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Abstract. Tool tracking is an accepted capability for computer-aided surgical in-
tervention which has numerous applications, both in robotic and manual
minimally-invasive procedures. In this paper, we describe a tracking system which
learns visual feature descriptors as class-specific landmarks on an articulated tool.
The features are localized in 3D using stereo vision and are fused with the robot
kinematics to track all of the joints of the dexterous manipulator. Experiments are
performed using previously-collected porcine data from a surgical robot.
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1 Introduction

Robotic surgery has become widely used in recent years as it has enhanced the inherent
abilities of the human surgeon. For example, there are more than 1800 da Vinci R© [1]
surgical systems working in operating rooms all over the world that performed about
360,000 surgical procedures in 2011. High definition stereo vision helps the surgeon
see the anatomy and interact with the surgical tools with great clarity. Augmenting the
surgeon’s vision with other relevant information in the form of graphical overlays can
further help the surgeons/patients in a different dimension.

Knowledge of the locations of tools in the endoscopic video can enable a wide spec-
trum of applications. Virtual measurements can be utilized to provide accurate measure-
ment of sizes of various anatomical structures. Virtual overlays indicative of the status
of the tool (e.g., the firing status of an electro-cautery tool) can be placed at the tip of
the instrument which is close to the surgeon’s visual center of attention, enhancing the
safety of using such tools. It is also useful in managing the tools that are off the screen,
increasing patient’s safety, or for visual servoing of motorized cameras.

The joints of a robotic surgical system are usually equipped with encoders so that
the pose of the end effectors can be computed using forward kinematics. On one hand,
the kinematics chain between the camera and the tool tip involves 18 joints and more
than 2 meters in cumulative length, which is challenging to the accuracy of absolute
position sensing. On the other hand, a master-slave system does not require high abso-
lute accuracy because surgeons are in the control loop. As a result, we have observed
up to 1-inch of absolute error, which is too large for most of the applications that are
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mentioned above. Therefore, detecting and tracking the tools from images is a practical
way to achieve the accuracy requirements of the applications.

Previous approaches to tool tracking have employed specialized fiducial markers
to locate the tool [2,3,4]. Effective as they are, there are practical challenges such as
manufacturability and cost. Alternatively, marker-less techniques have used: color seg-
mentation to label pixels in the image as tool against the background [5,6,7]; geometric
priors to confine the search space from the abdominal wall [8,9,10]; or combining dif-
ferent features together to detect the tool in the image [11,12,13]. Most prior work
emphasizes the shaft, however in robotic surgery surgeons tend to work very close to
the anatomy and the small visible part of the shaft may cause these algorithms to work
poorly. This has motivated us to investigate the features on the tip of the tools.

In this paper we present a tracking system which learns the appearances of natu-
ral landmarks on an articulated tool by training an efficient multi-class classifier on a
discriminative feature descriptor. We run the classifier on an image frame to detect all
extrema representing the location of each feature type, where confidence values help
reject false positives. We stereo match in the corresponding camera to recover 3D lo-
cations. By also knowing these landmark locations on the tool CAD model, we recover
a pose offset of the kinematics using an Extended Kalman Filter. This fusion of vision
and kinematics fills in the gap of missed vision detections and the articulations that are
not estimated by vision, making the estimation of the tool pose available at all times.

2 Materials and Methods

2.1 Training Data Collection

We begin by collecting data to train our classifier. We use five different video sequences
which span various in-vivo experiments, to best cover a range of appearance and light-
ing scenarios. We concentrate on the Large Needle Driver (LND) tool, keeping in mind
this technique may be applied to any other types of tools. Seven visually salient and
stable landmarks are manually selected and shown on the left of Fig. 1. The features
chosen are of the pins that hold the distal clevis together, the IS logo in the center, and
the wheel and wheel pin. We also know these locations on the tool’s CAD model, which
will be used for association to compute the final articulated pose.

For each frame in the labeling procedure, we manually drag a bounding-box around
each feature of interest, being careful to avoid contamination from pixels which don’t
belong to the tool. Overall, we use ∼ 15,000 training samples across the 7 classes.

2.2 Feature Descriptor

There has been a large amount of prior work on visual feature detection and matching
in the computer vision community. Scale and affine invariant feature descriptors [15]
have been very successful in matching planar features. However, we found that they
work poorly for features on metal surfaces with lighting changes, as in the case of
surgical tools with varying poses and light directions. The right-side of Fig. 1 shows
example appearance changes typically encountered of the IS Logo feature. We require
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Fig. 1. [Left] The feature classes we detect on the LND tool. We concentrate on 7 different types
of naturally-occurring landmarks. [Right] Examples appearance changes of the IS Logo feature.

a discriminative and robust descriptor for our feature classes as each is fairly small (e.g.,
17-25 pixels wide), and so we chose the Region Covariance Descriptor [16], where the
covariance matrix of d features in a small image region serves as the feature descriptor.
Given an image I, we extract d=11 features, resulting in the feature image F:

F = [x y H S L Ix Iy Ixx Iyy

√
I2
x + I2

y arctan(Iy/Ix)] (1)

where x,y are the pixel locations; H,S,L are the hue, saturation, and luminance values
at pixel location (x,y); Ix, Iy are the 1st-order spatial derivatives; Ixx, Iyy are the 2nd-
order spatial derivatives; and the latter two features are the gradient magnitude and
orientation, respectively. The covariance matrix CR ∈ R

d×d of an arbitrary rectangular
region R within F then becomes our feature descriptor.

Each CR can be computed efficiently using integral images. We compute the sum of
each feature dimension as well as the sum of the multiplication of every two feature
dimensions. Given these first and second order integral image tensors, it can be shown
that the covariance matrix of any rectangular region can be extracted in O(d2) time
[16]. Using the ground truth data from Sec. 2.1, we extract covariance descriptors of
each feature and store the associated feature label for training a classifier.

2.3 Feature Classification

There are several multi-class classifiers which may suit this problem. We adapt a method
called Randomized Trees (RTs) [17] due to its computational efficiency. In addition to
providing feature labels, we would like to retrieve confidence values for the classifica-
tion task which we use to construct class-conditional likelihood images for each class.

RTs naturally handle multi-class problems very efficiently while retaining an easy
training procedure. The RT classifier Λ is made up of a series of L randomly-generated
trees Λ = [γ1, . . . ,γL], each of depth m. Each tree γi, for i ∈ 1, . . . ,L, is a fully-balanced
binary tree made up of internal nodes, each of which contains a randomly-generated
test that splits the space of data to be classified, and leaf nodes which contain estimates
of the posterior distributions of the feature classes.
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To train, the training features are dropped down the tree, performing binary tests at
each internal node until a leaf node is reached. Each leaf node contains a histogram
of length equal to the number of feature classes b. The histogram at each leaf counts
the number of times a feature with each class label reaches that node. At the end of
the training session, the histograms are normalized into probabilities using the total
number of hits at that node. A feature is then classified by dropping it down the trained
tree, again until a leaf node is reached, and is assigned the probabilities of belonging to
a feature class depending on the posterior distribution stored at the leaf from training.

Because it’s computationally infeasible to perform all possible tests of the feature,
L and m should be chosen so as to cover the search space sufficiently and avoid ran-
domness. Although this approach has been very successful for matching keypoints [17],
traditionally the internal node tests are performed on a small patch of the gray image by
randomly selecting 2 pixel locations and applying a binary operation (≤) to determine
which path to take to a child. In our problem, we are using feature descriptor vectors
rather than image patches, and so we must adapt the node tests to suit our problem.

To this end, we use a similar approach to [18] for the node tests. For each internal
tree node we construct a random linear classifier hi(x) on feature vector x to split:

hi(x) =
{

nTx+ z ≤ 0 go to right child
otherwise go to left child

(2)

where n is a randomly generated vector of the same length as feature x with values in
the range [−1,1] and z ∈ [−1,1] is also random. We found that this node test allows
for robust splitting of the data and is computationally efficient. In this way, we build
up probability distributions at the leaf nodes with the training descriptors. The results
from each γi are averaged across the L trees. However, the d-dimensional nonsingular
covariance matrices cannot be used as is to perform this task directly because they do
not lie on a vector space, but rather on a connected Riemannian manifold. Due to space
limitations, we refer the reader to [19] for a mathematical overview on post-processing
the covariance descriptors to a Euclidean vector-space for use with a classifier. In the
end, our [d× d] dimensional matrices CR are mapped to vectors c j ∈ R

d(d+1)/2.

2.4 Feature Class Labeling and Reconstruction

Labeling. Given our trained classifier Λ , we detect features for each label in an image
by computing covariances CR, each of which is mapped to a vector space, producing
c j. We drop each c j through the trees γi and average the probabilities at the obtained
leaf nodes to get a probability distribution pL, representing the probability of c j belong-
ing to each of the L feature classes, resulting in L class likelihood images. To get the
pixel locations, we perform non-maximal suppression in each class likelihood image.
Example detections and likelihoods are shown in Figs. 2(a) and 2(c)-2(i), respectively.

Although the integral images afford efficient extractions of the covariances, we can
reduce the computations further by initially segmenting the pixels of the image to iden-
tify areas of interest to classify. Using the method in [11], we train a Gaussian Mixture
Model of several color and texture features to classify pixels into 1 of 3 groups (metal,



596 A. Reiter, P.K. Allen, and T. Zhao

(a) Class Extrema (b) Mask Prior (c) iDot (d) IS Logo (e) Pin1

(f) Pin3 (g) Pin4 (h) Wheel (i) Wheel Pin

Fig. 2. Example likelihood images along with 6/7 successfully detected feature classes correctly
located as extrema in (a). The Pin3 (f) feature is incorrectly localized (white circle). The color-
coding for the circles in (a) is: Blue for iDot, Green for IS Logo (d), Red for Pin1 (e), Orange for
Pin4 (g), Purple for Wheel (h), and Cyan for Wheel Pin (i). A mask prior is shown in (b) which
detects pixels on the metal part of the tool to reduce the number of pixels needing classification.

shaft, and background) and use the metal likelihood to produce a binary image of pixels
to run through our classifier Λ . Fig. 2(b) shows a mask prior for the video image in 2(a).

3D Reconstruction. Now that we have candidate pixel locations for each feature class,
we retrieve the 3D locations by stereo matching the feature tracks in the corresponding
stereo camera using normalized cross-correlation checks along the epipolar line and
triangulating the features. These feed into our fusion stage, described next.

2.5 Vision and Kinematics Fusion

The robot kinematics data can be fused with the vision to fill in the gap of the missed
detections and to facilitate rejection of outliers. Many surgical robots like the da Vinci R©

need to maintain a stationary insertion point (also termed remote center of motion, or
RCM). The errors in the passive setup joints accumulate at the RCM, resulting in a
pose offset between the actual pose of the RCM and the pose computed using forward
kinematics. This pose offset should be constant or slowly changing for a given surgical
setup. Therefore, we can fuse vision and kinematics by solving this 6-DOF pose offset.

We denote RCS as the coordinate system of the true RCM and KCS as the coor-
dinate system of the RCM according to the kinematics. The coordinates of a point p
in both coordinate systems are associated by pK = RK

R pR + cK
R . We use an Extended

Kalman Filter (EKF) to estimate the rigid transformation RK
R ,c

K
R due to its adaptive

nature, computational efficiency and the ability for uncertainty propagation. The infor-
mation form of the filter is chosen to easily deal with a varying number of detected
features. Also, the filter does not require the solution to be fully determined in a single
frame. We omit the details of the implementation due to space limitations and refer the
interested reader to [20] for more details.

It is possible that the output of the feature classification contains outliers. We employ
RANSAC to enforce the rigid transformation using a sliding window approach and so
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Fig. 3. Examples from our fusion tracker with the overlays for both the raw (yellow) and corrected
(blue) kinematics. A visual inspection shows the tracker fixing the kinematics quite accurately.

only the inliers are fed into the EKF. We require a minimum of ∼ 30− 50% inliers to
begin the filtering procedure.

3 Results

We experimented on previously collected porcine data from a da Vinci R© surgical robot.
The data which was used to test was specifically not included in the training proce-
dure. After the off-line training of our RT classifier Λ (Sec: 2.3) using the seven feature
classes shown in Fig. 1, we detected features (Sec. 2.4) and performed 3D reconstruc-
tion. These point locations were fed into the fusion module (Sec. 2.5) and the final
kinematics joint overlay is drawn in the original image frame.

Six sample results are shown in Fig. 3, in which the yellow lines represent the raw
kinematics projected into the image frames and the blue lines show the fixed kinematics
resulting from our tracker. Notice the significant errors in some cases, motivating the
need for the ideas presented in this paper. A visual inspection yields a fairly accurate
correction of the kinematics overlaid on the right-most tool. The bottom-row middle-
column shows a case where no features are visible, yet the EFK can predict because
the remote center bias was previously accounted for correctly and remained static. This
affords longer overall tracking times. On average it required ∼ 10− 12 frames for the
fusion module to collect enough evidence to lock on to the true instrument kinematics.

Accuracy. The accuracy requirements for tool tracking depends on the application.
Some applications, such as virtual measurement, may require ≤ 1mm accuracy while
others such as status overlay can be more tolerant. It is regarded as acceptable if the
estimated tool centerline is within the tool shaft, so it is not confused with another
tool. This has motivated our evaluation method shown in Fig. 4, without being able to
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Fig. 4. To evaluate our kinematics estimates, the projected overlays must fall within the bound-
aries labeled as dotted blue lines here.

obtain ground truth in-vivo. The dotted blue lines define an acceptable boundary for
the camera-projection of the kinematics. We manually inspect each frame of the test
sequences, and resulted in a 93% accuracy rate over 1600 test frames. We attribute the
incorrect estimates to the initial time necessary to lock on to the tool while the fusion
module gathers evidence and occasional poor localization of the 2D features.

Occasionally we notice that the estimate is accurate on the tool tip, but slightly offset
on the shaft. This occurs because we only include one feature on the shaft (Pin4), but in
the future we will look to include more shaft information. Concurrent with this work we
performed a study [21] on the feature detection accuracy, where we obtained an average
localization accuracy of 86%, although this varies depending on the feature type. We
also note that although some feature types are not always detected, we need only ∼ 3−4
on a given frame because of the fusion, and so across the 7 chosen landmarks our
experiments show that the percent correct achieved is sufficient for long-term tracking.

Timing. The tracker runs at ∼ 1.2 secs/frame, where the feature detection takes most of
the processing. This is dependent on: number of trees in Λ (90) , depth of each tree γi

(10), number of features used in CR (11), and the quality of the initial segmentation. It
is also worth mentioning that we are estimating a pose offset that changes very slowly,
therefore it is not critical that the estimation runs at frame-rate. Future speed-ups can
come from GPU enhancements, because many parts of the algorithm are inherently par-
allel, and tracking of the features (between consecutive frames, the features shouldn’t
move far and so we only need to classify small windows around previous detections).

4 Conclusion

In this paper we have presented a method to learn to detect naturally-occurring land-
marks on an articulated surgical tool to track it over time. We showed robustness in
both feature detection and fusion of the vision observations with the inaccurate robot
kinematics. Future work includes testing on different types of tools as well as tracking
multiple tools in the scene simultaneously.
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