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Abstract
Purpose We propose a system capable of detecting articu-
lated surgical instruments without the use of assistive mark-
ers or manual initialization.
Methods The algorithm can provide 3D pose using a combi-
nation of online and offline learning techniques along with
prior geometric knowledge of the tool. It uses live kinematic
data from the robotic system to render nearby poses on-the-
fly as virtual images and creates gradient orientation tem-
plates for fast matching into the real image. Prior appear-
ance models of different material classes and projective in-
variance are used to reject false positives.
Results Results are verified using in-vivo data recorded from
the da Vinci R© robotic surgical system. The method detects
successfully at a high correctness rate and a pyramid search
method is proposed which reduces a brute-force method from
23 secs/frame down to 3 secs/frame.
Conclusion We have shown a top-down approach to detect
surgical tools within in-vivo video sequences and is capable
of determining the pose and articulation by learning on-the-
fly from virtual renderings driven by real kinematic data.
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1 INTRODUCTION

Despite the introduction of minimally-invasive techniques to
general surgery more than 20 years ago, many of the more
advanced surgical procedures are still too difficult to per-
form laparoscopically and require a steep learning curve.
Limited dexterity and reduced perception have limited sur-
geon’s abilities to achieve comparable results to open surgery.
The introduction of tele-operated master-slave robots such
as the da Vinci R© surgical system from Intuitive Surgical,
Inc. [1] has alleviated many of these issues by offering dex-
terous manipulation through more than 40 different types of
articulated tools, binocular vision, and a separated surgeon
console with good ergonomics.

Robotic technology can enhance the capabilities of a sur-
geon, for example, in the case of motion scaling which en-
ables more finer-scaled manipulations than may be possible
with the human hand, currently done by the da Vinci R©. As
the research community continues to develop intelligent al-
gorithms, more skills are put into the hands of the surgeon,
and better techniques get developed as a result which help
improve the outcome of surgeries worldwide.

Surgical tool tracking is one such example which pro-
vides enhanced situational awareness. Knowing the loca-
tions or the full poses of tools in the endoscopic video can
enable a wide spectrum of applications. Virtual measure-
ment capabilities can be built upon it which provides accu-
rate measurement of sizes of various anatomical structures.
Virtual overlays indicative of the status of the tool (e.g., the
firing status of an electro-cautery tool) can be placed on the
instrument shaft at the tip of the instrument which is close to
the surgeon’s visual center of attention, enhancing the safety
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Fig. 1 Our tool detection algorithm both automatically finds where in
the image the tool exists as well as the pose and articulation accord-
ing to the kinematic joint configuration. Virtual renderings which are
driven by kinematic data are constructed on-the-fly and used to find the
best matching joint configuration based on the observation from the
video frame. The green overlay shows the corrected kinematic config-
uration according to our matching methodology.

of using such tools. The knowledge of the tool locations is
also useful in managing the tools that are off the screen, in-
creasing patient’s safety, or can be used for visual servoing
to expand the effective visual field of view, in the case of
motorized camera systems.

The joints of a robotic surgical system are usually equipped
with sensors (e.g., encoders) for control. The pose of the end
effectors can be computed using forward kinematics. There-
fore, the poses of the tools in the camera frame are readily
available, in theory. The kinematics chain between the cam-
era and the tool tip involves 18 joints and more than 2 meters
in cumulative length, which is challenging to the accuracy
of absolute position sensing. However, a master-slave sys-
tem such as the da Vinci R© does not require high absolute
accuracy because surgeons are in the control loop. As a re-
sult, we have observed up to 1-inch of absolute error, which
is too large for most of the applications that are mentioned
above. Therefore, detecting and tracking the tools from im-
ages is a practical way to achieve the accuracy requirements
of the applications.

Surgical tool tracking can range from 2D patch tracking
(e.g., identifying and following a 2D bounding box around
the tool in a video sequence) [2] to 3D pose tracking (e.g.,
recovering the full 6-DOFs of rigid motion) [3] [4]. Tool
tracking approaches typically divide into two categories: us-
ing markers or fiducials to assist in localization [5] [6] [7],
and marker-less approaches which use natural information
[8] [9]. Often the task is to find the tool by its long, tubular
shaft [3], however in our experience many da Vinci R© sur-
geons prefer to work with the camera very zoomed-in so that
only a small part of the shaft is visible, discounting its value

in detection. Information may also be added to the scene
from an additional source [10] to determine the pose of the
instrument using prior knowledge of the source. Template
matching has also previously been applied to surgical tool
tracking [11] [12].

As tools become more dexterous and articulation is in-
cluded, pose tracking becomes more complicated. Although
there are typically kinematic models available to describe
this motion, they tend to be too inaccurate to perform precise
localization. The work in [13] is inspiring where articulated
3D models are matched to the mask from an image segmen-
tation procedure using a binary silhouette. Our work solves
a similar problem, but we make use of a different kinematic
template matching method which uses gradient information
to match to the finer texture and shape of the tool tip.

2 OVERVIEW

In this work, we strive to do away with using customized
markers to aid in tool tracking and we wish the method to
work robustly in real in-vivo environments. As such, we
make use only of the natural visual information which is
available on the tools and in the scene to determine a full
3D pose with articulation. We combine raw kinematic data
with both on-line and off-line learning techniques. We use
a virtual renderer driven by a kinematic model consistent
with a tool on the robot to render the tool according to raw
kinematic estimates. By perturbing the tool in a small range
of joint values around the kinematic estimate, we can re-
render the tool at each potential joint configuration and ex-
tract templates to match against the real video imagery. The
template which matches best to the image corresponds to the
corrected joint kinematics.

For purposes of this work there are 2 goals: (1) where
in the image is the tool? and (2) what is the pose (includ-
ing articulation) of the tool? In the computer vision commu-
nity, algorithms are typically either top-down or bottom-up.
A top-down approach to solving this problem would be to
match the entire object as a whole where all information is
used at once, although this tends to be quite computationally-
expensive with a potentially large search space (6-DOFs for
rigid motion and up to 3-DOFs or more for articulation).
On the other side is the bottom-up approach, which would
be more feature-based. Here, we would start from smaller
features and ”build-up” applying geometric constraints later
on in the algorithm [14]. Although appearance variation is
smaller at the feature level, and thus easier to model and
faster to compute, they tend to be less discriminative than an
entire pattern. In this work, we apply template matching as
a top-down approach to the pose estimation problem.

The basic idea to applying template matching to the pose
estimation problem is as follows:
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– Store templates corresponding to different poses
– Match all templates against the image and find the best

match location for each template in the image
– Sort the template responses and take that which responded

best to the image
– Recover the corresponding pose for that template

We construct the templates using a robot renderer which
uses graphical techniques to create virtual images of the tool
from a CAD model according to specific kinematic joint
configurations. This is desirable because collecting training
data becomes easier than if it had to come from video ground
truth and so we can collect more of it with less effort. The
advantages of this type of data generation has been shown
successfully in [15]. Typical template matching uses lumi-
nance images, however this is generally not photo-realistic
enough to match against real imagery [16][17]. Recent work
[18] (called LINE) has introduced a novel image represen-
tation which stores discretized gradient orientations at each
pixel as a compact bit-string. Each template then consists
of high-contrast spatially-located gradient responses which
represent a particular configuration of the object. A novel
similarity measure which is able to maximize the cosine of
a difference of gradient orientations in a small neighborhood
using a lookup-table optimized to standard memory caches
allows for real-time matching of many templates to a sin-
gle image. Then, the template matching amounts to compar-
ing gradient orientations at each pixel rather than luminance
values. In this way, we can create templates from virtual ren-
derings which contain information that can be successfully
matched into a real image of the same object. We refer the
interested reader to [18] for more details on the LINE algo-
rithm.

An advantage of using virtual renderings to create train-
ing data is that it is easily extensible to many different tool
types. Rather than requiring an arduously-manual procedure
for creating training data for a specific tool (off-line), train-
ing amounts to a CAD model and a renderer (on-line). The
major contribution of this work is demonstrating the ability
to successfully match virtual renderings robustly to real im-
agery, which in the past has only been done effectively with
depth imagery. In addition, by generating image templates
through a kinematic model, we are able to tie joint config-
urations to appearance changes and efficiently recover the
pose through a direct image match. We note that although
this method is presented for use on the da Vinci R© surgical
system, the approach is general to any robotic arm where
templates can be virtually-rendered by kinematic data and
matched into an image frame.

2.1 Virtual Renderings

We begin with the image frame from the endoscope of the
da Vinci R© robot. In this work, although stereo imagery is
available only one of the cameras is necessary as this is a
model-based approach. Each frame has synchronized kine-
matic data for all parts of the robot through an application
programming interface (API) [1]. Figure 2 shows a sample
video frame from the left camera of the stereo endoscope
as well as the virtual rendering corresponding to the kine-
matic estimate for that frame. Notice that although the esti-
mate produces a close approximation to the appearance of
the tool, it is inaccurate. Note that we only use the tool tip
and hide the clevis and shaft for simplicity. In our experi-
ence, this was sufficient information to perform successful
matching.

2.2 Matching

Using the virtual CAD model and the raw kinematics from a
given frame, we re-render the model at nearby poses. By per-
turbing only a few of the active joints, we can generate ren-
derings on-the-fly to match against the real image and take
the kinematics estimate corresponding to the best matched
template. For our experiments, we use a Large Needle Driver
(LND) of the da Vinci R© which has 7 total DOFs. We chose
to perturb 5 of the 7 active joints, corresponding to some
of the pitch and yaw parameters of the wrist and instrument
as well as the roll of the instrument. However, this method
allows for perturbations of whichever joints provide signif-
icant errors. We cycle each of the joints in a small range
around the raw kinematics estimate and re-render the CAD
model in that pose. For each, we construct a gradient tem-

Fig. 2 A sample image from the endoscope and the corresponding
virtual render from the raw kinematics. Although the configuration is
close, it’s visibly-imprecise from what is observed in the video frame.
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Fig. 3 A sampling of 88 out of the total 1125 virtual renderings from
the brute-force joint search matching procedure.

plate using the LINE detector and store meta-data for the
kinematics with each template. Once collected, we compute
a similarity measure (according to [18]) of each gradient
template against the real image. For each gradient orienta-
tion in the template, a search is performed in a neighbor-
hood of the associated gradient location for the most similar
orientation in the real input image. The maximum similar-
ity of each template to the image is stored and sorted across
all templates to find the best matching gradient template(s)
corresponding to the corrected kinematics estimate.

2.2.1 Brute-Force Search

To perturb the joint values, we manually define a bounding
box around the kinematic estimate as follows:

– Outer-yaw: +
−1.5◦ every 1.5◦

– Outer-pitch: +
−1.5◦ every 1.5◦

– Instrument-roll: +
−10◦ every 5◦

– Wrist-yaw: +
−15◦ every 7.5◦

– Wrist-pitch: +
−15◦ every 7.5◦

This range results in 1125 total renderings, each to be com-
pared against the video frame. A sampling of 88 of these
virtual images, displaying only the tool tips, is shown in Fig-
ure 3. Figure 1 shows the result of this search using LINE
templates of each render candidate to both find where in
the image the tool tip for the LND is located as well as the
joint configuration corresponding to the best matching tem-
plate response. The overlay is produced by only showing the
edges (in green) of the best-matching template (from the vir-
tual rendering), so it’s easier to observe the accuracy of the
alignment qualitatively.

In practice, the best-matching template according to the
LINE search is not necessarily always the correct answer.
To account for this, we collect the top k (∼ 5) best matches.
It can often occur that the actual correct response is the

2nd or even 3rd best LINE match. This often occurs when
the top matches have the same score and are arbitrarily or-
dered. In these cases, what we noticed is that the better-
scored matches occur elsewhere in the image, either on the
other tool or on the background tissue. However, this is some-
thing that we can account for, as described in the next sec-
tion.

2.3 False Positive Rejections

In order to increase the detection rate, we collect more of
the top matches from the LINE responses. Because some of
the higher responses may sometimes fall in other areas of
the image (Figure 4, left), we developed two false positive
rejection schemes.

2.3.1 Likelihood Rejection

Using the method described in [13] (and code generously
provided by the authors) we train off-line from manually-
labeled sample video images to construct class-conditional
probabilities using several color and texture features at the
pixel level. We train using 3 classes to label each pixel as
either on the tool shaft (class 1), metal (class 2), or tissue
(class 3). The data which was used to train was from a com-
pletely separate data set than what was used for testing, to
further confirm the usefulness of the method. Pixels that are
labeled as metal correspond to the tool tip or clevis and allow
us to filter false positives by rejecting those LINE detections
which fall in probabilistically-low regions in the metal like-
lihood labeling. This threshold is determined empirically,
however future work plans on investigating more automated
methods of determining this threshold. One such possibility
is to analyze a histogram of probability values and compar-
ing to a prior based on the expected number of pixels on the
tool tip and clevis.

An example of the output of this training procedure is
shown in Figure 5. The upper-left image shows the original

Fig. 4 Using our likelihood rejection method, we can reject false pos-
itives [Left] and recover the best matched pose [Right] with a higher
detection rate by collecting more of the top matches and eliminating
those that don’t probabilistically fall on the tool tip. Green labels the
best match according to LINE, which is clearly off the tool in the left
figure. However, after applying the false positive rejection method on
the right, the top match is more visibly consistent.
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Fig. 5 Example likelihood images from class-conditional pixel labeling after the training procedure described in section 2.3.1. [Upper-Left] The
original image from an in-vivo sequence of 2 LND tools performing a suturing procedure. [Upper-Right] Metal likelihood (e.g., tool tip, clevis)
[Lower-Left] Tool shaft likelihood [Lower-Right] Background class likelihood

image frame from an in-vivo sequence containing two LND
tools performing a suture. The upper-right is the metal class
likelihood labeling, where brighter pixels indicate higher prob-
abilities. The lower-left image similarly shows the shaft class
likelihood labeling, and finally the lower-right shows the
background class. As you can see, the metal labeling suf-
ficiently marks pixels in the area where the tool detections
should occur, and helps reduce false positives in other areas.
The shaft labeling can also be put to use, as described in the
next section.

2.3.2 Vanishing Point Rejection

Sometimes a false positive can fall on the other tool in the
image on the metal tip, where the previous rejection method
would fail. To further reduce false positives, we noticed the
following: the parallel lines that make up the edges of the
tool’s shaft boundary share a vanishing point (VP) in com-
mon. Furthermore, the shaft of the tool will always come
into the image frame from the edge of the image. We can
compute the VP according to the shaft orientation from the
kinematics and the camera model [19]. For each of the LINE
hypotheses (each of which has a candidate kinematic joint
configuration), we can identify the corresponding end of the
proximal clevis (the metal part which connects the black
shaft with the metal tool tip, at the wrist) as an arc con-
sistent with that hypothesis. Then we connect the VP and
the two ends of the proximal clevis arc and extend the lines
to the image boundary. Figure 6 describes this idea visu-
ally. We can obtain the regions A (red) and B (green) from

the proximal clevis arc and compute the overlap of those re-
gions with the shaft likelihood labeling, described in section
2.3.1. Then, region B is easily rejected as a false positive
while region A persists as a possible candidate match.

Fig. 6 We compute the vanishing point of the tool shaft we are detect-
ing using kinematics data and a camera model. Then we connect this
with the candidate proximal clevis of each of the hypotheses accord-
ing to the top LINE matches and use the shaft likelihood labeling to
eliminate projectively-inconsistent kinematic hypotheses. The region
labeled A in red marks the proximal clevis associated with the red
LINE detection on the proper tool tip. The region labeled B in green is a
false positive on the wrong tool. By insersecting these regions with the
shaft likelihood labeling from section 2.3.1, region A intersects many
pixels with the shaft likelihood while region B has a null intersection.
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Fig. 7 A failure case is defined as a detection that occurs on the correct
tool tip with a visibly-wrong joint configuration.

3 EXPERIMENTS

Experiments were run on porcine in-vivo data from the da
Vinci R© surgical system. In the following sections, we dis-
cuss accuracy and timing results from our experiments.

3.1 Accuracy

The main failure case that we encounter is shown in Fig-
ure 7, where the detection occurs on the correct tool tip, but
with a visibly wrong configuration. This is determined by
eye as a simple counting of overlaying pixels tends to call
these correct when in fact they are wrong. All other false
positives (e.g., detections that occur on tissue or the other
tool) are successfully rejected by our false positive rejec-
tion method. In an experiment with real in-vivo data, our
brute-force method yielded an 87% correctness rate (on the
correct tool tip, in a visibly-consistent joint configuration ac-
cording to the template overlay). However, we obtained 11%
with no detection, meaning all of the top 5 matches were re-
jected by the false positive method on those frames. This is a
preferable result as we then have more confidence in our ac-
tual detections and would prefer a no-response over a wrong
response. Finally, 2% were labeled incorrectly, with wrong
configurations (determined by eye).

From our analysis, the remaining incorrect detections
tend to occur when the tool is in an ambiguous configu-
ration, such as extended straight out or if little texture is
shown. The cases that work very well are when the clevis
bends at an angle from the shaft, creating a unique shape
that’s more easily detected by the LINE templates. We plan
on investigating this further to improve the detection rate.

3.2 Timing

The brute force method described in Section 2.2.1 renders
1125 templates per-frame, which is not a real-time solu-
tion. There are several potential speed-ups which can retain
the accuracy described in Section 3.1 while speeding-up the
processing per-frame. The tests of each template against the
image frame are independent from each other, and as such
are certainly parallelizable, either on the GPU or on a multi-
core/processor CPU, neither of which we implemented for
this paper. Other than that, the two significant bottlenecks
are the number of renderings as well as the time per-rendering.
We use OpenGL to render the model in particular configu-
rations, and downloading the image from the GPU into soft-
ware to process each template is computationally-expensive.
Rather than downloading the entire image, we use the kine-
matic data to determine a region-of-interest in the virtual
image where the tool-tip will be drawn and only download
that part of the graphics buffer. However, the number of ren-
derings needs to be reduced as well. The brute force search
takes ∼ 23 seconds/frame to match all templates and pro-
duce the best pose. In the next section we describe an ap-
proach which yields an 87% speed-up.

3.2.1 Pyramidal Search

We make the assumption that the manifold of appearances
for the tool tip is relatively smooth, and so a very coarse
search should yield a match which is close to the actual re-
sult. We can then use this to initiate a finer-scaled search in
a much smaller range and reduce the overall number of tem-
plates to render. We choose a 2-level pyramid search scheme
where the actual joint search ranges were determined by
hand in both a coarse and fine manner. The coarse search
uses the following search range, relative to the raw kinemat-
ics estimate as in the brute-force method:

– Outer-yaw: +
−1◦ every 2◦

– Outer-pitch: +
−1◦ every 2◦

– Instrument-roll: +
−10◦ every 10◦

– Wrist-yaw: +
−15◦ every 15◦

– Wrist-pitch: +
−15◦ every 15◦

This yields a total of 108 renders in the first-level. We take
the top k-matches using LINE and use the same false-positive
rejection method as described in Section 2.3. The template
with the best response to survive the false-positive rejec-
tion initiates a finer-scaled search with the following search
range, relative to the joint configuration which produced the
coarse match:

– Outer-yaw: +
−0.25◦ every 0.5◦

– Outer-pitch: +
−0.25◦ every 0.5◦

– Instrument-roll: +
−5◦ every 5◦

– Wrist-yaw: +
−5◦ every 5◦



Articulated Surgical Tool Detection Using Virtually-Rendered Templates 7

Fig. 8 Sample output frames from running the tool detector on an in-vivo video sequence. Several different poses are shown as well as an example
with high specularity (top-right). The green overlay is produced by drawing only the edges of the best-matching virtually-rendered template, to
assist in seeing the quality of the result. These results are produced from the pyramid-search method, described in section 3.2.1.

– Wrist-pitch: +
−5◦ every 5◦

This produces an additional 108 renders for a total of 216 to-
tal renderings in the pyramid search, a reduction of 81% in
the overall number of renderings per-frame from the brute-
force method. Using the same LINE matching and false-
positive rejection, we take the joint values corresponding to
the best match in the fine-scaled search as the final result.
This reduces the total per-frame processing time from 23
secs/frame down to 3 secs/frame, an 87% speed-up in pro-
cessing time. Figure 8 shows sample frames from running
the detector using the pyramid-search method. The green
overlays show the edges of the best virtually-rendered tem-
plates (again only displaying the edges of the templates which
help visualize the quality of the match). We show several
different poses and articulations of the tool, as well as an
example with significant specularities (upper-right image).
The detection rate of the pyramid-search method was nearly
identical to the brute-force method, at 86% correctness.

4 DISCUSSIONS

The power of this approach lies in the ability to learn from
virtual renderings which are kinematically-generated and ac-
curately apply this to real imagery. This scheme has been
shown to be successful in the object recognition [20] and
human pose recognition [15] domains where depth images
are used to learn appearances. In the case of [15], synthetic

depth images render articulated human poses to create a
richer database which is not feasible to do with the amount
of real data needed to accomplish the same task. In our work,
we provide a means to accomplish a similar goal for match-
ing against real imagery by use of a template which is cre-
ated from a virtual image and is matchable against a real
image.

The consequences of this are two-fold: first, we are able
to learn on-the-fly without knowledge of the poses that can
occur during the surgery, and thus can reduce the memory
footprint of a database-like approach which must account for
all possible poses and articulations to succeed robustly. Sec-
ond, the method becomes easily extensible to different tool
types. As new tools are developed for a robot such as the da
Vinci R©, we can easily apply our algorithm to it in real im-
agery with nothing but a CAD model and raw kinematics es-
timates. Another advantage is that the false rejection method
is not specific to any tool-type, but rather is material-specific
and can be applied to different tool types directly.

Being a top-down method for a high-dimensional prob-
lem, computation is usually a bottle neck. There are multiple
ways to further reduce the computation time to bring it down
to real-time. Since rendering is already done on the GPU,
the run-time can be pushed down further if the generation
and matching of the LINE templates are also done on the
GPU, both taking advantage of parallelization and avoiding
the large memory transfer from the GPU. Gradient-based
search routines, such as Levenberg-Marquardt, could poten-
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tially reduce the matching time although it may not find the
optimal solution. The accuracy of any optimization routine
must be considered as well. We also note that the likelihood
maps described in Section 2.3.1 may have a further use to re-
duce the number of renderings. This pixel labeling can cue a
data-driven joint search, where the search range can be po-
tentially determined using inverse kinematics of only those
configurations that are consistent with the pixel labeling of
the metal-class (e.g., tool tip and clevis). This is an area for
future exploration.

Although we investigate the detection problem in this
paper, the final system will run in a tracking mode. We no-
tice that between consecutive frames in a video sequence
there is only very little movement that tends to occur. This
means that the set of virtual renderings will only need to be
updated slightly, and most of the templates can be reused
from frame-to-frame. This should also help to increase the
detection accuracy rate by confining searches to previous
successfully detected locations. We then plan to fuse this
into a live experiment to compute a kinematics correction
on-line and evaluate the effects of the enhancements of some
of the applications previously mentioned to a surgeon’s ex-
perience.

5 CONCLUSIONS

In this work we have presented a detection method which
uses a top-down approach to detect surgical tools in video
sequences and determines the pose and articulation by learn-
ing on-the-fly from virtual renderings driven by real kine-
matic data. We have shown that the method detects suc-
cessfully at a high correctness rate and there is much room
for improving the runtime. We showed a pyramid search
method which reduced a brute-force method from 23 secs/frame
down to 3 secs/frame. This may be reduced further by using
more sophisticated data-driven optimization routines and us-
ing GPU accelerations to eliminate downloading each ren-
der for each potential joint configuration.
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