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Abstract

We present a systematic view planning method to assist con-
struction of 3-D models of large outdoor sites using a mo-
bile robot platform with mounted scanner. In the first stage,
we begin with a 2-D site footprint and the planner gen-
erates a minimal set of sufficient covering views. These
views which incorporate constraints on the scanner, includ-
ing field of view, minimum and maximum scanning distance,
and grazing angle, serve as the initial set of scans which
yields an approximate 3-D model of the site. In the second
stage, we update this model by using a voxel-based occu-
pancy procedure to plan and acquire the next best view. The
algorithm continues to update the model sequentially until
an accurate and complete 3-D model is obtained. Results
are shown for a segment of the Columbia University cam-
pus. The system can also be used as a planning tool for
manual construction of 3-D site models.

1 Introduction

Accurate three-dimensional models of large outdoor struc-
tures, such as buildings and their surroundings, have many
uses. These models can provide an educational walk around
a structure that is thousands of miles away. They can allow
engineers to analyze the stability of a structure and then test
possible corrections without endangering the original. They
can allow us to preserve historical sites that are in danger of
destruction, and they can allow us to preserve archaeologi-
cal sites at various stages of an excavation. In all of these
cases, it is important to have an accurate computer based
3-D model of the large scale outdoor structure.

Methods for acquiring such models have progressively
increased in accuracy and have evolved from manual meth-
ods to more automated methods. Today there are a number
of laser range scanners on the market that will quickly gen-
erate a dense point cloud of measurements. With a sufficient
number of scans around the object being measured, one can
generate models of centimeter or better accuracy.

Although the models obtained by laser scanning are now
very accurate and the acquisition process is fast and auto-

mated, there is still a major human component involved.
The scanning sensor must be physically moved from loca-
tion to location. In addition, a plan must be laid out to de-
termine where to take each individual scan. This requires
choosing efficient views that will cover the entire surface
area of the structure without occlusions from other objects
and without self occlusions from the target structure itself.
This is the essence of the so—called view planning problem.
Manually choosing the views can be time consuming in it-
self. In addition, it may require some trial and error which
increases the number of needed scans. Since taking a single
scan can take up to hour, unneeded scans are a large prob-
lem.

We propose to automate this view planning task. Our
view planning method has two basic stages. In section 3, we
describe the initial static modeling phase. The system com-
putes a set of initial views of the target region. Once these
scans have been acquired, we need to refine our model. In
section 4, we describe the second stage in which a voxel-
based method is used to choose the next best view from
information in the initial model. This phase now becomes
dynamic as each new scan updates our model and provides
new information for the next best view. The entire method
can produce an accurate and complete 3-D model of large
complicated structures.

We can further automate this process by integrating the
scanner and view planning software with a mobile robot.
We can mount the scanning equipment on our mobile robot
platform, AVENUE [1] (see Fig. 3(a)), which is capable of
localizing and navigating itself through an urban environ-
ment. The view planning software for model construction
is then integrated into the robot’s navigation system. This
combined system can now plan the views for model con-
struction and then automatically acquire the views.

2 Related Work

Currently there are a number of other research projects at-
tempting to construct three-dimensional models of urban
scenes and outdoor structures. These projects include the
3-D city model construction project at Berkeley [8], the



outdoor map building project at the University of Tsukuba
[17], the MIT City Scanning Project [27], and the volumet-
ric robotic mapping project by Thrun et al [28]. The last
of these projects initially focused on the mapping of mines
but has recently been extended to outdoor scenes. For the
most part, however, these methods leave the actual planning
component to a human operator.

The view planning problem can be described as the task
of finding a set of sensor configurations which efficiently
and accurately fulfill a modeling or inspection task (see [24]
and [21]). The literature can be divided into three separate
categories. The first two deal with model-based and non-
model-based methods. The third describes methods appli-
cable to view planning for a mobile robot.

The model-based methods are the inspection methods
in which the system is given some initial model of the
scene. Early research focused on planning for 2-D camera-
based systems. Included in this are works by Cowan and
Kovesi [5] and by Tarabanis et al [25]. Later, these methods
were extended to the 3-D domain in works by Tarbox and
Gottschlich [26] and by Scott et al [20]. We can also include
the art gallery problems in this category. In two dimensions,
these problems can be approached with traditional geomet-
ric solutions such as in Xie el al [30] and with randomized
methods such as in Gonzalez-Bafios et al [9]. The art gallery
approach has also been applied to 3-D problems by Danner
and Kavraki [7].

The non-model-based methods seek to generate mod-
els with no prior information. These include volumetric
methods such as Connolly [4], Banta et al [2], Massios and
Fisher [14], and Soucy et al [23]. There are also surface-
based methods which include Maver and Bajcsy [15], Pito
[18], Reed and Allen [19], and Sequeira et al ([13, 22]). A
statistical approach is taken by Whaite and Ferrie [29].

View planning for 2-D map construction with a mo-
bile robot is addressed by Gonzalez-Bafios et al [10] and
Grabowski et al [12]. View planning for 3-D scenes with a
mobile robot is addressed by Niichter et al [16].

3 Constructing the Initial Model

In the first stage of our modeling process, we wish to com-
pute an initial model of the target region. This model will
be based on limited information about the site and will most
likely have gaps in the data which must be filled in during
the later stage of the algorithm. The data acquired in this
initial stage will serve as a seed for the boostrapping method
used to complete the modeling process.

3.1 Planning the Initial Views

The procedure for planning the initial views makes use of a
two-dimensional ground map of the region to plan a series

of environment views for our scanning system to acquire.
Maps such as these are commonly available for large scale
sites. All scanning locations in this initial phase are planned
in advance, before any data acquisition occurs.

Planning these locations resembles the classical art
gallery problem, which asks where to optimally place
guards such that all walls of the art gallery can be seen by
the set of guards. Solutions to this well-known problem can
be applied to our initial planning task. We wish to find a
set of positions for our scanner such that it can image all of
the known walls in our 2-D map of the environment. The
entire view planning problem can be solved by making the
simplifying assumption that if we can see the 2-D footprint
of a wall then we can see the entire 3-D wall. In practice,
this is never the case, because a 3-D part of a building fa-
cade or other wall that is not visible in the 2-D map might
obstruct a different part of the scene. However, for an initial
model of the scene to be used later for view refinement, this
assumption should give us enough coverage to be sufficient.

The traditional art gallery problem assumes that the
guards can see all the way around their location, that is,
they have a 360 degree field of view. It also assumes that
the guards have an unlimited distance of vision and that
the guards can view a wall at any grazing angle. None
of these assumptions are true for most laser scanning sys-
tems, so the traditional methods do not apply exactly to our
problem. Gonzalez-Bafios et al [9] proposed a randomized
method for approximating solutions to the art gallery prob-
lems. We have chosen to extend their randomized algorithm
to include the visibility constraints of our sensor, such as
minimum and maximum range, field of view, and grazing
angle.

In our version of the randomized algorithm, a set of ini-
tial scanning locations are randomly distributed throughout
the free space of the region to be imaged. The visibility
polygon of each of these points is computed based on the
constraints of our sensor. Finally, an approximation for the
optimal number of viewpoints needed to cover the bound-
aries of the free space is computed from this set of initial
locations.

For our initial test of this algorithm, we used a simulated
environment. The region (see Fig. 1) represents a long hall-
way with eight hexagonal pillars evenly spaced and located
not far from the walls. In this test region, we chose to use an
initial set of 200 random scanning locations (see Fig. 1(a)).

Next, the visibility of each of the viewpoints was com-
puted. We used the ray-sweep algorithm [11] to compute
the visibility polygon, which has two types of edges. The
first contains the obstacle edges that are on the boundary of
the region’s free space. The second contains intermediate
edges which lie in the interior of the free space. We then
discarded the intermediate edges so that the only remain-
ing edges of the visibility polygon were on the boundary of
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Figure 1: (a) The initial simulated test region for the first
phase of our view planning algorithm together with an ini-
tial set of 200 viewpoints randomly distributed throughout
the free space of the region. (b) The final set of 10 scan-
ning locations chosen for our simulated test region. The
clipped obstacle edges for scanning location #0 are indi-
cated in blue. (All the figures in this paper should be viewed
in color.)

the free space. Each of these edges was clipped such that
the remaining edges satisfied the constraints inherent to our
scanning device. This gave a set of obstacle edges on the
boundary that a viewpoint at a given location could actually
image (see Fig. 1(b)).

For the range constraints, we set a maximum and mini-
mum range for the scanner. To apply the constraint, we first
used the maximum range of the scanner to create a circle
around our device location. We then clipped all of the cur-
rently visible obstacle edges with this circle. In doing this,
there are three cases to consider. (1) If both end points of
the edge are inside the circle, then the edge is completely
visible and we keep it entirely. (2) If only one end point is
inside the circle, then we replace this line segment with a
clipped segment that goes from the point already inside the
circle to the point at which the line intersects the circle. (3)
If both end points are outside of the circle, we must deter-
mine whether or not the line intersects the circle at all. If

the line does intersect the circle, we replace the original end
points with the two intersection points; otherwise, we sim-
ply discard the line. For the minimum scanner range, we
used a similar procedure. A circle whose radius is the mini-
mum range was used and the parts of line segments that fell
inside it were dropped.

We also constrained the grazing angle. Our sensor loses
accuracy at grazing angles larger than 70°. Consider figure
2, in which our camera is located at point C' and the edge
that we are attempting to clip is E. The known distance
between the camera and the edge is D, and the grazing angle
for an arbitrary point on the edge is ¢ at distance R from
point C'. We find the subsegment of E for which 6 is no
greater than some fixed value (in our case 70°) for all points
on the subsegment.

Figure 2: The grazing angle.

We can additionally constrain our sensor to have a lim-
ited field of view. Given the field of view and the heading
of the sensor, we compute the angle between the heading
and the line between the center of the camera system and
each end point of the currently visible obstacle edges. For
obstacle edges in which one or both end points are at an
angle outside the field of view, we find a subsegment for
which both end points are within the field of view (if one
exists). We then replace that obstacle edge with its visible
subsegment. To make use of this constraint, we must also
generate random headings along with each potential view
location in the previous step of the algorithm. However, no
field of view constraint was actually necessary with our cur-
rent scanner and its 360° field of view, but it does allow the
method to be extended to other sensors.

Finally, we utilized a greedy cover algorithm to select
an approximation for the minimum number of viewpoints
needed to cover the entire scene. We first select the view-
point which sees the largest amount of the boundary, and we
then remove that section of the boundary from the coverage
needed from the remaining potential viewpoints. We repeat
this process until either the entire boundary has been cov-
ered or until adding additional viewpoints adds too small an
amount of new information to warrant continued scanning.
In the simulated example, our algorithm usually returns be-
tween eight and ten scanning locations (see Fig. 1(b)) with
100% coverage of the region’s obstacle boundary. The 2-D
planner is summarized in algorithm 1.



Algorithm 1 The 2-D View Planning Algorithm. It must be
given an initial 2-D map M to plan the initial views.
1: procedure 2DPLAN(M)
2: Randomly distribute candidate views V' in the map
for all views v in V' do
Compute the visibility polygon p of v
Clip p to sensor range
Clip p to maximum grazing angle
Clip p to the field of view
end for
Find a greedy cover, GG, from the potential views V'
10: return G > the planned views
11: end procedure

0N hWw

3.2 Initial Modeling of the Campus

As our first actual test of the initial view planning phase, we
chose to model the northern end of the Columbia Univer-
sity campus shown in figure 3(b). For our test, we set the
threshold such that the algorithm terminated if additional
scans added less than 2% of the total boundaries of the tar-
get region. Our algorithm (see Alg. 1) typically returned
between eight and ten scanning locations for our test area
(see Fig. 3(c)) giving us a coverage of 95% of the region’s
obstacle boundary.

Once the initial set of viewpoints were chosen, the scans
needed to be acquired. In this paper, we are only testing the
view planning algorithm, and therefore all scans were ac-
quired manually and registered by manually surveying the
location of each individual scan. In this particular run of
the algorithm, we generated 9 scanning locations. We took
scans at each of the nine locations chosen by the planner
and registered them. Figure 4 shows the model being con-
structed from the 2-D plan. The resulting model from this
algorithm consists of registered sets of point clouds. These
point clouds can then be meshed, by one of many methods,
for use in other applications.

4 Three Dimensional Modeling

After the initial modeling phase has been completed, we
have a preliminary model of the environment. The model
will have holes in it, many caused by originally undetectable
occlusions. We now implement a 3-D view planning sys-
tem that makes use of this initial three-dimensional model
to plan efficiently for further views. This subsequent mod-
eling phase does not plan all of its views at once. Instead,
it takes the initial model and plans a single next best view
that will acquire what we estimate to be the largest amount
of new information possible, given the known state of the
world. Once this scan has been acquired, the new data are
integrated into the model of the world and the next best view
is planned.

4.1 Voxel Space

Our method for the 3-D modeling stage requires a different
data representation than just the simple point cloud that we
were using in the initial stage. We need a way to tell what
parts of the scene have been imaged and what parts have
not. To do this, we maintain a second representation of the
world which keeps track of seen-empty, seen-occupied, and
unseen portions of the region to be imaged. This can most
easily be represented by a voxel map [6]. Because this is a
large scale imaging problem, the voxels can be made rather
large and still satisfy their purpose. A voxel size of one me-
ter cubed is sufficient to allow for computing occlusions in
our views. Although the planner uses a reduced resolution
model of the data, the full data are still used in constructing
the final model.

Figure 5: A representation of the seen-occupied cells of the
voxel grid. It was constructed from the point cloud acquired
in section 3.2.

The voxel representation (see Fig. 5) is generated from
the point cloud. Before any data have been acquired, all
voxels in the grid are labeled as unseen. When a new scan
is taken, voxels that contain at least one data point from that
scan are marked as seen-occupied (even if a previous scan
had labeled a voxel as seen-empty). For any data point to
have been acquired, there must have been an unoccluded
line of sight between the scanner position and that data
point. A ray is then traced from each data point back to
the scanner position. Each unseen voxel that it crosses is
marked as seen-empty. If the ray passes through a voxel
that had already been labeled as seen-occupied, it means
that the voxel itself may already have been filled by a previ-
ous scan or another part of the current scan. This means that
the voxel itself is only partially occupied and we allow the
ray to pass through it without modifying its status as seen-
occupied. Using this method, our initial model is inserted
into the voxel space and we subsequently update this space.
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Figure 3: (a) The ATRV-2 Based AVENUE Mobile Robot. (b) A photograph of the center of our test region, taken from
the roof of a neighboring building (picture courtesy of Alejandro Troccoli). (c) The 2-D map of the building footprints on
the northern portion of the Columbia campus. Also shown are the 9 scan locations (shown as black dots) determined by the
initial two-dimensional view planner. The views from these locations cover 95% of the 2-D outline of Uris Hall. The first

NBYV computed by the 3-D planner is shown as a red square.

4.2 Next Best View

Our approach to this final modeling phase takes its cue from
Pito’s work [18], in which a grid of cells called the “posi-
tional space” is arranged around the object to be modeled.
In Pito’s work, the objects being imaged are small and the
sensor is free to move anywhere around the object. He con-
siders only patches of unknown information at the bound-
ary of his current mesh and projects rays back from them
into the positional space. Pito chooses the cell in the posi-
tional space that views the largest number of these unknown
patches as the next view.

We extend this idea to a voxel-based representation. In
our case, we are restricted to operating on the ground plane
with our mobile robot. We can exploit the fact that we have
a reasonable two-dimensional map of the region. This 2-D
map gives us the footprints of the buildings as well as a good
estimate of the free space on the ground plane in which we
can operate. We mark the voxels which intersect this ground
plane within the free space defined by our 2-D map as being
candidate views. We can then use these marked voxels on
the ground plane as our version of the “positional space.”

We wish to choose a location on this ground plane grid
that maximizes the number of unseen voxels that can be
viewed from a single scan. Considering every unseen voxel
in this procedure is unnecessarily expensive and should be
avoided. At the end of the first stage of our method, much of
the environment has already been imaged and many of the

“unseen” voxels will actually be regions in the interior of
buildings. Instead, we need to focus on those unseen voxels
that are most likely to provide us with useful information
about the facades of the buildings. These useful voxels are
the ones that fall on the boundaries between seen-empty re-
gions and unseen regions. These boundary regions are most
likely to contain previously occluded structures and, in ad-
dition, are likely to be viewable by the scanner. If an un-
seen voxel is completely surrounded by seen-occupied vox-
els or even by other unseen voxels, then there is a good
chance that it may never be visible by any scan. We there-
fore choose to consider only unseen voxels that are adjacent
to at least one seen-empty voxel. Such unseen voxels will
be labeled as boundary unseen voxels.

Now that we have a set of appropriate unseen voxels to
consider, we proceed with the optimization. As possible
positions for the next best view, we use the centers of the
voxels which intersect the ground plane within the region’s
free space. At each such position, we keep a tally of the
number of boundary unseen voxels that can be seen from
that position. Each position’s voxel tally starts at O and is
incremented for every boundary unseen voxel which that
position can view.

To determine whether a boundary unseen voxel can be
viewed, we trace rays from its center to the center of each
voxel on the ground plane. If the ray intersects any voxel
that is seen-occupied, we discard the ray because it may



Figure 4: This figure shows the initial campus model being constructed sequentially from the 2-D plan. From the top left,
going clockwise: The first scan. Registered scans 1 through 4. Registered scans 1 through 6. The complete initial model
with all 9 scans. The scans are texture mapped with images taken from the scanner’s built-in camera. (These images are best

viewed in color.)

be occluded by the contents of that occupied voxel. If the
ray intersects any voxel that is unseen, we discard the ray
because we are uncertain of the contents of that voxel and
it is still possible that it will be occluded. We must also
consider the minimum and maximum range of the scanner.
If the length of the ray is outside the scanner’s range, then
we discard the ray.

We also want to consider the grazing angle condition. If
the grazing angle between a ray and the normal to the sur-
face that we expect at a boundary unseen voxel is larger than
the maximum angle allowed by our sensor, we discard the
ray. Since, by definition, these unseen voxels are unknown,
we do not have a good idea of what the surface normal at
that location would be. To estimate this, we can look at the
local area of voxels surrounding the unseen voxel in ques-
tion. We can construct a plane that on average divides the
unseen voxels in that local region from the seen-empty vox-
els. This plane is an estimate of the surface that divides the
unseen region from the seen-empty region, and its normal
can be used to compute an estimated grazing angle.

If a ray has not been discarded by the occlusion, range,

or grazing angle condition, we can safely increment the
ground plane position that the ray intersects. At the end
of this calculation, the ground plane position with the high-
est tally is chosen as the robot’s location to take the next
scan. The robot then plans a Voronoi-based path [3] and
navigates to the chosen position. It triggers a new scan once
it has arrived, and that scan is integrated into both the point
cloud model and the voxel representation. This entire sec-
ond stage is then repeated until we reach a sufficient level
of coverage of the site. To decide when to terminate the al-
gorithm, we look at the number of boundary unseen voxels
that would be resolved by the next iteration. If that number
falls below some small threshold value, then the algorithm
terminates; otherwise, it continues. The 3-D planner is sum-
marized in algorithm 2.

4.3 Refining the Initial Campus Model

In section 3.2 we generated an initial viewing plan by us-
ing algorithm 1. We acquired and registered each of these
planned views with our scanner in order to build an initial



Algorithm 2 The 3-D View Planning Algorithm. It must be
given an initial model of the world C, a set of possible scanning
locations P, and a threshold value for the number of acceptable
unseen voxels as a stopping condition.

1: procedure 3DPLAN(C,P,threshold)

2: Initialize voxel space from C'
3: for all unseen voxels, u, in the voxel space do
4 if u has a seen empty neighbor then
5: adduto U
6: end if
7 end for
8 loop
9: for all potential views p in P do
10: Count members of U that are visible
11: end for
12: Acquire scan at p with largest count
13: if count(p) < threshold then
14: break
15: end if
16: Register and merge new scan into C
17: Update voxel space with C'
18: Recompute U from the new voxel space

19: end loop
20: return C'
21: end procedure

> the updated model

model of the world. Now we wish to refine our model using
our 3-D planning algorithm (see Alg. 2).

Our voxel space was initialized such that all voxels were
labeled unseen. The space was successively updated. Fig-
ure 6 summarizes the number of labeled voxels at each iter-
ation of the algorithm.

First, the initial model was converted to voxels and in-
serted into the voxel space. Voxels that contained data
points from the initial model were labeled as seen-occupied.
We then carved the seen-empty voxels by ray tracing from
the positions of the scanning system. Our grid had a to-
tal of approximately 15.5 million voxels. After the initial
model, 76,941 voxels were seen occupied and 114,372 vox-
els were labeled as unseen, with the rest labeled seen empty.
Next, we computed the set of boundary unseen voxels. It
turned out that only a small number of the unseen voxels
were in this set (21,756). This operation pruned the number
of voxels whose visibility we needed to consider by an or-
der of magnitude. At this point, we computed the potential
viewing location that could see the largest number of those
boundary unseen voxels. This location is shown as the red
square in figure 3(c).

This view looked directly at the facade of the central
building of our target region. The 2-D planner had com-
puted views that saw this facade from the corners. The
building, however, has two parts to it, a wide base and a
thin tower. The 2-D planner only took into account the foot-
print of the building, and as a result the scans from the cor-

ners were unable to image much of the tower section of the
building. The 3-D planner’s first choice for the next best
view, was a head-on scan of the building that filled in the
large unseen region of the tower’s facade (see Fig. 7).

For this experiment, we chose a threshold of 200 bound-
ary unknown voxels as the cutoff for our algorithm. When it
was estimated that the next best view would net fewer than
this threshold number of voxels, we decided that it would
not be worth the effort to continue scanning. In our test,
we reached this threshold after the third NBV. Although
there were still a sizeable number of boundary unseen vox-
els (15,156) in the scene, we were restricted by where we
could place the robot. Many of these unseen voxels were in
locations on the roofs of buildings, and we could not image
them from a ground location.

At the Seen Total Boundary | Visible
end of: | Occupied | Unseen Unseen to NBV
2-DPlan | 76,941 114,372 21,765 1,025
NBV 1 78,212 111,216 18,540 972
NBV 2 79,005 109,571 15,327 322
NBV 3 79,243 109,011 15,156 122

Figure 6: A summary of the number of labeled voxels after
each iteration of the 3-D planning algorithm. The last col-
umn indicates the number of boundary unseen voxels that
are actually visible to the next best view.

Figure 7: The top is the facade of Uris Hall, scanned from
the views generated by the 2-D planner. The bottom is the
facade of the same building after acquiring the first NBV.

5 Conclusion

We have presented a systematic method to automatically
plan views for constructing 3-D models of large outdoor



structures. The procedure starts from a 2-D ground map of
the environment, which defines the open space available to
the robot, and then progresses through two distinct stages.
A preliminary 3-D model is constructed by having the robot
compute and acquire a set of initial scans using our 2-D
view planning algorithm. This initial model is then refined
by a dynamic modeling phase which makes use of a voxel
representation of the environment and which successively
plans next best views for the robot to acquire a complete
model.

The method was successfully tested on the northern half
of the Columbia University campus. With our two stage
procedure, we were able to construct a detailed 3-D model
of the structures in that part of the campus.

For sites substantially larger than the one we tested, one
encounters an additional difficulty. The number of unseen
voxels which must be considered for the NBV algorithm be-
comes extremely large even though we limit consideration
to the boundary unseen voxels. Our future research will
address this important problem associated with very large
sites such as New York City’s Governors Island and the Ro-
manesque churches of the Bourbonnais region of France.
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