sliding motion at ti. Add a copy of the

face at ti to S.

This algorithm is run at every intermediate step ti

between the start time and the end time (i.e. not at the

end points of motion themselves).

For an example, see Figure 7. In this ®gure, notice

that polygon p is pivoting about the dotted axis.

Vertices A and B move into the page to corresponding

vertices Ak and Bk, while vertices C and D move in the

opposite direction to corresponding vertices Ck and Dk.
Therefore this face undergoes sliding motion between

times t0 and t1, according to step 2 above, and pt0
and

pt1
need to be added to the set S.

In Figure 8, polygon p changes direction at time ti.

That is, immediately prior to ti, all its vertices were

moving into the page, and immediately after ti, all its

vertices were moving out of the page. Thus, according

to step 3 above, pti
needs to be added to S.

Combining the Surfaces

The set of polygons, S, produced with the above

algorithm, plus copies of the moving polygon at the

start and end points of motion, plus the set of triangles

generated to approximate the ruled surfaces from each

edge, yield a new set of polygons, F. F is a superset

of the boundary of our approximation to the volume

swept by a moving polygon. Speci®cally, each member

of F is completely interior to, completely on the

boundary of, or partially interior to and partially on

the boundary of the swept volume. That is, by

construction, no member of F is partially or comple-

tely exterior to the swept volume.

If there were never any self-intersections in the

swept surfaces, one could simply stitch the elements of

the set F along their edges and traverse the outer

boundary of this set. To handle cases in which self-

Figure 7. Sliding motion: vertices A and D are moving in

one direction relative to the plane of Pt0
, while vertices B

and C are moving in the other direction.

Figure 8. Sliding motion due to a change in direction. From

time t0 to t1, all vertices of P are moving in one direction

relative to its plane. Between times t1 and t2, they are

moving in the other direction.

S. ABRAMS AND P.K. ALLEN
...Visualisation &

Computer Animation

...
Copyright # 2000 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2000; 11: 69±8276

intersections do occur, it is important to compute all

intersections among the faces of FÐthat is, compute

the arrangement of these polygons in space yielding a

collection of cells (see e.g. Reference 25).

Most of these cells will be in the swept volume, but

some of these cells may be voids within the swept

volume. Clearly, an object which itself contains voids

can produce a swept volume which contains voids. For

example, any hollow object which simply translates a

short distance in a straight line can produce a swept

volume with at least one interior void. In addition,

there are motions of voidless objects which will

produce voids in the swept volume.

Because voids are unimportant for our own sensor

planning work, the current implementation does not

®nd voids. Instead, we determine only the outer

boundary for the swept volume. That is, we compute

the arrangement of all polygons in the set F. Then we

traverse the outer boundary of this arrangement via a

gift-wrapping algorithm. This yields the outer bound-

ary of the swept volume, having all self-intersections

taken into consideration.

Implementation

We have implemented the following algorithm for

generating the outer boundary of the swept volume S

(P, T) for a polyhedron P and a trajectory T.

Polyhedral Sweep Algorithm

1. Step each edge of P through the trajectory T using

any step size Dt. Connect adjacent copies of each

edge by forming triangles, as shown in Figure 2.

Collect these triangles in a set called F.

2. For each polygon p in P, do the following.

(a) Add a copy of pi at its initial and ®nal positions

to F.

(b) Run the sliding motion test (above) on pi, using

the same step size Dt. Add all the faces placed in

S by this algorithm to F.

3. Set F is now a superset of the boundary of the

actual volume swept. Compute the set A=Arrange-

ment (F).

4. Traverse the boundary of the in®nite cell, i.e. the

outermost boundary of A, and regularize it (dis-

carding all faces not needed to de®ne the this

outermost boundary). The resulting volume is S

(P, T).

As we have discussed, this algorithm will compute the

outer boundary of the swept volume. The algorithm

was implemented in C++ on a Sparc-20 and used the

ACIS geometric modelling system for its boundary

representation, Boolean operations, boundary traversal

algorithm, and save and load of the generator and

computed swept volume (to and from ACIS .SAT

format). In the actual implementation the arrangement

A was built incrementally out of subsets of F. For

example, as an edge was stepped along its trajectory,

the triangulated mesh arising from that edge was

grouped together and its arrangement was computed

independently of the rest of the faces. Later, all these

subsets were combined and their total arrangement

was computed. This yielded gains in ef®ciency and

robustness over brute-force methods. The arrange-

ments were computed using sequences of `union'

operations, although more elegant means could be

used25 for greater gains in ef®ciency and robustness.

The algorithm has been run on a number of

examples, of which a few are selected for inclusion

here. Figure 9 shows a rectangular prism with dimen-

sions 5r6r7, turned so as to sit on one vertex. This

prism is swept in the helical trajectory given by

H t� �~ Rot z; 0:1tp� �
0 . . . 0

T 0; 8; t=2� �
1

� �
�8�

(where Rot (z, h) implies a rotation about the z-axis by

h, and T (x, y, z) implies a translation by (x, y, z)), with t

stepped from 0 to 1 in steps of 0e1. The volume

generated is shown in Figure 10. This example does

not exhibit sliding motion, although the following

examples all do.

The object shown in Figure 11 is swept through a

spiralling trajectory along the y-axis, given by a

translation of (sin(2pt/10),t,0) followed by a rotation

of Rot(y,tp/20), and the results are displayed in

Figure 12. The same object rotated 90u about the

x-axis and swept through the helical trajectory of

equation (8) is shown in Figure 13. Figure 14 displays

the result of applying the swept volume algorithm to a

robotics problem, in which a model of the Barrett

dextrous robot hand is shown sweeping from a

partially spread position to a partially closed position.

Figure 9. Rectangular prism to be swept.

COMPUTING SWEPT VOLUMES
...Visualisation &
Computer Animation

...
Copyright # 2000 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2000; 11: 69±8277

The hand started with the palm at a spread angle of

135u and closed to a 0u spread, while the ®ngers went

from fully open (0u to 30u closed. Figure 15 shows the

volume swept by a Puma 560 robot with a metal stylus

attached to its end-effector moving in a `V-shaped'

trajectory.

Finally, Figure 16 shows a sweep of the DLR robotic

hand. To start, the hand was placed in the con®gu-

ration shown in the left portion of the ®gure, and the

links were commanded to move to the positions shown

in the right portion of the ®gure. The two images in the

centre of the ®gure show the volume swept by the

links executing this motion, assuming that the joints all

move at equal velocities.

Handling Voids

While voids inside the swept volume are not important

for certain applications such as our sensor planning

research (a camera placed within a void will be unable

to see anything outside of the void), a general-purpose

swept volume algorithm should be able to ®nd them.

There is a conceptually simple extension to our

algorithm which will ®nd voids in the result. Essen-

tially, one must compute each cell of A rather than

simply traverse the outer boundary of the entire

arrangement. Each cell will then need to be classi®ed

to determine if it is part of the volume or a void within

the volume. The union of all the cells which pass the

classi®cation test then comprises the swept volume.

In practice, however, it is likely to be a bit more

complicated.

Every face, as it is generated, can be labelled so as to

remember the generator element which gave rise to it.

In addition, the side of the face which corresponds

to the inside of the swept volume, locally, can

be remembered. While this local information will be

useful (and probably necessary), it is not likely to be

suf®cient for classifying the cell. What might appear to

be a void, locally, may be contained within the sweep

of another element. Therefore a combination of local

and global methods (such as ray casting) will probably

be required in order to determine a nesting of the cells.

This nesting should be very useful in assisting the

identi®cation of voids. These techniques may be

computationally expensive. Therefore, if an algorithm

can determine a priori that a void will not exist in the

result, the most ef®cient method would be to traverse

the outer boundary rather than to identify and classify

each of the cells which arise in the arrangement. It is

Figure 10. Volume generated from helical sweep.

Figure 11. Object to be swept.

Figure 12. The computed swept volume.

S. ABRAMS AND P.K. ALLEN
...Visualisation &

Computer Animation

...
Copyright # 2000 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2000; 11: 69±8278

hoped that these ideas will prove to be useful guides

for future researchers in swept volume computation.

Performance Issues

As was observed in Reference 22, all methods of

computing swept volumes are slow. This one is no

different. Construction of the set F is not at all

expensive (trivially, O(nm+fm), where n is the

number of edges, m is the number of steps and f is

the number of faces, since each edge creates O(m)

triangles, each found in constant time, and each face

may create O(m) copies of itself, each of which can be

found in constant time). Similarly, the traversal of the

arranged faces is not expensive (linear in the number

of faces in the arrangement). However, the computa-

tion of the arrangement itself can be very time-

consuming. As described above, we perform the

arrangement computation by sequences of union

operations on sets of faces as they are generated.

Since the proprietary union of a commercial CAD

package was used, we cannot accurately analyse the

complexity of this technique. However, we can discuss

the theoretical bounds for arrangement computations

in general.

For example, a full arrangement of n triangular faces

can be computed in O(n3). Better, an algorithm for

Figure 13. The same object rotated 90u about the x-axis and spiralling upwards. Shown in two views, with all edges

highlighted.

Figure 14. Computed swept volume of a Barrett hand,

closing.

Figure 15. Puma model and computed swept volume.

COMPUTING SWEPT VOLUMES
...Visualisation &
Computer Animation

...
Copyright # 2000 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2000; 11: 69±8279

computing a single cell in randomized expected time

O(n7/3+l), with the constant of proportionality

depending on l, is presented in Reference 26. This

bound (and algorithm) is applicable to our problem,

since the traversal of the outer boundary yields the one

and only cell in which we are interested. While most of

our faces are triangular, copies of the moving polygons

are not, although their algorithm could easily be

applied by ®rst triangulating these polygons.

Despite the cost of the arrangement computations,

one can make a speed/accuracy trade-off by adjusting

the step size. This might be useful, for example, in

visualization or animation applications, where a

quicker, less accurate method can be used initially

and more precision can be obtained, at the price of

speed, when necessary.

One signi®cant problem we have encountered is that

both commercial and research geometric engines are

often not robust enough to handle the arrangement

computations discussed above (owing to ¯oating-point

error and related issues) if the step size is too small or

the object is too complex. Robustness is a well-known

problem and much studied in computational geome-

try. A good deal of research has gone into issues of

handling degeneracies, using more precise arithmetic,

and related issues of robustness in geometric comput-

ing, summarized in Reference 27. As steps are taken to

improve the robustness of the underlying geometric

engines, this problem can be minimized in this and

many other applications.

Interestingly, in the cases for which an arrangement

cannot be computed, we are able to take the set of

polygons, F, and graphically render them, displaying

what the result should look like; therefore this method

can be used for graphically displaying even those

swept volumes that it cannot compute. There are in

fact a number of applications where graphical displays

of swept volumes are suf®cient.

Conclusion

This paper has presented a new method for the

computation of swept volumes. While a good deal of

research into the nature and computation of swept

volumes has been done over the years, much of the

work we have seen suffers from one or more limita-

tions, such as a restriction on the class of motion, the

shape of the objects moving or the way in which the

objects must be represented. These limitations prevent

much of this other research from being used in

practical applications. The method presented in this

paper has the bene®t of accepting polyhedral

boundary representations as input and producing

polyhedral boundary representations as output, with

no restrictions on the class of motion involved (sub-

ject to the robustness of the underlying geometric

operators).

As we showed via the examples, this algorithm is

robust enough to produce valid results in fairly

complicated, useful situations. Further, in applications

where a graphical representation of the swept volume

is all that is required, the methods presented can be

used to quickly generate a set of faces to be rendered

via standard Z-buffering techniques.

However, there is more work which can be done.

The swept volume computation is, as was discussed

above, very expensive. Despite this, the primary

limitation of the swept volume computation is not

its speed, but its robustness. It is one thing to have

an algorithm which takes a long time to produce a

useful result; it is another thing to have a speci®c

implementation which takes a long time to fail. As

we mentioned, there is ongoing research in the

computational geometry community to help mini-

mize robustness problems in applications such as

this.

Figure 16. Left: initial con®guration of the DLR hand. Centre: front and side views of the swept motion of the links.

Right: ®nal con®guration of the hand.

S. ABRAMS AND P.K. ALLEN
...Visualisation &

Computer Animation

...
Copyright # 2000 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2000; 11: 69±8280

ACKNOWLEDGEMENTS

This work was supported in part by NSF grants CDA-96-

25374 and IRI-93-11877. We would also like to thank Professor

Gerd Hirzinger and Dr Max Fischer from the German

Aerospace Center (DLR) for providing us with models of

their robotic hand. Finally, we would like to thank Andrew

Miller for generating the images of the DLR hand.

References

1. Hui KC, Tan ST. Mould design with sweep operationsÐa

heuristic search approach. Computer Aided Design 1992; 24:
81±91.

2. Korein J. A Geometric Investigation of Reach. MIT Press:
Cambridge, MA, 1985.

3. Cameron SA. Modelling solids in motion. PhD Thesis,
Department of Computer Science, University of Edin-
burgh, 1984.

4. Wang WP, Wang KK. Geometric modeling for swept

volume of moving solids. IEEE Computer Graphics and

Applications 1986; 6(12): 8±17.
5. Sungurtekin UA, Voelcker HB. Graphical simulation

and automatic veri®cation of NC machining programs.
In Proceedings 1986 IEEE International Conference on

Robotics and Automation, San Francisco, CA, April 1986.
IEEE Computer Society Press: Washington, DC, 1986;
156±165.

6. Blackmore D, Leu MC, Want LP. The sweep-envelope
differential equation algorithm and its application to NC

machining veri®cation. Computer Aided Design 1997; 29:
629±637.

7. Schroeder WJ, Lorensen WE, Linthicum S. Implicit
modeling of swept surfaces and volumes. In Proceedings

IEEE Visualization Conference, Washington, DC, October

1994. IEEE Computer Society Press: Los Alamitos, CA,
1994.

8. Jayaram S, Connacher HI, Lyons KW. Virtual assembly
using virtual reality techniques. Computer Aided Design

1997; 29: 575±584.
9. Abrams S. Sensor planning in an active robot work-cell.

PhD Thesis, Columbia University, New York, 1997.
10. Abrams S, Allen PK, Tarabanis KA. Dynamic sensor

planning. In Proceedings 1993 IEEE International Conference

on Robotics and Automation, Atlanta, GA, May 1993. IEEE
Computer Society Press: Los Alamitos, CA, 1993.

11. Abrams S, Allen PK, Tarabanis KA. Computing camera

viewpoints in an active robot work cell. International

Journal of Robotics Research 1999; 18: 267±285.
12. Abrams S, Allen PK. Computing swept volumes for

sensor planning tasks. In Proceedings DARPA 1994 Image

Understanding Workshop, Monterey, CA, November 1994.

Morgan Kaufmann: San Francisco, CA, pp. 1159±1166.
13. Kaul A. Computing Minkowski sums. PhD Thesis, Depart-

ment of Mechanical Engineering, Columbia University,
New York, 1993.

14. Hui KC. Solid sweeping in image spaceÐapplication in
NC simulation. The Visual Computer 1994; 1: 306±316.

15. Hu Z-J, Ling Z-K. Swept volumes generated by the
natural quadric surfaces. Computers and Graphics 1996; 20:
263±274.

16. Martin RR, Stephenson PC. Sweeping of three-
dimensional objects. Computer Aided Design 1990; 22:
223±234.

17. Weld JD, Leu MC. Geometric representation of swept
volumes with application to polyhedral objects. Interna-
tional Journal of Robotics Research 1990; 9(5): 105±117.

18. Sambandan K. Graphic simulation and veri®cation of ®ve-
axis NC-machining. Master's Thesis, Cornell University,
Ithaca, NY, 1988.

19. Sambandan K, Wang KK. Five-axis swept volumes for
graphic NC simulation and veri®cation. In Proceedings
15th ASME Design Automation Conference. Montreal, Sep-
tember 1989, Vol. 19±1. Ravani B (ed). ASME: New York,
1989; 143±150.

20. Lorensen WE, Cline HE. Marching cubes: a high resolu-
tion 3D surface construction algorithm. Computer Graphics
1987; 21(4): 163±169.

21. Schroeder WJ, Zarge JA, Lorensen WE. Decimation of
triangle meshes. Computer Graphics 1992; 26(2): 65±70.

22. Sourin A, Pasko A. Function representation for sweeping
by a moving solid. In Proceedings Third Symposium on Solid
Modeling and Applications, Salt Lake City, UT, May 1995.
IEEE Computer Society, ACM Press: New York, 1995;
383±391.

23. Shapiro V. Real functions for representation of rigid
solids. Computer Aided Geometric Design. 1994; 11: 153±175.

24. Menon J, Marisa RJ, Zagajac J. More powerful solid
modeling through ray representations. IEEE Computer
Graphics and Applications 1994; 14(3): 22±35.

25. Edelsbrunner H. Algorithms in Combinatorial Geometry.
Springer: Berlin, 1987.

26. Aronov B, Sharir M. Triangles in space or building (and
analyzing) castles in the air. Combinatorica 1990; 10:
137±173.

27. Fortune S. Robustness issues in geometric algorithms. In
Proceedings 1996 Workshop on Applied Computational Geo-
metry, Philadelphia, PA, May 1996: pp. 20±23.

Authors' biographies:

Steven Abrams is the manager of the Computer Music
Center in the Department of Mathematical Sciences at
IBM Research. Prior to becoming immersed in the ®eld
of computer music, Dr. Abrams developed 2-D and
3-D geometric processing algorithms and system
architecture for a rapid prototyping system. He then
joined Stratasys, Inc., where he helped to commercia-
lize that rapid prototyping technology. That tech-
nology is currently shipping in Stratasys' ``Genisys''
product. He studied at Columbia University where he
earned the B.S., M.S., M.Phil., and Ph.D. degrees. His
Ph.D. thesis was on sensor planning for robots in an
active environment, and focused on multidimensional
modeling and manipulation of computer vision con-
straints and the computation of 3-D swept volumes.

COMPUTING SWEPT VOLUMES
...Visualisation &
Computer Animation

...
Copyright # 2000 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2000; 11: 69±8281

While still interested in 3-D modeling and visualiza-
tion, his primary research focus is on computer music
issues ± particularly in developing software tools that
utilize higher-level abstractions of important musical
concepts in ways that enhance the composer's ability to
create music.
Peter K. Allen is associate professor of Computer
Science at Columbia University. He received the
A.B. degree from Brown University in Mathematics±
Economics, the M.S. in Computer Science from the
University of Oregon and the Ph.D. in Computer
Science from the University of Pennsylvania, where
he was the recipient of the CBS Foundation Fellowship,
Army Research Of®ce fellowship and the Rubinoff
Award for innovative uses of computers. His current
research interests include real-time computer vision,
dextrous robotic hands, 3-D modeling and sensor
planning. In recognition of his work, Professor Allen
has been named a Presidential Young Investigator by
the National Science Foundation.

S. ABRAMS AND P.K. ALLEN
...Visualisation &

Computer Animation

...
Copyright # 2000 John Wiley & Sons, Ltd. J. Visual. Comput. Animat. 2000; 11: 69±8282

