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Abstract
Generative Attention Learning (GenerAL) is a framework for high-DOF multi-fingered grasping that is not only robust to
dense clutter and novel objects but also effective with a variety of different parallel-jaw and multi-fingered robot hands. This
framework introduces a novel attention mechanism that substantially improves the grasp success rate in clutter. Its generative
nature allows the learning of full-DOF grasps with flexible end-effector positions and orientations, as well as all finger joint
angles of the hand. Trained purely in simulation, this framework skillfully closes the sim-to-real gap. To close the visual
sim-to-real gap, this framework uses a single depth image as input. To close the dynamics sim-to-real gap, this framework
circumvents continuous motor control with a direct mapping from pixel to Cartesian space inferred from the same depth
image. Finally, this framework demonstrates inter-robot generality by achieving over 92% real-world grasp success rates in
cluttered scenes with novel objects using two multi-fingered robotic hand-arm systems with different degrees of freedom.
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1 Introduction

High-DOF grasping includes multi-fingered and non-top-
down grasping. This area of robotics research remains active
because of its wide application in different domains, rang-
ing from using robot arms for warehouse handling to using
humanoid robots for home assistant robotic applications. We
can categorize state-of-the-art robotic grasping methodolo-
gies largely into classical grasp planning approaches that
optimize closed grasp quality metrics and learning-based
methods that learn from examples or experience. The data-
driven methods have become more prevalent in recent years
as they leveragemany recent advancements in the deep learn-
ing community.

We observe that the majority of the learning-based meth-
ods employ low-DOF robotic hands (e.g., parallel-jaw grip-
pers). These methods also often limit the range of grasp
approach direction (e.g., top-down-only grasps), mainly
due to real-world sample complexity concerns. In other
words, learning high-DOF grasping is difficult because a
large amount of real-world data needed to learn this high-
dimensional task often makes learning intractable. While
circumventing high-DOF grasping with low-DOF hardware
or grasp poses reduces the dimensionality of the problem,
doing so excludes many solutions that could be used for
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Fig. 1 Hardware and
Simulation Setup. a Grasping in
PyBullet simulation used to
train our grasping policy on
Staubli–Barrett (left half of
image) and UR5-Seed (right
half of image). b Real-world
grasping for testing the trained
algorithm on UR5-Seed (left
half of image) and
Staubli–Barrett (right half of
image). The table shows all seen
and novel objects used in
Staubli–Barrett and UR5-Seed
experiments

(a) PyBullet (Train) (b) Real-World (Test)

applications like semantic grasping or grasping for dexter-
ousmanipulation. For example, top-downgrasping of a bottle
could hamper a pouring manipulation task. Besides, since a
full 6-DOF grasping system subsumes the more popular 4-
DOF methods, the learned system can be left to decide if a
4-DOF system will be sufficient based on the given grasp-
ing situation. The choices of the learned algorithm can be
analyzed to see which scenarios resulted in reduced-DOF
grasps versus other graspposes. Thisway,we leave the debate
on whether a reduced-DOF grasping system is sufficient
entirely to the learned algorithm. Finally, many low-DOF
methodologies, though successful in some settings, cannot
fully generalize to high-DOF robotic hands or non-top-down
grasp poses. These considerations give rise to the need for
a robust framework that not only generalizes across robotic
hands with arbitrary degrees of freedom but also succeeds at
grasping in complex scenarios such as dense clutter of novel
objects.

Generative Attention Learning, or GenerAL, provides a
general framework to address a fundamental paradox in
learning high-DOF grasping. This paradox is between the
attempt to increase the robot’s DOFs to fully capture the
robot’s action capacity and the competing objective of keep-
ing the sample complexity (i.e., the amount of training data
needed to learn a good grasp)manageable. Trained entirely in
simulation, GenerAL transfers directly to real-world grasp-
ing without the need for additional training, as shown in
Fig. 1. While including more DOFs in grasping robots, such
as allowing non-top-down grasping and using multi-fingered
hands, can increase their potential to perform better grasps, it
also increases the complexity of the problem. The increased
complexity affects the stability of many learning algorithms
during training, especially for continuous action spaces and
their effectiveness and robustness when transferred to real-
world settings. Currently, policy gradient methods solve this

paradox well usually in simulation. By combining advanced
policy optimization procedures with neural-network func-
tional approximators, this family of algorithms can solve
complex tasks in simulation with high-dimensional obser-
vation and action spaces (Schulman et al. 2017). While these
methods can capture the potential of the higher action spaces,
the on-policy nature of policy gradient methods requires a
level of sample complexity that is almost insurmountable
in physical environments without large-scale parallelized
robotic systems (Levine et al. 2017; Kalashnikov et al. 2018).
Also, the brittle nature and complex manifold of robotic
grasping where a slight perturbation of a good solution can
result in a bad grasp (Rosales et al. 2011) means that opti-
mizing in higher dimensions is more complicated.

GenerAL learns the finger joint configurations for robotic
hands with arbitrary degrees of freedom and 6-DOF grasp
pose (3D position and 3D orientation) that will return
successful grasps. The framework’s end-to-end, generative
architecture takes as input a single depth image of a cluttered
or non-cluttered scene and reinforcement-learns a policy that
generates a 6-DOF grasp pose and all finger joint angles
(hence the term “generative”). Each component of this grasp
is proposed per-pixel and then converted into the appropriate
space. For example, the grasp position output by the grasping
policy is in the depth image’s pixel space and later converted
to Cartesian space using the pixel-to-Cartesianmapping (i.e.,
point cloud) inferred from the depth image.

Learning a reinforcement learning (RL) policy operating
directly in the image pixel space not only closes the visual
sim-to-real gap but also gives rise to a novel attention mech-
anism. This mechanism learns to zoom-in and focuses on
sub-regions of the depth image to grasp better in dense clutter
(hence the term “attention”). Shown in Fig. 2, the proposed
mechanism optionally crops the depth image sequentially
to gradually zoom into a local region of the scene with a
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(a) Staubli-Barrett (b)UR5-Seed

(a) (b) (c) (a) (b) (c)

(f) (e) (d) (f) (e) (d)

Fig. 2 Generative Attention Learning (GenerAL) for multi-fingered
grasping. GenerAL can be adapted to robots with different DOFs, such
as the Stabuli–Barrett robot (Left) and the UR5-Seed robot (Right).
Given a scene of cluttered objects (a), our method takes in a single
depth image and gradually zooms into a local region of the image to
generate a good grasp. b, c and d show the zooming process, in which

the green bounding box represents the portion of the depth image the
robot observes in the current timestep, and the blue bounding box rep-
resents the portion of the depth image the robot wants to observe in the
next timestep. In the end, a full-DOF grasp is learned based on the final
zoomed image (d) as shown in (e) and with the final pick-up shown in
(f)

higher chance of generating good grasps. This mechanism
also learns to stop cropping the image after enough zooming.
It then generates full-DOF grasps with variable end-effector
positions, non-top-down orientations, and all finger joint
angles of the hand. In summary, our contributions are:

1. A general framework that can solve grasping in clutter
effectively across different multi-fingered or parallel-jaw
hand-arm robots;

2. A novel attention feature that enables the robot to rea-
son about cluttered scenes and focus on favorable grasp
candidates using a zoom-in mechanism;

3. A generative algorithm for full-DOF grasps that config-
ures 6-DOF end-effector pose and all finger joint angles;

4. Simulation-based learning that uses depth and geometry
alone (i.e., no texture) to allow accurate domain transfer
to real scenes;

5. Multiple experiments across different robotic hands with
different DOFs as well as different grasping scenarios—
simulation versus real-world, single-object versus clutter,
seen versus novel objects, and top-down versus non-
top-down camera view—that produce consistently high
levels of grasping success (90%+).

Compared to our prior work Wu et al. (2019a) (available
on arXiv), this paper presents the following major improve-
ments:

1. Extension of the pixel-attentive multi-fingered grasping
algorithm in Wu et al. (2019a) (available on arXiv) to
a fully general framework that applies to robotic hands
with arbitrary degrees of freedom;

2. Introduction of a fully general mathematical formulation
for the problem of high-DOF grasping under the new
framework;

3. Thorough experimentation of the new framework on
an entirely different robot (UR5-Seed in Sect. 4.2) to
further demonstrate the framework’s generality across
multiple dimensions: robot hands with various DOFs,
single-object vs. clutter, seen versus novel objects, sim-
ulation versus real environment, and top-down versus
non-top-down camera view;

4. Four new sets of ablation experiments on UR5-Seed that
provide a few new insights into the key factors of success
in high-DOF grasping;

5. A new finger-closing algorithm for the anthropomorphic
Seed hand to overcome its internal overloading and over-
heating errors;

6. Detaileddiscussions of thehardwaremodification applied
to the UR5-Seed robot to overcome its mechanical limi-
tations;

7. Elaboration on how our framework can be directly com-
bined with an instance or segmentation algorithm to
achieve object-specific grasping;

8. Extended discussions in each section of the paper to pro-
vide deeper insights into our framework.
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2 Related work

2.1 Generalizable learning-based robotic grasping

Advancements in deep learning have given rise to the rapid
development of learning-based techniques for robotic grasp-
ing. While many recent works have successfully applied
learning-based approaches to robotic grasping in specific set-
tings, few works have demonstrated the generalizability of
their methods to different hardware and grasping scenarios.
Many non-learning geometric approaches (Miller et al. 2003;
Berenson et al. 2007; Akinola et al. 2018) have been devel-
oped for and tested on multiple robot hands. However, to
the best of our knowledge, we are unaware of learning-based
methods that demonstrate similar across-hardware general-
izability and work for hands with different DOFs. Learning
based grasping research works typically pick a specific robot
arm and hand, focus their algorithms on either a parallel-
jaw gripper (Mahler et al. 2017; Kalashnikov et al. 2018;
Zhao et al. 2019) or a dexterous hand (Varley et al. 2015;
Schmidt et al. 2018); deal with single-object, multi-object
(Wang et al. 2019) or highly cluttered scenes (Fischinger
et al. 2013; Zeng et al. 2018a); and generate 4-DOF such as
top-down grasps (Morrison et al. 2018) or full 6-DOF grasps
(Schmidt et al. 2018). Existing grasping methods can handle
different combinations and subsets of these cases, but a gener-
alized learning-based formulation that works across all these
scenarios is needed. Our work fills this void by presenting
such a generalized learning-based approach to robotic grasp-
ing along multiple dimensions. We show that our method:

1. Works across different robot hardware with varying
degree-of-freedom hands;

2. Can handle full 6-DOF grasp poses;
3. Deals with seen and novel objects;
4. Obtains high grasp success rates in both single-object and

cluttered grasping scenes.

2.2 Learning grasping under sample complexity
challenges

Bohg et al. (2014) gives a review of learning-based grasping
methods. Some of these techniques use a supervised learning
approach where a model uses grasping examples for training
(Lenz et al. 2015; Morrison et al. 2018). On the other hand,
there are also RL-based techniques that train a grasping pol-
icy based on trial and error-learning to perform actions that
would result in grasp success. A significant issue common
to both supervised and RL methods is the challenge of sam-
ple complexity. A majority of the data-hungry techniques
requires a large quantity of data-ranging from thousands to
millions. However, real-world robotics data are costly to col-
lect, with labeled data even more expensive. An increase

in sample complexity can result from the curse of input or
action dimensionality, dealing in continuous spaces instead
of discrete spaces, increase in neural network capacity, and
change in learning paradigm (RL vs. supervised). For exam-
ple, learning a 6-DOF grasp pose for a multi-fingered hand
will likely require much more data and is more susceptible
to learning stability issues than learning a 4-DOF grasp pose
for a parallel-jaw hand.

Recent works attempted a variety of algorithms and pro-
cedures to tackle the challenges associated with sample
complexity in grasping. The first branch of attempts avoids
on-policy RL methods. It uses alternative algorithms with
lower sample complexity, such as supervised convolutional
neural networks (CNNs) (Varley et al. 2015; Morrison et al.
2018), value-function based deep RL such as Deep Q-
learning (Kalashnikov et al. 2018; Quillen et al. 2018; Zeng
et al. 2018a), RL with a mixture of on-policy and off-policy
data (Kalashnikov et al. 2018), and imitation learning (Hsiao
and Lozano-Perez 2006). The second branch of attempts
uses various procedures to limit the search space of the
learning algorithm. For example, one can leverage the image-
to-coordinate mapping based on the point cloud computed
from the camera’s depth image. This way, the algorithm can
only learn to choose a point in the point cloud from the image
as opposed to the desired 3D position in the robot’s coor-
dinate system (Varley et al. 2015; Morrison et al. 2018), a
philosophy that inspired our approach. Alternatively, one can
restrict the robot’s DOFs to top-down grasps only (Morrison
et al. 2018). The third branch learns to grasp in simulation
and proposes sample-efficient sim-to-real frameworks such
as domain adaptation (Bousmalis et al. 2018), domain ran-
domization (Tobin et al. 2017), and randomized-to-canonical
adaptation (James et al. 2018) to transfer to the real world.

2.3 Vision-based grasping

Real-world grasping requires visual information about both
the environment and the graspable objects to generate stable
grasps. This can be RGB (Levine et al. 2017; Kalashnikov
et al. 2018), RGB-D (Varley et al. 2015; Lu et al. 2017; Zeng
et al. 2018a, b; Chen et al. 2019), or depth-only data (Varley
et al. 2017; Watkins-Valls et al. 2019; Lundell et al. 2019).
In this work, we only use a single depth image as input and
avoid RGB information due to two considerations. First, tex-
ture information could be less useful than local geometry in
the problem of grasping. Second, RGB images are arguably
harder to simulate with high fidelity than depth maps, and
using them increases the visual sim-to-real gap. The debate
on how best to bridge the domain gap between simulation
and the real world remains active, and there is no consensus
on which approach works best.

Attention mechanism This refers to a class of neural net-
work techniques that aims to determine which regions of an
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input image are essential to the task at hand. By applying
convolutional or recurrent layers to the input, these tech-
niques generate a saliency map. This map has a per-pixel
score proportional to the importance of each location in the
image. While previous works have applied this mechanism
to saliency prediction (Pan et al. 2016) and image classifica-
tion (Mnih et al. 2014), we use attention to improve grasping
in cluttered scenes. A previous work (Wang et al. 2018) used
the attention mechanism to determine a cropping window for
an input image that maximally preserves image content and
aesthetic value. We apply this idea to predict which region of
a cluttered scene to zoom-in on towards achieving improved
robotic grasping success. We set up this attention-zooming
mechanism in a fully reinforcement-learned manner. Similar
to our work, Gualtieri and Platt (2018) used the idea of visual
attention in generating 6-DOF grasp poses for parallel-jaw
grippers. In contrast, GenerAL is not limited to parallel-jaw
grippers and can work with hands with a different number
of fingers. Besides, our attention mechanism is designed to
handle scenes with dense clutter.

2.4 Multi-fingered grasping

Multi-fingered grasping, commonly known as dexterous
grasping in the literature, has been tackled using classi-
cal grasping methods (Berenson and Srinivasa 2008). These
methods use knowledge of the object geometry and contact
force analysis to generate finger placement locations in a
way that encloses the target object and is robust to distur-
bances, i.e., the object stays in hand under environmental
perturbations (Okamura et al. 2000). Some of these meth-
ods sequentially solve for each finger location where the
placement of a new finger depends on the placement of the
previously placed ones (Hang et al. 2014). On the other hand,
some methods reduce the dimensionality of the finger joints
into a smaller set of grasp primitives to perform the grasp
search and optimization in a smaller subspace (Saut et al.
2007; Ciocarlie et al. 2007; Berenson and Srinivasa 2008;
Ciocarlie and Allen 2009).

On the other hand, deep learning for dexterous grasping
is an open area of research. Varley et al. (2015) developed a
supervised learningmethod that proposes heatmaps for finger
placement locations in pixel space, which guide a subsequent
grasp planning stage. It is, therefore, a hybrid based method.
More recently, Schmidt et al. (2018) proposed a fully learned
approach that predicts a 6D grasp pose from a depth image.
This method uses supervised learning and requires a training
dataset of good grasps. In contrast, GenerAL takes an RL
approach that learns to grasp more successfully via trial and
error and does not require any grasp datasets.

In summary, our method takes in a depth image and uses a
policy gradient method to predict full 6-DOF grasp pose and
all finger joint angles. Tobin et al. (2018) presented an auto-

regressive approach that can be extended to learn a full-DOF
grasp pose. However, they only show top-down grasp results
for parallel-jawhands.Another closely relatedwork (Viereck
et al. 2017) based on simulated depth images proposed a
supervised learning method that predicts grasps based on
an input depth image obtained from a hand-mounted cam-
era. Their method greedily moves the gripper towards the
predicted grasp pose while capturing new depth images con-
tinuously.

In contrast to their method, GenerAL does not require
moving the robot arm to take a closer shot (depth image)
of the scene. Instead, GenerAL captures the depth image
only once and uses a learned attention mechanism to shift
focus and zoom into the image to a level that will maximize
grasp success. Also, while Viereck et al. (2017) produces
top-down grasps for parallel-jaw grippers, our method is not
constrained in this manner. To the best of our knowledge,
GenerAL is the first high-DOF grasping framework for 6-
DOF grasp pose and all finger joint angles that demonstrated
to successfully generalize across hands with various degrees
of freedom, clutter scenes, and novel objects.

3 Formulation of high-DOF grasping

3.1 RL and POMDP formulation

In our formulation of high-DOF grasping, a grasping robotic
agent interacts with a clutter environment to maximize the
expected reward (Sutton and Barto 1998). The environ-
ment is a Partially Observable Markov Decision Process
(POMDP), since the agent cannot observe (1) RGB infor-
mation or (2) the complete 3D geometry of any object or
the entire scene. To foster good generalization and transfer
of our framework, we model this environment as an MDP
defined by 〈S,A, ρ0,R, T , γ 〉with an observation space S,
an action space A, an initial state distribution ρ0 ∈ Π(S),
a reward function R : S × A → R, a dynamics model
T : S × A → Π(S), a discount factor γ ∈ [0, 1), and
an infinite horizon. Π(·) defines a probability distribution
over a set. The agent acts according to stationary stochas-
tic policies π : S → Π(A), which specify action choice
probabilities for each observation. Each policy π has a cor-
responding Qπ : S × A → R function that defines the
expected discounted cumulative reward for taking action a
from observation s and following the policyπ from that point
onward.

3.2 Formulation of end-effector pose

A grasping robot, parallel-jaw or multi-fingered, generally
has an end-effector (EE) whose pose EEpose has a position
EEpos and orientation EEori:
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EEpos = {EEx ,EEy,EEz} ∈ R
3 (1)

EEori = {EEroll,EEpitch,EEyaw} ∈ R
3 (2)

EEpose = EEpos ∪ EEori ∈ R
6 (3)

Here, the end-effector orientation EEori is represented as
the rotational transform {EEroll, EEpitch, EEyaw} from the
unit-x vector [1, 0, 0]. Even though EEori can be defined
instead using the {x, y, z, w} quaternion, we find our cur-
rent formulation more convenient for readers to understand
our framework later on.

3.3 Formulation of robot DOFs

Our framework circumvents the high dynamics sim-to-real
gap of learning continuous motor control by first disentan-
gling the robot’s DOFs Ψrobot into two subsets of DOFs:
arm-DOFs Ψarm and finger-DOFs Ψfinger:

Ψrobot = Ψarm ∪ Ψfinger (4)

The framework then learns arm-DOFs Ψarm implicitly by
learning the end-effector pose EEpose and learns finger-DOFs
Ψfinger explicitly in its action space A.

The arm-DOFs Ψarm determine the position and orienta-
tion of the end-effector pose via forward kinematics hFK and
vice versa via inverse kinematics solver hIK:

hFK : {φ(ψ) | ψ ∈ Ψarm} → EEpose (5)

hIK : EEpose → {φ(ψ) | ψ ∈ Ψarm} (6)

where φ refers to the current joint angle of a certain degree
of freedom of the robot:

φ : Ψ → R (7)

The finger-DOFs Ψfinger decide how the fingers close and
have no control over the end-effector pose. Hereafter, we use
N to refer to the number of finger-DOFs the robot has:

N = |Ψfinger| (8)

Depending on the combination of arm and hand robots,
the appropriate classification can be subtle. For example, the
arm-DOFs of theUR5-Seed robot in Sect. 4.2 include not just
the six DOFs of the UR5 arm, but also the three wrist-related
DOFs from the Seed hand.

4 Hardware and simulation setup

To demonstrate our framework’s robustness across different
high-DOF robots, we experimented with two multi-fingered

robotic hands with different number of DOFs. They include
a BH-280 Barrett Hand mounted on a Staubli-TX60 Arm
(“Staubli–Barrett” hereafter) and an anthropomorphicRH8D
SeedHand1 mounted on aUR5Arm (“UR5-Seed” hereafter).
We use these two robots in both real-world and PyBullet
(Coumans and Bai 2016) simulation, as shown in Fig. 1. In
the real-world (Fig. 1b), a top-down Kinect Depth Camera
is mounted statically on top of the grasping scene. Below
we formally disentangle each robotic hand’s DOFs, while
Appendix A.1 elaborates on the mechanical structures of the
BH-280 Barrett hand and the anthropomorphic RH8D Seed
hand.

4.1 Staubli–Barrett

The Staubli–Barrett (SB) robot has four finger-DOFs and six
arm-DOFs:

Ψ SB
arm = {Staubli-joint-1, . . . ,Staubli-joint-6}

Ψ SB
finger = {lateral-spread,finger-1, . . . ,finger-3}

NSB = |Ψ SB
finger| = 4

4.2 UR5-Seed

The UR5-Seed (US) robot has five finger-DOFs and nine
arm-DOFs:

ΨUS
arm = {UR5-joint-1, . . . ,UR5-joint-6,

wrist-rotation,wrist-flexion,wrist-adduction}
ΨUS
finger = {thumb-adduction, thumb-flexion,

index-flexion, middle-flexion, ring-flexion}
NUS = |ΨUS

finger| = 5

5 The Generative Attention Learning
framework for high-DOF grasping

Our framework models the task of high-DOF grasping as an
infinite-horizon MDP. During each episode, the robot makes
a single grasp attempt on the scene. During each timestep t of
the episode, the robot either (1) zooms into a local region of
the scene via a reinforcement-learned attention mechanism
or (2) terminates the episode and generates a grasp based on
the current zoom level.

To begin, during the first timestep t = 1, a single depth
image of the grasping scene is first captured by a depth cam-
era and resized to 224 × 224: sdeptht ∈ R

224×224. This depth

1 For structural details of the RH8D Seed hand, kindly see http://www.
seedrobotics.com/rh8d-dexterous-hand.html.
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image, alongwith a scalar ratio indicating the current image’s
zoom level sscalet ∈ R, serves as the robot’s observation:

st = {sdeptht , sscalet } ∈ R
224×224+1 ∈ S. The scalar ratio sscalet

gives the robot an ability to gauge the actual size of the objects
during zooming or grasping and is initially 1 since no zoom-
ing was previously performed. Next, both the depth image
and the current zoom level are fed into a four-branch CNN
f , which has a shared encoder-decoder backbone gbackbone
and four branches {bposition, battention, brpy, bfingers}:

f x (st ) = bx (gbackbone(s
depth
t ), sscalet ),

∀x ∈ {position, attention, rpy,fingers} (9)

This four-branch CNN outputs a total of (6 + N ) two-
dimensional maps, which encode (6 + N ) independent
probability distributions from which each component of the
action at is sampled:

at = {apositiont , azoomt , ascalet , arollt , apitcht , ayawt }
∪ {aψ

t | ψ ∈ Ψfinger}
where f position(st ) → apositiont ,

f attention(st ) → {azoomt , ascalet },
f rpy(st ) → {arollt , apitcht , ayawt },

and f fingers(st ) → {aψ
t | ψ ∈ Ψfinger}

(10)

Given this action at , the robot either zooms into a local
region of the depth map (blue bounding box in Fig. 3)
or directly performs a fully-defined grasp. The “attention”
actions {azoomt , ascalet } allow the robot to pay attention to a
local region of the scene to make better grasps. Therefore,
we term this local region the robot’s “region of attention”.
Among the (6 + N ) action scalars:

1. apositiont represents the robot’s end-effector positionEEpos

during grasping and the center location of the robot’s
region of attention during zooming;

2. azoomt and ascalet represent the zoom vs. grasp decision
flag and the scale of the zooming respectively;

3. arollt , apitcht and ayawt represent the roll, pitch, yaw of the
end-effector EEori respectively during grasping;

4. {aψ
t | ψ ∈ Ψfinger} represents each of the finger-DOFs in

Ψfinger for the high-DOF hand prior to finger-closing.

Below we discuss each of them in detail.

5.1 The positionmap

The Position Map f position encodes the robot’s end-effector
position EEpos during grasping and the center location of the

robot’s region of attention (red dot in Fig. 3) during zooming.
Instead of encoding this position in Cartesian coordinates
{x, y, z}, which will result in a very large and continuous
action space to learn from, we observe that effective grasp
positions can be associated with a point in the scene’s point
cloud, which is a discrete and smaller action space. There-
fore, we encode this position using a single-channel 2D map
of logits for a spatial-softmax distribution (Levine et al.
2016): f position : S → R

224×224, fromwhich a pixel location
apositiont can be sampled:

apositiont ∼ π(· | st )
= spatial-softmax(logits = f position(st ))

∈ [1, 224 × 224]
(11)

Here, GenerAL used the standard spatial-softmax opera-
tionwith the default temperature scaling of 1.While different
temperature scaling could have made the learned distribution
more or less extreme, the default scaling of 1 worked well
empirically, and the model was able to learn the right scale
for the logits.

Given this pixel location apositiont :

1. if the robot decides to zoom, a bounding box centered
around apositiont with a scale determined by ascalet is
cropped from the original depth map and resized back
to 224 × 224. The resulting image becomes sdeptht+1 : the
input depth map for the next timestep t + 1;

2. if the robot decides to grasp, apositiont represents a unique
point in the point cloud; the depth value at this pixel loca-
tionapositiont is converted to an {x, y, z}Cartesian location
that the end-effector will be located before closing its fin-
gers and trying to grasp.

Because this pixel location enables the robot to zoom into
the robot’s region of attention and place the end-effector on
a local point, we term this pixel location apositiont the robot’s
“point of attention”. Whether the robot decides to zoom in
or grasp depends on the output of the Attention Maps, which
we discuss in the next section.

5.2 The attentionmaps

The AttentionMaps f attention make two decisions. First, they
decide whether the robot should (1) zoom further into the
depth map or (2) stop zooming further and start grasping.
Second, they determine the level of zooming the robot should
perform to acquire a better grasp down the road if the first
decision is to zoom rather than grasp. These two decisions
are important for grasping in dense clutter because while
zooming into a cluttered scene can enable the robot to pay
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Fig. 3 Generative Attention Learning of multi-fingered grasping archi-
tecture. The 224 × 224 input depth map of a grasping scene sdeptht is
accepted as input (top left) into a feature-pyramid four-branch CNN
that outputs (6 + N ) activation maps. The “P” blocks indicate feature
pyramid blocks, giving scale invariance capability to the CNN. The “C”
blocks indicate how GenerAL introduces the current zoom level sscalet
into each branch. All convolutional layers have ReLU activations and
strides of 1 unless otherwise specified. For example, “9×9 conv, s = 2,
32” refers to 9×9 kernel, stride of 2, 32 channels and ReLU activation.
The number of deconvolutional layers ranges from 1 to 5 to upsample
various intermediate feature maps back to 224 × 224. Each red-black
map proposes pixel-wise grasp configurations and their probabilities.

An action encoding the end-effector position, orientation, and all finger-
DOFs is sampled from these maps, as well as a learned binary flag to
decide whether to zoom further into the depth map at a certain scale or
stop zooming and start grasping. If the decision is to zoom, the original
depth map is cropped (blue bounding box on “Original Depth” image)
according to the sampled action, resized and fed back into the CNN
for the next timestep t + 1, forming “attention”. As the episode termi-
nates, the robot acquires a binary success reward from the environment,
and the policy gradient gets back-propagated into the entire network.
As mentioned previously, N refers to the number of finger-DOFs the
robotic hand has. For the Staubli–Barrett, N = 4. For the UR5-Seed,
N = 5

attention to a less visually-cluttered environment, too much
zooming can cause the robot to lose sight of nearby objects.

Moreover, these two decisions should be different for dif-
ferent points of attention apositiont . For example, if the current
point of attention corresponds to a 3D point located on top
of an object, then grasping could be a better decision than
zooming.On the contrary, if the current point of attention cor-

responds to a 3D point located on the table where the objects
reside, then zooming could be a better decision than grasp-
ing. Similar reasoning applies to the zoom level. Therefore,
instead of encoding these two decisions as two one-size-fits-
all scalars, we use a two-channelmapwhere each pixel on the
map represents how much the robot intends to zoom versus
grasp and the zoom scale for every possible point of attention:
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f attention : S → R
224×224×2. The first value on each pixel

is the p parameter for a Bernoulli distribution, and the robot
makes the zoom versus grasp decision azoomt by sampling a
binary digit from this distribution:

azoomt ∼ π(· | st , apositiont )

= Bern(sigmoid( f attention(st )(apositiont ,1)
))

∈ {0, 1}
(12)

Ifazoomt = 1, the robot zooms further into thedepthmap. If
azoomt = 0, the robot stops zooming andmakes the grasp. The
second value on each pixel represents the sigmoid-activated
mean of a Gaussian distribution from which the robot sam-
ples the zoom scale ascalet . This zoom scale is a scalar that
represents the height and width of the desired region of atten-
tion as a fraction of the current image size (224×224), while
the height to width aspect ratio remains the same:

ascalet ∼ π(· | st , apositiont )

= N (sigmoid( f attention(st )(apositiont ,2)
), σscale)

(13)

5.3 The RPY (Roll-Pitch-Yaw) orientationmaps

TheRPYOrientationMaps ( f rpy) determine the end-effector
orientation EEori of a grasp by specifying the roll, pitch, and
yaw rotations from the unit-x vector [1, 0, 0], as elaborated
previously. Similar to the case of the Attention Maps, the
RPY values ought to be different for different points of atten-
tion apositiont . For example, if the current point of attention
corresponds to a 3D point located on top of an object, then
a good set of RPY values should correspond to a near-top-
down grasp. On the contrary, if the current point of attention
corresponds to a 3D point located on the front of the object,
then a good set of RPY values should correspond to a more
forward-facing grasp. Therefore, GenerAL does not repre-
sent the three RPY values using three one-size-fits-all scalars
{α, β, γ } across all possible points of attention. Instead, Gen-
erAL uses a three-channel map where each pixel on the map
determines the three RPY values for every possible point of
attention: f rpy : S → R

224×224×3.
To determine each of the three RPY components rpyi ∈

{roll, pitch, yaw} for each apositiont , the robot samples from a
Gaussian distribution,whosemeanμrpyi is determined by the

per-channel value of the pixel at the corresponding apositiont
andwhose standard deviationσrpyi is determined by a learned

scalar parameter across all possible apositiont :

a
rpyi
t ∼ π(· | st , apositiont )

= N (μrpyi , σrpyi ) × π

= N (activationi( f
rpy(st )(apositiont ,i)

), σrpyi ) × π

(14)

Here, modeling orientation using Gaussian distribution is
a natural approach. Using an orientation-specific distribution
such as Bingham distribution can also work for GenerAL.

For each rpyi orientation component {roll (γ ), pitch (β),
yaw (α)}, the activation functions “activationi” are tanh, sig-
moid, and tanh respectively. This configuration results in an
effective range of [−π, π ], [0, π ], and [−π, π ]. Mathemat-
ically, the resulting orientation transformed from the unit-x
vector [1, 0, 0] using {α, β, γ } has a unit directional vector
p of:

p = [cosα cosβ, sin α cosβ,− sin α] (15)

Note that the pitch angle range is [0, π ] as opposed to [−π, π ]
because only pitch values within [0, π ] produce meaningful
grasps with the end-effector facing downwards as opposed
to upwards, i.e. the z component in Eq. 15 will be negative,
but not necessarily 90o top-down.

5.4 The finger joint maps

The N finger joint maps f fingers determine the pre-grasp fin-
ger joint angles of the hand before closing all fingers. Each of
the N maps represents the joint angle for each of the finger-
DOFs Ψfinger of the hand: f fingers : S → R

224×224×N . Note
that this formulation applies to robots with arbitrary DOFs.

To propose angle for each of the finger-DOFs:

ψ ∈ Ψfinger (16)

given apositiont , each joint angle aψ
t is sampled from a Gaus-

sian distribution and then scaled by the scaling factor scaleψ .
The mean of this Gaussian distribution μψ is determined by
the sigmoid-activated value at pixel location aposition of the
corresponding finger joint map and the standard deviation
σψ is a learned scalar parameter across all possible aposition:

aψ
t ∼ π(· | st , apositiont )

= scaleψ × N (μψ, σψ)

= scaleψ × N
(
sigmoid

(
f fingers(st )(apositiont ,i)

)
, σψ

)

(17)

For the Barrett hand used, the scaleψ isπ/2 for the lateral-
spread joint and 0.61 for each of the other three finger-DOFs.
This configuration gives an effective range of [0, π/2] for
the lateral-spread and [0, 0.61] for the three finger-joints. We
restrict the finger-1, 2, and 3 joint ranges to be a quarter of the
maximum range [0, 2.44] because outside of this range, the
hand is nearly closed. We restrict the lateral-spread to [0, π

2 ]
because outside of this range, no meaningful grasps can be
generated (all fingers will be on the same side of the hand).
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For theSeedhand, the thumb-adduction joint has scaleψ of
π/2, while all other four finger-DOFs have scaleψ of 0.37,
which is a quarter of the joint angle maximum of 1.48 for
reasons similar to the Barrett hand.

5.5 Soft proximal policy optimization

GenerALoptimizes its generative network using a policy gra-
dient formulation. Under this formulation, GenerAL trains
throughmodel-free deep RL, whichmeans it does not explic-
itly model the environment dynamics. Indeed, discriminative
RL such as deep Q-learning can require less training effort.
The necessity of modeling the grasping problem as a gen-
erative model is to avoid generating potentially suboptimal
actions. Concretely, even though discriminative models in
deep RL can accurately evaluate the expected cumulative
reward of an arbitrary state-action pair, it typically uses the
Cross-Entropy Method (CEM) to come up with an action.
This action is not necessarily globally optimal when the
action space is continuous.

Let θ be the parameter weights of the entire network f
and πθ be the RL policy the robot is trying to learn: πθ :
S → Π(A). The robot’s goal is to maximize the cumulative
discounted sum of rewards:

maximize
θ

Eπθ

[∑
t

γ t−1rt

]
(18)

The reward during the final timestep tfinal is a binary indicator
of whether the robot successfully picked any object up:

rtfinal = 1{pick-up is successful} (19)

To begin, we follow the standard policy optimization
objective:

maximize
θ

L = Eπθ [πθ(at | st )Qπθ (st , at )] (20)

Next, we opted out baseline subtraction for variance
reduction since it empirically does not improve performance
significantly.

Finally, we substitute the action probability πθ (at | st )
with the Clipped Surrogate Objective (Schulman et al. 2017)
and apply a soft advantage target to balance between explo-
ration and exploitation (Haarnoja et al. 2018):

maximize
θ

LPG = Eρ0,πθ [min(λt (θ),

clip(λt (θ), 1 − ε, 1 + ε))(Qt − α logπθ(at | st ))]
(21)

where

λt (θ) = πθ(at | st )
πθold (at | st ) (22)

Table 1 Hyperparameters: soft proximal policy optimization

Hyperparameter Value

Base learning rate 1 × 10−4

Number of epoches per batch 10

Number of actors 14

Batch size 500

Minibatch size 96

Discount rate (γ ) 0.99

GAE parameter (λ) (Staubli–Barrett) 0.95

GAE parameter (λ) (UR5-Seed) 0

PPO clipping coefficient (ε) 0.2

Value function coefficient (c1) 0

Gradient clipping 20

Temperature parameter (α) (Staubli–Barrett) 0

Temperature parameter (α) (UR5-Seed) 5 × 10−4

Optimizer Adam

During zooming, no grasp is generated and at is defined only
by {apositiont , azoomt , ascalet }. During grasping, at is defined by
every component except ascalet . Therefore:

logπθ (at | st )
= logπθ(a

position
t | st ) + logπθ(a

zoom
t | st , apositiont )

+ azoomt × logπθ (a
scale
t | st , apositiont )

+ (1 − azoomt ) ×
∑
ψ∈Ψ

logπθ (a
ψ
t | st , apositiont )

(23)

where Ψ = {roll, pitch, yaw} ∪ Ψfinger.
Table 1 details Soft PPO hyperparameters. Here, a Gener-

alized Advantage Estimation (GAE) (Schulman et al. 2015)
parameter of 0 indicates that GenerAL computes strictly
Monte-Carlo returns, whose advantage estimates will have
lower bias and higher variance. Conversely, a GAE parame-
ter close to 1 will have advantage estimates with higher bias
and lower variance. Since our reward structure is simply a
one-hot grasp success scalar indicator, the variance of the
policy gradients is manageable even without a high GAE
parameter. Having a GAE parameter of 0 for the UR5-Seed
demonstrates this. In GenerAL, both GAE hyperparameters
of 0 and 0.95 are good parameters for both robots.

5.6 The CNN architecture

Shown in Fig. 3, the CNN architecture draws inspiration
from Feature Pyramid Networks (Lin et al. 2016). During
an episode, the input depth map is being “zoomed-in” every
timestep until the very last. Therefore, theCNNneeds to have
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strong scale invariance (i.e., robustness against change in the
scale of the scene objects), hence the feature pyramid blocks
in the network.

5.7 Learning standard deviation network
parameters

Both the RPY values and the pre-grasp finger joint angles are
sampled from independent Gaussian distributions, each of
which contains standard deviation parameters: {σroll, σpitch,
σyaw}∪ {σψ | ψ ∈ Ψfinger}. Concretely, these σ ’s are learned
through standard gradient back-propagation along with all
parameters in the rest of the neural network. The gradient is
created by the reward signal, which is a one-hot grasp success
indicator.

A single σ scalar parameter is created and learned
for each Gaussian-sampled scalar in the action space:
{arollt , apitcht , ayawt }∪{aψ

t | ψ ∈ Ψfinger}. As a result, there are
(3+ N ) number of σ ’s to learn in the entire network, where
N is the number of finger-DOFs the robot has. These σ val-
ues have the practical effect of allowing the robot to sample
different action components with a different standard devi-
ation. For example, since apitcht determines how top-down
the grasp will be and it is an essential action component, the
robot might restrict σpitch to be relatively small, so that the

pitch value apitcht does not fluctuate toomuch. In other words,
each σ value is not a function of the point of attention. To
extend each σ value to be point-of-attention-dependent, one
can learn a 2D map of σ values for each action component.
In this case, there will be a total of [224× 224× (3+ N )] σ

values to learn in the entire network. This extension can have
both the benefit of greater network capacity and the caveat
of more network parameters to learn.

5.8 Robot-specific grasping

Different robotic hands have different control mechanisms
for grasping. Belowwe elaborate on the robot-specific imple-
mentation details for how we close fingers to form a grasp.

5.8.1 Staubli–Barrett

The BH-280 Barrett hand can perform both position and
velocity control for all its fingers. During grasping as
well as lifting, we use velocity control for all fingers at
0.2 rad per second, which allows the fingers to keep exert-
ing force onto the object after contact.

5.8.2 UR5-Seed

The RH8D Seed hand can only perform position control on
its joints. Furthermore, the hand frequently raises overload-

ing and overheating errors when the finger motors attempt to
keep closing onto the object after contact. Forming a stable
grasp requires the fingers to continue applying force on the
object even after contact. As a result, we developed Algo-
rithm 1, which allows fingers to keep closing post-contact
via position control while also occasionally pulling back to
avoid overloading and overheating errors.

Algorithm 1 Error-free grasping via seed hand
1: Ψ ← {thumb-flexion, index-flexion, middle-flexion,

ring-flexion}
2: for finger-DOF ψ ∈ Ψ do
3: Initialize joint angle maxima βmaxψ ← 2π
4: Initialize previous joint angle βoldψ ← 0
5: end for
6: for target joint angle βtarget = 0, 0.25π, . . . , 2π do
7: for finger-DOF ψ ∈ Ψ do
8: Read current joint angle βψ from motor
9: if 0 < βψ − βoldψ < 0.2 and βmaxψ > βψ then
10: The finger was blocked by objects
11: βmaxψ ← βψ − 0.15
12: else
13: βmaxψ ← βψ + 0.5
14: end if
15: βoldψ ← βψ

16: Move finger joint ψ to min[βtarget, βmaxψ ] rad
17: end for
18: end for

In summary, the full Generative Attention Learning for
High-DOF Grasping procedure is outlined in Algorithm 2.

5.8.3 Frame of reference of the end-effector

In Algorithm 2, the parent frame of each robotic hand is the
robot arm’s world frame, whose origin locates at the base of
the robot arm. GenerAL generates a grasp position that is
independent of the frame of reference since the 3D position
of a point in the point cloud can be in an arbitrary parent
frame.

5.9 Rationale

5.9.1 Reinforcement learning versus supervised learning

Reinforcement learning (RL) methods often learn tasks with
a relatively large number of sequential actions, while the
task of grasping under the GenerAL framework has a fewer
number of sequential actions. The primary consideration for
using RL as opposed to supervised learning to train GenerAL
is that RL does not require a good dataset of grasp action
examples that contain an intelligent combination of zooming
and grasping. Indeed, if collecting a large dataset of grasp
action examples in simulation can be done at low costs of
time and labor, supervised learning will also be an option.
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Algorithm 2 Generative attention learning of high-DOF
grasping
1: Initialize zoom to True
2: Initialize θ to trained model
3: δ ← 4cm for Staubli–Barrett; δ ← 3cm for UR5-Seed
4: sdepth, sscale ← single depth map, 1
5: while zoom do
6: Sample action a given sdepth, sscale

7: zoom ← azoom

8: if zoom then
9: Crop original depth image aroundaposition and at scale (ascale×

sscale) to acquire new sdepth

10: New sscale ← sscale × ascale

11: end if
12: end while
13: for ψ ∈ Ψfinger do
14: Move finger-DOF ψ to angle aψ

15: end for
16: EEori ← {aroll, apitch, ayaw}
17: Transform aposition to Cartesian coordinates {x, y, z} using point

cloud inferred from depth map, and a δ offset along target end-
effector orientation EEori

18: EEpos ← {x, y, z}
19: EEpose ← EEpos ∪ EEori
20: Move end-effector to pose EEpose using the arm-DOFs Ψarm and

inverse kinematics solver hIK
21: Close robot fingers until maximum effort and lift hand according

to Sect. 5.8

Nevertheless, it is also less straightforward as to what the
optimal amount of zooming the grasp action examples in
the dataset should perform before proposing a grasp pose.
Through RL, GenerAL receives automatic supervision from
the simulation environment without the need to collect such a
dataset and learns an appropriate level of zooming that would
lead to the highest grasp success rate in relative terms.

5.9.2 Learning attention

The design of our framework enables the robot to focus on a
sub-region of the entire cluttered scene to grasp better locally,
or “attention”.Without attention, the robot observes toomuch
global visual information in the cluttered scene such that it
is difficult to grasp a local object well. With attention, the
robot can gradually zoom into the scene and focus on fewer
and fewer objects as the episode continues. Since the task of
generating proper attention thatwill lead to good grasps in the
future and the task of producing a good grasp now require
similar reasoning around the objects’ local geometry, one
single CNN branch f position can learn to perform both tasks.

During training, the CNN receives upstream gradient sig-
nals encoding how successful the grasp was. Therefore, the
CNN learns to update its weights such that:

1. It outputs a PositionMap encoding a good grasp position
if the episode terminates at the current timestep;

2. It outputs the Attention Maps that zoom appropriately
into the depth image to yield a good grasp when the
episode ends later.

The attention mechanism can gradually learn to focus
on less cluttered environments by just randomly generating
actions from the initial policy. This is because concentrating
on more cluttered environments would likely lead to pick-up
failure while focusing on less cluttered environments would
likely lead to pick-up success. Since the reward structure
is simply a one-hot indicator of grasp success, the atten-
tion mechanism receives unbiased, direct reward signals that
encourage focusing on less cluttered environments and dis-
courage focusing on more cluttered environments. Partly
because of this direct supervision, there is no specific require-
ment for the initialization of the parameters in the training
stage for it to successfully learn the attention mechanism,
although better initialization can lead to faster training in
simulation.

5.9.3 Solving the challenge of high real-world learning
sample complexity

While one can use our framework to learn to grasp directly
in real-world environments, this is inefficient without highly
parallelized robot farms due to:

1. The high sample complexity requirement of policy gra-
dient methods;

2. The slow execution of real robots;
3. The difficulty of generating near-i.i.d. cluttered grasping

environments in the physical world.

Instead, we opted to learn directly in simulation and trans-
fer to the real environment without additional learning. This
high sim-to-real fidelity originates from the observation that
the main visual sim-to-real gaps for vision-based learning
come from texture (RGB) information, rather than depth
information.

6 Experiments

6.1 Training

We train GenerAL entirely in simulation. During training,
a single seen object or a cluttered scene of multiple seen
objects is loaded with equal probability. We place one object
in a single-object scene and a randomnumber of objects from
2 to 30 for a simulated cluttered scene. The number of train-
ing grasp attempts required to reach convergence range from
5000 to 15,000, depending on the robot and the hyperpa-
rameters used. Here, the amount of training grasp attempts
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(a) Staubli-Barrett (b) UR5-Seed

Fig. 4 15 seen and 15 novel objects used in the a Staubli–Barrett and b UR5-Seed experiments. Left half of image: 15 seen objects. Right half of
image: 15 Novel objects

(a) Staubli-Barrett (b) UR5-Seed

Fig. 5 Results for a few cluttered scenes used for real-world exper-
iments for a Staubli–Barrett and b UR5-Seed. In each scene, there
are 10 objects randomly and densely placed on the table. Sometimes
objects in the scene overlap with each other, as shown in the two right-
most scenes in each row for each robot. We report # successful grasps/#

grasp attempts. For example, for the top right scene in “Staubli–Barrett”,
the robot cleared the scene—picking up all 10 overlapping objects with
a total of 11 trials. Top row: scenes with seen objects geometrically
similar to those used during training. Bottom row: scenes with novel
objects geometrically different from those in training

per scene is 1, and the number that ranges from 5000 to
15,000 is for all the scenes. In other words, 5000 to 15,000
random scenes are constructed to train in simulation. The
training time is roughly 24 h on a single GPU, 13-virtual
CPU machine.

One might expect GenerAL to require some smart neu-
ral network initialization to train such a high dimensional
grasping policy. In reality, we randomly initialized the neu-
ral network and trained the system from scratch. The key
reason why GenerAL’s neural network can learn from ran-
dom initialization is due to selecting the point cloud space
as the grasp position space, rather than the cartesian space
of the world as in Kalashnikov et al. (2018). Under Gen-
erAL’s design, the grasping configuration space becomes
much lower-dimensional than that of Kalashnikov et al.
(2018). It is, therefore, much easier for a random policy to
“get lucky” and select a point in the point cloud that leads to a
successful grasp. At random initialization (i.e., before train-
ing), the initial grasp success rate (i.e., reward) is typically
around1.5%,which is still sparse but learnable. Fromanother
viewpoint, GenerAL does not learn a policy to generate every
waypoint to the target graspable object as in Kalashnikov

et al. (2018). Instead, GenerAL used planning to create the
arm trajectory so that the neural network can focus on learn-
ing the best final grasp pose, which also leads to less sparse
rewards at the time of random initialization.

6.2 Testing

We test GenerAL in both simulation and real-world. Using
the ShapeNet Repository (Chang et al. 2015) in simulation,
we use 200+ seen objects from the YCB and KIT datasets
and 100+ novel objects from the BigBIRD dataset. We eval-
uate 500 grasp attempts per experiment in simulation. In
real-world grasping, we use 15YCB-like seen objects and 15
novel objects shown in Fig. 4.Note that the real-world objects
used in UR5-Seed experiments are, on average, lighter in
weight than those in Staubli–Barrett, due to the lower weight
load of the Seed hand. We evaluate real-world single-object
performance across ten trials per seen or novel object, and
real-world cluttered scene performance across 15 cluttered
scenes, each with ten cluttered or overlapping objects, as
shown in Fig. 5. Video and code of GenerAL can be found at
Online Resource 1 (original resolution) or Online Resource
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Table 2 Main experiments and ablation results (% grasp success ± SD)

Objects Single object Cluttered scene Single object Cluttered scene

Seen Novel Seen Novel Seen Novel Seen Novel

Robot Staubli–Barrett UR5-Seed

GenerAL (Sim) 93.8 ± 2.6 94.9 ± 1.4 92.5 ± 1.8 91.1 ± 3.7 94.8 ± 3.9 92.7 ± 2.8 92.5 ± 3.4 91.7 ± 3.0

GenerAL (Real) 96.7 ± 6.2 93.3 ± 8.1 92.9 ± 5.8 91.9 ± 6.7 96.0 ± 7.4 96.0 ± 7.4 94.2 ± 6.9 93.5 ± 6.0

Ablation (simulation)

No attention 86.9 ± 4.7 85.2 ± 2.7 70.9 ± 6.3 72.2 ± 3.6 83.7 ± 5.3 81.7 ± 6.0 72.7 ± 6.9 69.2 ± 7.0

Top-down 88.6 ± 2.1 87.0 ± 2.7 74.8 ± 2.9 70.8 ± 5.9 82.3 ± 3.5 82.3 ± 6.0 78.7 ± 2.4 77.1 ± 5.3

Low-DOF 50.4 ± 6.7 44.5 ± 5.4 49.0 ± 2.4 45.1 ± 4.4 71.0 ± 4.5 71.9 ± 7.8 66.7 ± 4.4 72.8 ± 6.9

60o Camera 92.3 ± 2.1 91.9 ± 3.4 91.8 ± 3.6 91.6 ± 2.5 94.6 ± 4.9 92.2 ± 3.4 90.8 ± 4.5 92.3 ± 3.6

2 (low resolution) and https://github.com/CRLab/GenerAL
respectively.

In the video, almost all the grasps seem to be top-down for
cluttered scenes. Indeed, top-downgrasps in clutter can better
avoid collisions between the end-effector and the objects,
and this is one of the reasons why side grasps appear less
frequently in cluttered scenes. However, the seemingly top-
down grasps are, in fact, most often tilted by a small degree,
a crucial orientation detail that has empirically led to higher
grasp success rates. There are two critical ingredients for
grasp success in clutter that are related to grasp orientations.
The robotic agent needs to generate a grasp orientation that
(1) avoids nearby objects and (2) is near-optimal for the target
object. Strictly 90% top-down grasps usually cannot satisfy
both criteria in cluttered scenes, while a slightly tilted grasp
(e.g., 85% or 80% downward) can generally complete both
tasks. Even though the cluttered scene grasps in the video
seem 90% top-down, they are almost always slightly tilted
to adapt to the locally cluttered environments effectively.

6.3 Results and discussion

Table 2 details the experimental results for both the Staubli–
Barrett and the UR5-Seed robots. Applying our framework
to these robots achieves over 90% grasp success rates consis-
tently across multiple dimensions: seen versus novel objects,
simulation versus real-world, single-object versus cluttered
scenes, and top-down versus non-top-down camera view.
Below we discuss each dimension in detail.

6.3.1 Preliminaries on statistical significance

In Table 2, we presented mean and standard deviation statis-
tics for each experiment, which enabled us to examine
whether the difference in performance between different
experiments is statistically significant or not.We consider the
performance difference statistically significant if the differ-
ence inmean performance of the two experiments is at least

one standard deviation away. For example, the success rates
between single-object simulation experiment (93.8± 2.6%)
and single-novel simulation experiment (94.9±1.4%) for the
Staubli–Barrett are statistically similar (as opposed to differ-
ent) because the difference in mean (1.1%) is smaller than
the standard deviation of either statistics (2.6% or 1.4%).

6.3.2 Generalization to novel objects

Shown in Table 2 Row “GenerAL (Sim)”, the test success
rates in simulation for seen versus novel objects are statisti-
cally similar for both single-object scenes (93.8 ± 2.6% vs.
94.9 ± 1.4% for Staubli–Barrett, 94.8 ± 3.9% vs. 92.7 ±
2.8% for UR5-Seed) and cluttered scenes (92.5 ± 1.8% vs.
91.1±3.7% for Staubli–Barrett, 92.5±3.4%vs. 91.7±3.0%
for UR5-Seed), exhibiting good transfer to novel objects. In
Row “GenerAL (Real)”, we notice similarly stable transfer
performance to novel objects for both robots in the realworld.

The learned generalization to novel objects benefited from
the partial observability ofGenerAL’sMDP formulation, dis-
couraging the network from overfitting to seen objects. Since
the depth map is the only input modality, visual features are
partially observable compared to that of complete 3D geom-
etry, making GenerAL select the safest grasp regardless of
what ground-truth geometry might lay underneath the point
cloud.

6.3.3 Generalization to real-world scenes

Comparing Row “GenerAL (Sim)” against Row “GenerAL
(Real)”, we observe high-fidelity real-world transfer given
that there was no real-world training. This transferability is
mainly due to using depth as the only input modality, which
has a smaller visual sim-to-real gap compared to RGB infor-
mation. We show the real-world performance of individual
cluttered scenes of seen and novel objects in Fig. 5. Note
that the cluttered scenes include severe overlap and occlu-
sion (two rightmost images of each row for each robot).
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6.3.4 Cluttered scene performance

Comparing Column “Single Object” to Column “Clut-
tered Scene”, we observe good cluttered scene performance
for both Staubli–Barrett and UR5-Seed. This performance
comes mainly from the framework’s attention mechanism
and domain randomization, i.e., the varying number of
objects randomlyplaced into the scene during training.Under
the attentionmechanism, the network learns to focus on fewer
and fewer objects as the episode continues. This focus elim-
inates perceptual distraction from objects in the rest of the
scene that are far away from the object of interest.

6.4 Ablation

6.4.1 Importance of attention mechanism to performance

We conducted experiments using a finite horizon of 1 instead
of an infinite horizon, effectively preventing the robot from
using attention to zoom into the scene. Comparing Row “No
Attention” to Row “GenerAL (Sim)”, we observe larger per-
formance degradation for cluttered scenes (21.6%and 18.9%
for seen and novel objects with Staubli–Barrett, and 19.8%
and 22.5% with UR5-Seed respectively) than for single-
object scenes (6.9% and 9.7% for seen and novel objects
with Staubli–Barrett, and 11.1% and 11.0% with UR5-Seed
respectively). Qualitatively, the lack of attention resulted in
no learning occasionally. We attribute these findings mainly
to the ablated network’s inability to pay attention to local
regions of the cluttered scenes during training.

6.4.2 Using top-down grasp only

By enforcing the value of apitcht to π
2 , we effectively

restrict the robot to top-down only grasps. Comparing Row
“Top-Down” against Row “GenerAL (Sim)” reveals larger
performance degradation on cluttered scenes (17.7% and
20.3% for seen and novel objects for Staubli–Barrett, and
13.8%and14.6%forUR5-Seed respectively) than for single-
object scenes (5.2% and 7.9% for seen and novel objects for
Staubli–Barrett, and 12.5% and 10.4% for UR5-Seed respec-
tively). This difference ismainly because, in dense clutter, the
robot needs non-top-down grasps to generate a better grasp
pose for the target object that also avoids nearby objects.

6.4.3 Using low-finger-DOF grasps only

To examine the performance contribution of using multi-
fingered as opposed to low-DOF hands, we enforce the
lateral-spread alateral_spreadt of the Barrett hand to 0, effec-
tively operating a two-fingered hand. Similarly, for the Seed
hand, we enforce the thumb-adduction joint athumb_adduction

t

to π/4 rad, at which point the thumb will close approxi-
mately in parallel to the other four fingers on the oppos-
ing side, effectively operating as a 4-finger-DOF (instead
of 5-finger-DOF) hand. Comparing Row “Low-DOF” to
Row “GenerAL (Sim)” reveals performance degradation of
43.4%, 50.4%, 43.5%, 46.0% on single-seen, single-novel,
cluttered-seen, cluttered-novel scenes for Staubli–Barrett,
and 23.8%, 20.8%, 25.8%, 18.9% for UR5-Seed respec-
tively, indicating a relatively significant contribution from
using high-DOF hands. Qualitatively, we observe frequent
failures of both hands to grasp cylindrical or spherical objects
in low-finger-DOF mode.

6.4.4 Generalization to non-top-down camera viewing
angle

We also trained our algorithm with a non-top-down camera
viewing angle (60o downward). The simulation results in
Row“60o Camera” are statistically similar toRow“GenerAL
(Sim)” (90o top-down camera view) for both Staubli–Barrett
and UR5-Seed, showing the framework’s robustness to non-
top-down camera view setup.

6.5 Generalization across different multi-fingered
robots

Comparing all Staubli–Barrett experiments with UR5-Seed
counterparts, we concluded three main findings.

First, themain, non-ablation results aremostly statistically
similar, with both robots achieving over 90% success rates
in both single-object and cluttered scenes, seen and novel
objects, as well as simulation and real-world.

Secondly, the “Low-DOF” ablation experiments dis-
playedmuchhigher performancedegradation for theStaubli–
Barrett (43.4%, 50.4%, 43.5%, 46.0% for single-seen,
single-novel, cluttered-seen, cluttered-novel respectively)
than for UR5-Seed (23.8%, 20.8%, 25.8%, 18.9% respec-
tively). Intuitively, for the three-fingered Staubli–Barrett,
“Low-DOF” means disabling the lateral-spread between
finger-1 and finger-2 and making the hand a two-fingered
gripper in essence. In contrast, disabling the UR5-Seed
thumb-adduction joint has a smaller negative effect because:

1. Four fingers are supporting the graspable object on the
opposite side of the thumb, covering a wide space such
that even if the thumb-adduction is fixed and suboptimal
in joint angle, the grasp can still be stable;

2. Setting the thumb-adduction to a constant value still
enables the robot to cover additional cartesian space for
touching the object. In the Staubli–Barrett case, no space
remains between the first two fingers, which increases
the robot’s likelihood of missing contact with the object.
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Lastly, the performance degradation of the Staubli–Barrett
robot in top-down only mode is better than the UR5-Seed
in single-object scenes (5.2% and 7.9% for single-seen
and single-novel with Staubli–Barrett vs. 12.5% and 10.4%
respectively with UR5-Seed) but worse in cluttered scenes
(17.7% and 20.3% for cluttered-seen and cluttered-novel
with Staubli–Barrett vs. 13.8% and 14.6% respectively with
UR5-Seed). We provide the following explanation for this
phenomenon:

1. TheSeed hand ismechanically smaller in reachable space
that can be covered by the fingers compared to the Barrett
hand, whichmeans suboptimality in the grasp orientation
has a larger effect on grasp quality for the UR5-Seed
(smaller reachable space requires the hand to be more
precise in position and orientation for a good grasp);

2. A smaller hand size has enabled to the Seed hand to avoid
nearby objects since a smaller hand collides with nearby
objects less often. Besides, a more interactive grasping
control in Algorithm 1 can, in practice, squeeze-away
nearby objects in the clutter that are colliding with the
hand. For the larger Barrett hand’s case, a suboptimal
grasp orientation empirically creates undesirable colli-
sions between the fingers and non-target objects nearby
in the clutter such that performance degrades more than
the UR5-Seed.

6.6 Zooming frequency

Qualitatively, we observed that for a well-trained policy, the
number of zooming actions per grasp attempt in cluttered
scenes can range from 0 to 6 or above and is, on average,
around 4. In comparison, the policy zooms around once or
twice on average for single-object scenes. This number will
depend on the size of the objects and the clutter level of the
grasping scene. The smaller the object appears in the depth
image or, the more cluttered the grasping scene, the more
often the policy zooms in to acquire a better understanding
of the local scene and object geometry.

6.7 Training progress

At random initialization of the policy, the reward is around
1.5%. The reward will quickly approach to mid-to-high 80%
success rates in the early stage of training. At the later stage
of training, the reward will slowly converge to over 90%
success rates shown in Table 2.

6.8 Comparison to planningmethods

Classical grasp planning approaches can indeed excel at
single-seen object scenes. However, they might not be robust
to cluttered scenes or novel objects (whose meshes are

unknown) due to a lack of generalizability. The performance
of planningmethods if the optimization over the closed grasp
metrics is usedwill be not bad for single-seen objects but will
be less robust than GenerAL for cluttered scenes or novel
objects. GenerAL does not need explicit models of individ-
ual objects but directly optimizes for high pick-up success
rate given a depth image of the scene.

6.9 Solution for framework limitations

6.9.1 Highly dense clutter

Most of the failure cases in clutter originate from objects
being tightly cluttered with no spacing for the robot to insert
its fingers. GenerAL ends up attempting to pick-up more
than one object, which results in the objects sliding out dur-
ing lift. Such cases are challenging to tackle unless the scene
is perturbed. Since GenerAL runs iteratively, the failure dur-
ing the attempted lift produces sufficient perturbation to the
scene such that GenerAL can generate a successful grasp
on the next try. Furthermore, our follow-on work (Wu et al.
2019b) (available on arXiv) can also overcome such chal-
lenges with the tactile-enabled BH-282 Barrett hand through
its reinforcement-learned incremental finger closing proce-
dure based on tactile sensory feedback.

6.9.2 Object-specific grasping

GenerAL learns grasp poses and pre-grasp finger joint angles
that maximize the likelihood of pick-up success. This objec-
tive means that GenerAL has its learned preferences for
which object it should grasp next in a cluttered scene.
Nevertheless, when performing object-specific grasping, in
which the next object to grasp is pre-determined (e.g., by
humans),GenerALcan be directly combinedwith instance or
semantic segmentation algorithms [such as Schnieders et al.
(2019)] to achieve object-specific grasping in the following
procedure:

1. A segmentation algorithm segments the cluttered scene
using RGB image, depth image, or both.

2. The next target object to grasp is determined via some
mechanism, such as by humans.

3. Instead of performing a global spatial-softmax sampling
on the entire depth image for apositiont , GenerAL performs
a local spatial-softmax sampling only from the pixels
that belong to the selected target object, according to the
segmentation map.

4. Standard GenerAL procedures then follow.
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6.9.3 Semantic grasping

Semantic grasping capability can be important in some
manipulation tasks. GenerAL focuses on maximizing grasp
success rate and therefore has its learned preferences for how
tograsp the target object.GenerALcanbe extended to seman-
tic grasping in several ways:

1. The grasp position and orientation can be directly
restricted to a certain range of values.

2. The learned distribution can be modified or masked out
to reflect grasp preferences.

3. An orientation penalty can be added during training to
discourage the policy from generating undesirable grasp-
ing orientations.

4. GenerAL can learn specific tasks like pick-and-place by
changing the reward specification in its formulation to
reflect the task.

5. GenerAL can grasp a specific part of an object similarly
as the object-specific grasping procedure in Sect. 6.9.2.
The primary difference is that in object-specific grasping,
GenerAL performs local spatial-softmax sampling on the
object-specific pixels, while in part-specific grasping, the
pixel is selected directly by humans.

7 Conclusion

This work presents a novel and general framework to learn
high-DOF grasping for hands with arbitrary degrees of free-
dom, without requiring any database of grasp examples. Our
framework uses a policy gradient formulation and a learned
attention mechanism to generate full 6-DOF grasp poses as
well as all finger joint angles to pick-up objects in dense
clutter given a single depth image. Entirely trained in simu-
lation, our framework achieves 96.7% (single-seen), 93.3%
(single-novel), 92.9% (cluttered-seen), 91.9% (cluttered-
novel) pick-up success rates on the physical Staubli–Barrett
robot and 96.0%, 96.0%, 94.2%, 93.5% respectively on the
UR5-Seed robot, as well as statistically similar performance
in simulation. These results, along with many ablation stud-
ies, exhibit the framework’s robustness across robots with
different degrees of freedom and good generalization to
real-world grasping, cluttered scenes, novel objects, and non-
top-down camera viewing angles.

Acknowledgements We are thankful to Wei Zhang and everyone at
Columbia University Robotics Lab for useful comments and sugges-
tions.

Compliance with ethical standards

Conflicts of interest Jacob Varley is a member of Robotics at Google.
Peter K. Allen has received a research grant from Google Inc.

A Appendix

A.1 Mechanical structure of robotics hands in
experiments

A.1.1 Staubli–Barrett

The finger joint angles of the Barrett Hand range from 0
(open) to 2.44 rad (close) for finger-1, finger-2 and finger-
3 and from 0 to π rad for the lateral-spread. We used the
original hand throughout all experiments.

A.1.2 UR5-Seed

For the anthropomorphic Seed hand, flexion joints curl the
fingers toward the palm of the hand between 0 (open) to
1.48 rad (close), while adduction joints spread the fingers
apart from 0 to π/2 rad. Therefore, only the thumb on the
Seed hand may spread. The wrist-rotation, wrist-flexion and
wrist-adduction DOFs, in addition to the finger flexion and
adduction DOFs, contribute to a total of 8 DOFs for the Seed
hand. However, these three wrist-DOFs belong to arm-DOFs
Ψarm because they do not actuate any fingers. Each robotic
finger consists of 3 joints, all of which are controlled by a
single dyneema tendon (i.e. a Kevlar fiber string). The ring
and pinky fingers are coupled such that a single actuator is
responsible for the flexion of both fingers, while all other
fingers are controlled by their own actuator, respectively.

A.2 Mechanical modification to the RH8D Seed hand

As shown in Fig. 6, fingers demonstrate under-actuated
behavior during control. As the actuator moves through its
full range of motion, the tendon pulls on the distal, interme-
diate, and proximal joints of a given finger in three stages:

1. Initially, the finger is fully open before closing (Fig. 6a).
As the finger starts to close, the distal joint rotates almost
completely before the intermediate joint even begins to
move.

2. The distal joint, reaching its maximum displacement,
ceases to rotate while the intermediate joint continues
to move (Fig. 6b).

3. The proximal joint reaches its limit right after the inter-
mediate joint stops moving (Fig. 6c).

While the fingers are anthropomorphic in design, human
fingers would move differently to grasp an object. In partic-
ular, the proximal joint of the human finger will traditionally
curl before any other joint at a greater rate than the distal
joint. Fingers of the human hand will also rarely ever settle
in a hook-like position as depicted in Fig. 6b—the fingers
must sweep through a greater volume in order to sufficiently
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Fig. 6 The finger-closing behavior of the Seed hand before a–c and
after d–f modification, using the index finger as an example

contact and grasp objects beyond thin cylindrical geometries.
With these observations in mind, tape is applied around the
distal joint (Fig. 1b) to inhibit it from rotating (Fig. 6d–f).
This configuration effectively reduces the number of under-
actuated joints on each finger by one. Figure 6f depicts the
resulting grasp form. Also, the fingers of the Seed hand are
composed of very low-friction thermoplastic material. To
increase friction on the fingers, we added small rubber caps
to the fingertips (Fig. 1b).

References

Akinola, I., Varley, J., Chen, B., &Allen, P. K. (2018).Workspace aware
online grasp planning. In 2018 IEEE/RSJ international conference
on intelligent robots and systems (IROS), IEEE (pp. 2917–2924).

Berenson, D., & Srinivasa, S. S. (2008). Grasp synthesis in cluttered
environments for dexterous hands. In 8th IEEE-RAS international
conference on humanoid robots, 2008, IEEE (pp. 189–196).

Berenson, D., Diankov, R., Nishiwaki, K., Kagami, S., & Kuffner, J.
(2007). Grasp planning in complex scenes. In 7th IEEE-RAS inter-
national conference on humanoid robots, 2007, IEEE (pp. 42–48).

Bohg, J., Morales, A., Asfour, T., & Kragic, D. (2014). Data-driven
grasp synthesis—a survey. IEEE Transactions on Robotics, 30(2),
289–309.

Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., Kalakr-
ishnan, M., Downs, L., Ibarz, J., Pastor, P., & Konolige, K.,
et al. (2018). Using simulation and domain adaptation to improve
efficiency of deep robotic grasping. In 2018 IEEE international
conference on robotics and automation (ICRA), IEEE (pp. 4243–
4250).

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang,
Q., Li, Z., Savarese, S., Savva, M., Song, S., & Su, H., et al.
(2015). Shapenet: An information-rich 3Dmodel repository. arXiv
preprint arXiv:1512.03012.

Chen, X., Chen, R., Sui, Z., Ye, Z., Liu, Y., Bahar, R., & Jenkins, O.
C. (2019). Grip: Generative robust inference and perception for

semantic robot manipulation in adversarial environments. arXiv
preprint arXiv:1903.08352.

Ciocarlie, M., Goldfeder, C., & Allen, P. (2007). Dexterous grasp-
ing via eigengrasps: A low-dimensional approach to a high-
complexity problem. In Robotics: Science and systems manipu-
lation workshop-sensing and adapting to the real world, Citeseer.

Ciocarlie, M. T., & Allen, P. K. (2009). Hand posture subspaces for
dexterous robotic grasping. The International Journal of Robotics
Research, 28(7), 851–867.

Coumans, E., & Bai, Y. (2016). Pybullet, a python module for physics
simulation for games, robotics and machine learning. San Fran-
cisco: GitHub.

Fischinger, D., Vincze, M., & Jiang, Y. (2013). Learning grasps for
unknown objects in cluttered scenes. In 2013 IEEE international
conference on robotics and automation, IEEE (pp. 609–616).

Gualtieri, M., & Platt, R. (2018). Learning 6-DOF grasping and pick-
place using attention focus. arXiv preprint arXiv:1806.06134.

Haarnoja, T., Zhou,A.,Abbeel, P.,&Levine, S. (2018). Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International conference on machine learning
(ICML).

Hang, K., Stork, J. A., &Kragic, D. (2014). Hierarchical fingertip space
for multi-fingered precision grasping. In: 2014 IEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS) (pp.
1641–1648).

Hsiao, K.,&Lozano-Perez, T. (2006). Imitation learning ofwhole-body
grasps. In: 2006 IEEE/RSJ international conference on intelligent
robots and systems, IEEE (pp. 5657–5662).

James, S., Wohlhart, P., Kalakrishnan, M., Kalashnikov, D., Irpan,
A., Ibarz, J., Levine, S., Hadsell, R., & Bousmalis, K. (2018).
Sim-to-real via sim-to-sim: Data-efficient robotic grasping via
randomized-to-canonical adaptation networks. arXiv preprint
arXiv:1812.07252.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E.,
Quillen, D., Holly, E., Kalakrishnan, M., & Vanhoucke, V., et al.
(2018). QT-Opt: Scalable deep reinforcement learning for vision-
based robotic manipulation. arXiv preprint arXiv:1806.10293.

Lenz, I., Lee, H., & Saxena, A. (2015). Deep learning for detecting
robotic grasps. The International Journal of Robotics Research,
34(4–5), 705–724.

Levine, S., Finn,C.,Darrell, T.,&Abbeel, P. (2016).End-to-end training
of deep visuomotor policies. The Journal of Machine Learning
Research, 17(1), 1334–1373.

Levine, S., Pastor, P., Krizhevsky, A., & Quillen, D. (2017). Learning
hand-eye coordination for robotic grasping with large-scale data
collection. In: International symposium on experimental robotics
(ISER).

Lin, T., Dollár, P., Girshick, R. B., He, K., Hariharan, B., & Belongie, S.
J. (2016). Feature pyramid networks for object detection. CoRR,.
arXiv:1612.03144.

Lu, Q., Chenna, K., Sundaralingam, B., &Hermans, T. (2017) Planning
multi-fingered grasps as probabilistic inference in a learned deep
network. In: International symposium on robotics research.

Lundell, J., Verdoja, F., & Kyrki, V. (2019). Robust grasp planning over
uncertain shape completions. arXiv preprint arXiv:1903.00645.

Mahler, J., Liang, J.,Niyaz, S., Laskey,M.,Doan,R., Liu,X.,Ojea, J.A.,
& Goldberg, K. (2017). Dex-Net 2.0: Deep learning to plan robust
graspswith synthetic point clouds and analytic graspmetrics. arXiv
preprint arXiv:1703.09312.

Miller, A. T., Knoop, S., Christensen, H. I., & Allen, P. K. (2003).
Automatic grasp planning using shape primitives. In: IEEE inter-
national conference on robotics and automation, 2003. Proceed-
ings. ICRA’03, IEEE (Vol. 2, pp. 1824–1829).

Mnih, V., Heess, N., & Graves, A., et al. (2014). Recurrent models
of visual attention. In Advances in neural information processing
systems (pp 2204–2212).

123

http://arxiv.org/abs/1512.03012
http://arxiv.org/abs/1903.08352
http://arxiv.org/abs/1806.06134
http://arxiv.org/abs/1812.07252
http://arxiv.org/abs/1806.10293
http://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1903.00645
http://arxiv.org/abs/1703.09312


Autonomous Robots

Morrison, D., Corke, P., & Leitner, J. (2018). Closing the loop for
robotic grasping:A real-time, generative grasp synthesis approach.
In Robotics: science and systems (RSS).

Okamura, A. M., Smaby, N., & Cutkosky, M. R. (2000). An overview
of dexterous manipulation. In IEEE international conference on
robotics and automation. Proceedings. ICRA (Vol. 1, pp. 255–
262).

Pan, J., Sayrol, E., Giro-i Nieto, X., McGuinness, K., & O’Connor, N.
E. (2016). Shallow and deep convolutional networks for saliency
prediction. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 598–606).

Quillen, D., Jang, E., Nachum, O., Finn, C., Ibarz, J., & Levine,
S. (2018). Deep reinforcement learning for vision-based robotic
grasping: A simulated comparative evaluation of off-policy meth-
ods. arXiv preprint arXiv:1802.10264.

Rosales, C., Porta, J. M., & Ros, L. (2011). Global optimization of
robotic grasps. In Proceedings of robotics: science and systems
VII.

Saut, J. P., Sahbani, A., El-Khoury, S., & Perdereau, V. (2007).
Dexterous manipulation planning using probabilistic roadmaps
in continuous grasp subspaces. In 2007 IEEE/RSJ international
conference on intelligent robots and systems (IROS), IEEE (pp.
2907–2912).

Schmidt, P., Vahrenkamp, N.,Wächter, M., &Asfour, T. (2018). Grasp-
ing of unknown objects using deep convolutional neural networks
based on depth images. In 2018 IEEE international conference on
robotics and automation (ICRA), IEEE (pp. 6831–6838).

Schnieders, B., Luo, S., Palmer, G., & Tuyls, K. (2019). Fully convo-
lutional one-shot object segmentation for industrial robotics. In
Proceedings of the 18th international conference on autonomous
agents and multiagent systems, international foundation for
autonomous agents and multiagent systems (pp. 1161–1169).

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015).
High-dimensional continuous control using generalized advantage
estimation. In International conference on learning representa-
tions.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O.
(2017). Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An intro-
duction. Cambridge: MIT Press.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel,
P. (2017). Domain randomization for transferring deep neural
networks from simulation to the real world. In 2017 IEEE/RSJ
international conference on intelligent robots and systems (IROS),
IEEE (pp. 23–30).

Tobin, J., Biewald, L., Duan, R., Andrychowicz, M., Handa, A., Kumar,
V., McGrew, B., Ray, A., Schneider, J., & Welinder, P., et al.
(2018). Domain randomization and generative models for robotic
grasping. In 2018 IEEE/RSJ international conference on intelli-
gent robots and systems (IROS), IEEE (pp. 3482–3489).

Varley, J., Weisz, J., Weiss, J., & Allen, P. (2015). Generating multi-
fingered robotic grasps via deep learning. In: 2015 IEEE/RSJ
international conference on intelligent robots and systems (IROS),
IEEE (pp. 4415–4420).

Varley, J., DeChant, C., Richardson, A., Ruales, J., & Allen, P. (2017).
Shape completion enabled robotic grasping. In: 2017 IEEE/RSJ
international conference on intelligent robots and systems (IROS),
IEEE (pp. 2442–2447).

Viereck, U., Pas, A., Saenko, K., & Platt, R. (2017). Learning a visuo-
motor controller for real world robotic grasping using simulated
depth images. In Conference on robot learning (CORL).

Wang, S., Jiang, X., Zhao, J., Wang, X., Zhou, W., & Liu, Y. (2019).
Efficient fully convolution neural network for generating pixel
wise robotic grasps with high resolution images. arXiv preprint
arXiv:1902.08950.

Wang, W., Shen, J., & Ling, H. (2018). A deep network solution for
attention and aesthetics aware photo cropping. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 41, 1531–1544.

Watkins-Valls, D., Varley, J., &Allen, P. (2019).Multi-modal geometric
learning for grasping and manipulation. In: 2019 International
conference on robotics and automation (ICRA), IEEE (pp. 7339–
7345).

Wu, B., Akinola, I., & Allen, P. K. (2019a). Pixel-attentive policy
gradient for multi-fingered grasping in cluttered scenes. In 2019
IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS).

Wu, B., Akinola, I., Varley, J., & Allen, P. K. (2019b). MAT: Multi-
fingered adaptive tactile grasping via deep reinforcement learning.
In Conference on robot learning (CORL).

Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A., & Funkhouser, T.
(2018a). Learning synergies between pushing and grasping with
self-supervised deep reinforcement learning. In 2018 IEEE/RSJ
international conference on intelligent robots and systems (IROS),
IEEE (pp. 4238–4245).

Zeng, Z., Zhou, Z., Sui, Z., & Jenkins, O. C. (2018b). Semantic robot
programming for goal-directed manipulation in cluttered scenes.
In 2018 IEEE international conference on robotics and automation
(ICRA), IEEE (pp. 7462–7469)

Zhao, J., Liang, J., & Kroemer, O. (2019). Towards precise robotic
grasping by probabilistic post-grasp displacement estimation.
Technical report, EasyChair.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Bohan Wu is an M.S. candidate
in Computer Science at Columbia
University. He received his Bach-
elor’s Degree in Computer Sci-
ence and Economics at Duke Uni-
versity, Durham, NC, USA. His
research interests center around
robotics and machine learning.

Iretiayo Akinola received a B.S.
degree in Electronic and Electri-
cal Engineering from Obafemi
Awolowo University, Ile-Ife,
Nigeria and an M.S. degree in
Electrical Engineering from Stan-
ford University, USA. He is cur-
rently pursuing a Ph.D. degree
with the Computer Science Depart-
ment, Columbia University, New
York, USA. His research inter-
ests include vision-based robotic
grasping and manipulation using
planning and learning methods.

123

http://arxiv.org/abs/1802.10264
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1902.08950


Autonomous Robots

Abhi Gupta is a B.Sc. candi-
date at Columbia University. He
is studying Computer Science and
Operations Research at the School
of Engineering and Applied Sci-
ences. He enjoys developing
electromyography-driven teleoper-
ation systems. His research inter-
ests include reinforcement learn-
ing and robotic grasping.

Feng Xu received the B.S. degree
in Vehicle Engineering from Jilin
University in China. He is cur-
rently pursuing M.S. degree in
Mechanical Engineering in
Columbia University, New York,
NY, USA. His research interests
include robotic learning and per-
ception.

Jacob Varley is a member of
Robotics at Google. Prior to
Google, Jake received his doc-
toral degree in Computer Science
from Columbia University, where
he was advised by Prof. Peter
Allen. His research focuses on
building robotic manipulation sys-
tems. He has a strong interest
in the interplay between robotics,
simulation, and machine learning.
While at Columbia, Jake interned
as a machine learning researcher
at Clarifai, and spent the summer
in the Hubo Lab at KAIST as an

NSF EAPSI Fellow. Prior to graduate school, Varley earned a Bache-
lors in Computer Science (6-3) from MIT.

David Watkins-Valls is a Ph.D.
Candidate in robotics at Columbia
University. He received a B.S.
degree in computer science from
Columbia University in 2016 and
an M.S. degree in computer sci-
ence from Columbia University in
2017. He is an ARL fellow work-
ing with Nicholas Waytowich as
part of navigation research. His
work has been shown in several
venues including ICRA and NEMS.

Peter K. Allen received the A.B.
degree in mathematics-economics
from Brown University, Providence,
RI, USA, the M.S. degree in com-
puter science from the University
of Oregon, Eugene, OR, USA,
and the Ph.D. degree in computer
science from the University of Penn-
sylvania, Philadelphia, PA, USA.
He is a Professor of Computer
Science at Columbia University,
New York, NY, USA, and the
Director of the Columbia Robotics
Lab. He is the recipient of the
CBS Foundation Fellowship, Army

Research Office Fellowship, and the Rubinoff Award for innovative
uses of computers from the University of Pennsylvania. His current
research interests include robotic grasping, 3-D vision and modeling,
and medical robotics.

123


	Generative Attention Learning: a ``GenerAL'' framework for high-performance multi-fingered grasping in clutter
	Abstract
	1 Introduction
	2 Related work
	2.1 Generalizable learning-based robotic grasping
	2.2 Learning grasping under sample complexity challenges
	2.3 Vision-based grasping
	2.4 Multi-fingered grasping

	3 Formulation of high-DOF grasping
	3.1 RL and POMDP formulation
	3.2 Formulation of end-effector pose
	3.3 Formulation of robot DOFs


	4 Hardware and simulation setup
	4.1 Staubli–Barrett
	4.2 UR5-Seed

	5 The Generative Attention Learning framework for high-DOF grasping
	5.1 The position map
	5.2 The attention maps
	5.3 The RPY (Roll-Pitch-Yaw) orientation maps
	5.4 The finger joint maps
	5.5 Soft proximal policy optimization
	5.6 The CNN architecture
	5.7 Learning standard deviation network parameters
	5.8 Robot-specific grasping
	5.8.1 Staubli–Barrett
	5.8.2 UR5-Seed
	5.8.3 Frame of reference of the end-effector

	5.9 Rationale
	5.9.1 Reinforcement learning versus supervised learning
	5.9.2 Learning attention
	5.9.3 Solving the challenge of high real-world learning sample complexity


	6 Experiments
	6.1 Training
	6.2 Testing
	6.3 Results and discussion
	6.3.1 Preliminaries on statistical significance
	6.3.2 Generalization to novel objects
	6.3.3 Generalization to real-world scenes
	6.3.4 Cluttered scene performance

	6.4 Ablation
	6.4.1 Importance of attention mechanism to performance
	6.4.2 Using top-down grasp only
	6.4.3 Using low-finger-DOF grasps only
	6.4.4 Generalization to non-top-down camera viewing angle

	6.5 Generalization across different multi-fingered robots
	6.6 Zooming frequency
	6.7 Training progress
	6.8 Comparison to planning methods
	6.9 Solution for framework limitations
	6.9.1 Highly dense clutter
	6.9.2 Object-specific grasping
	6.9.3 Semantic grasping


	7 Conclusion
	Acknowledgements
	A Appendix
	A.1 Mechanical structure of robotics hands in experiments
	A.1.1 Staubli–Barrett
	A.1.2 UR5-Seed

	A.2 Mechanical modification to the RH8D Seed hand

	References




