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Abstract
In this paper we consider the problem of factoring illumina-
tion and texture from a pair of images of a diffuse object of
known geometry. This problem arises frequently in 3D pho-
tography applications that use images to acquire photomet-
ric properties of a scanned object. Our approach uses the
ratio of the images and the geometry information to com-
pute the relative incident irradiance of one image with re-
spect to the other. After the irradiance maps are recovered,
we build a spatially varying albedo map, which can then be
used to render the object under different illumination condi-
tions. We present two algorithms, one for point-light source
illumination, and another one based on spherical harmon-
ics for more general illumination conditions.

1. Introduction
In this paper we consider the problem of factoring illumi-
nation and texture from a pair of images of a diffuse object
of known geometry. This problem arises frequently in 3D
photography: given a 3D model of a diffuse object acquired
using a range sensor and a set of registered overlapping im-
ages of the object taken under different and unknown (un-
calibrated) illuminations, we want to find a factorization
of the images into its texture and illumination components.
Once the factorization is achieved, it is possible to align all
images to the same illumination and create new renderings
under new illumination conditions. This approach produces
better results than using plain texture mapping of the images
on the 3D geometry.

The main contribution of our method is the recovery of
an illumination-free texture map from a pair of images and
the object geometry without prior recording or calibration
of the incident illumination. There are two steps in this pro-
cess: first we take the ratio of the input images, which for
diffuse objects is texture-free, and estimate the illumination
in the form of a pair of irradiance maps; second, we use
the recovered irradiance to factor out the texture from the
shading. Once we have obtained the texture in the form of
an albedo map, we can render the object under new illu-

mination conditions. We first analyze the case of an object
illuminated by a point light source and show that given two
images of the object with the light source at different posi-
tions, it is possible to recover these positions from the ratio
image and surface normals. Then we extend this case to
more general illumination. Diffuse reflection has been well
studied [9] and it is has been established that the Lambertian
BRDF acts as a low pass filter on the incident illumination.
This implies that from the image of a diffuse object only the
low frequency components of the incident light field can be
recovered. However, these low frequency terms approxi-
mate well the incident irradiance.

Our paper falls in the category of inverse-rendering tech-
niques. Measuring surface reflectance of an object of
known geometry under controlled and calibrated illumina-
tion has proved to produce very good results [3, 6]. But
when the illumination is unknown, it is typically assumed
that the material properties of the object are homogeneous
over the whole surface [5] [9](i.e. the object is texture-
less). Placing inverse rendering problems into a theoreti-
cal framework, Ramamoorthi and Hanrahan [10] developed
a signal-processing approach. In particular they note that
lighting and texture can not be factored without resorting
to active methods or making prior assumptions of their ex-
pected characteristics. In this paper, we can achieve this
factorization by requiring the object to be diffuse or mostly
Lambertian. The ratio of two images of a convex Lamber-
tian object is texture-free and only depends on the incident
illumination.

2. Background and previous work
In inverse-rendering, it is a typical to assume that illumina-
tion falling on the scene is distant. Under this condition, and
under the assumption that any non-linear effects of the cam-
era gain have been removed, the image of a diffuse Lamber-
tian convex object is:

I(x, y) = ρ(x, y)E(n(x, y)) (1)

where I denotes the observed intensity at pixel (x, y), ρ de-
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notes the albedo and E is the incident irradiance parameter-
ized by the surface normal n at (x, y), and defined as the in-
tegral of the product of the incident light and the half-cosine
function over the upper-hemisphere:

E(n) =
∫

Ωi

L(θi, φi) cos θidωi. (2)

When the illumination source is a distant point light source,
the above expression simplifies to a dot product of the sur-
face normal and the light direction:

E(n) = max(n · l, 0), (3)

where l is a unit vector in the direction of the light source.
Given two different images I1 and I2 of the same object
acquired from the same viewpoint, the ratio image R is de-
fined as:

R(x, y) =
I1(x, y)
I2(x, y)

=
E1(n(x, y))
E2(n(x, y))

, (4)

since the albedo terms in the numerator and denominator
cancel each other. Hence, in this case, the ratio image is
invariant to texture, and can be considered to represent the
irradiance ratio. Marschner and Greenberg [7] have used
these irradiance ratio images to relight a photograph of an
object of known geometry and reflectance. Given a photo-
graph of the object, its geometry and its surface reflectance,
they developed an inverse rendering system that solves for
the illumination of the scene and allows the user to mod-
ify the recovered illumination to generate a new renderings.
However, this illumination recovery procedure works for
non-textured objects only.

Irradiance ratio images can also be used for relighting
diffuse objects if we have two overlapping images captured
under different illumination. This idea has been applied in
3D photography by Beauchesne and Roy [2] to relight two
partially overlapping images and align both of them to the
same lighting, without the need to solve explicitly solve for
the illumination. The irradiance ratio is computed from the
area of overlap and applied to the non-overlapping regions.
This requires that the overlapping regions samples all sur-
face normals that one expects to find in the non-overlapping
region. In this paper we extend this idea one step further by
solving for the illumination and computing and albedo map.

Ratio images have also been used for recognition tasks,
with particular emphasis in face recognition under different
illumination. However, ratio images for recognition are de-
fined in a slightly different manner. Since faces of different
subjects can be considered to have the same geometry but
different albedos, Shashua and Riklin-Raviv [11] define the
quotient image Q of two different faces a and b:

Q(x, y) =
ρa(x, y)
ρb(x, y)

(5)

In their work, Shashua and Riklin-Raviv show how this quo-
tient image can be computed from an image of face a and
three images of face b illuminated by three non-collinear
point light sources. Their recognition algorithm does solve
for the illumination of the test image a, but it is different
to ours in aim and context: it’s main purpose is to obtain
an illumination invariant signature of the face, it makes an
implicit assumption that the geometry is the same but it
does not make explicit use of the geometry, and requires
a database of images to bootstrap the process. In later work,
Wang et al. [12] take this method a step further and gener-
alize it to images illuminated by non-point light sources.

3. Methodology
The definition of our problem is as follows. Given

1. G the geometry of an object.

2. I = {I1, I2, . . . , In} a set of photographs of the object
captured under unknown illumination conditions. The
images overlap.

3. P = {P1, P2, . . . , Pn} the set of camera projection
matrices that relates G with I.

we want to factor shading from texture and recover an
albedo map of the scene. The images need not to be taken
from the same viewpoint. Since we have the geometry of
the scene and the projection matrices, we can warp any two
overlapping images to the same viewpoint. To simplify the
discussion that follows, we will only consider a single pair
of images and assume that these have been warped to the
same view.

The first step of our method is to recover the relative il-
lumination. For this, we consider two different cases: 1)
an object illuminated by a point light source, 2) general-
ized illumination. The point light source algorithm recov-
ers the position of the light sources that generated each of
the input images. The generalized illumination algorithm,
which is based on spherical harmonics, will recover a low
frequency representation of the illumination. In both cases,
the input to the illumination recovery procedure is a ratio
image R(x, y), which we compute by taking the quotient of
the two input images, and a normals image n(x, y) which
gives the normal for each pixel and that is generated by ray-
tracing the geometry of the object.

3.1. Point light source illumination
When an object is illuminated by a directional point light
source with direction l1 = (l1.x, l1.y, l1.z), the irradiance
for a pixel with associated normal n is:

E(n) = Lmax(n · l1, 0), (6)
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where L denotes the source intensity and · the vector dot
product. Putting this expression into (4) for a pair of images
acquired under point light sources l1 and l2 we obtain:

R(x, y) =
L1 max(n(x, y) · l1, 0)
L2 max(n(x, y) · l2, 0)

, (7)

defined only for non-zero values of the denominator and nu-
merator. It should be clear at this point that there is an inher-
ent ambiguity in the above expression since multiplying the
numerator and denominator by the same constant does not
affect the final result. Therefore, it will not be possible to
recover the absolute intensities of the light sources. Hence,
we can fix L1 to unity and solve for l1 and l2 scaled by
L2. To simplify the notation, we will drop the (x, y) coor-
dinates in R(x, y) and n(x, y) and use a single subindex to
enumerate all pixels. Then, we setup the following system
of equations:

⎡
⎢⎣

nT
0 −R0nT

0
...

...
nT

k −RknT
k

⎤
⎥⎦

[
l1

L2l2

]
= 0. (8)

Thus we have a linear system of the form Ax = 0. The so-
lution we are looking for is the one dimensional null-space
of A. When the dimension of the null-space of A is greater
than one it will not be possible to solve uniquely for the
light directions. This condition will arise if the distribution
of the imaged surface normals is small: e.g. if the scene is
a flat wall. Given the null-space vector x (a 6 dimensional
vector), we obtain l1, l2and L2 from:

l1 =
(x0, x1, x2)

||(x0, x1, x2)|| (9)

l2 =
(x3, x4, x5)

||(x3, x4, x5)|| (10)

L2 =
||(x3, x4, x5)||
||(x0, x1, x2)|| (11)

To handle color images we could treat each channel sep-
arately and solve (8) per channel. However, this typically
yields three slightly different positions for the light source.
We can obtain a more robust solution if we convert the im-
age to luminance space and use the luminance values, in-
stead. After we recover the direction of the light source,
the relative scale L2 for each channel c is obtained from the
original images by averaging the following expression over
all pixels:

L2,c(x, y) =
max(n(x, y) · l1, 0)

R(x, y) max(n(x, y) · l2, 0)
. (12)

We can only compute the relative intensities for each chan-
nel. Also, note that nothing is known about the absolute

chromaticity of the light sources. By fixing the intensity
L1 to the same value for the all three channels, we assume
that light to be white. This chromatic ambiguity can not be
solved without further assumptions or resorting to a color
calibration object.

3.2. Generalized illumination

We can extend the previous idea to a more general form of
illumination. In this case we define irradiance as an expan-
sion in terms of spherical harmonic bases. Ramamoorthi
and Hanrahan [9] and Basri and Jacobs [1] have established
that the image of a diffuse convex object under general illu-
mination is well approximated by a low dimensional spheri-
cal harmonic expansion. Spherical harmonics are orthonor-
mal basis defined over the sphere. Using this framework,
we can approximate the incident irradiance as:

E(n) =
∞∑

l=0

l∑
m=−l

AlLlmYlm(n). (13)

In (13) above, Ylm are the spherical harmonic functions,
Llm are the spherical harmonic coefficients of the incident
illumination, and Al is a constant that represents the effects
of multiplying the incident light with the half-cosine func-
tion. In other words, (13) is the frequency space equivalent
of the integral (2) [9]. In this context, we want to solve for
Llm. Since Al decays very rapidly, a very good approx-
imation can be obtained by limiting l ≤ 2. A first order
approximation ( up to l = 1 ) has a total of four terms and
a second order approximation has a total nine. Before we
write the expression of the irradiance ratio in spherical har-
monics, we will make one more notation change for clarity
purposes. We will replace the double-indexed Ylm func-
tions and Llm coefficients by their single-index equivalent
Ys and Ls, where s = l2 + l + m. Also, since we have
to solve for two different illuminations Ls, we will denote
these with L1s and L2s. Using this new notation, we can
substitute (13) into our irradiance ratio expression to obtain:

Ri =
∑n

s=0 AsL1sYs(ni)∑n
s=0 AsL2sYs(ni)

. (14)

where n = 4 or n = 9 depending on the order of the desired
approximation. We can now derive a system of linear equa-
tions similar to (8) on the unknown lighting coefficients L1s

and L2s.
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⎡
⎢⎣

Y0(n0) . . . Yn(n0) −R0Y0(n0) . . .
...

...
Y0(nk) . . . Yn(nk) −RkY0(nk) . . .

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L10

...
L1n

L20

...
L2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

(15)

The solution to (13) is once more the null-space of A and
the coefficients L1s and L2s will be defined up to a scale
factor. This scaling factor can be fixed by setting L10 = 1,
which fixes both the relative scale and chromaticity of the
illumination.

The stability of (15) is highly dependent on the distribu-
tion of surface normals over the region of overlap between
the two images. For better results and higher robustness
against noise, it is possible to re-cast the problem in terms
of principal components. This means replacing the spher-
ical harmonic basis by lower dimensional orthogonal basis
obtained using principal component analysis (PCA). The ra-
tionale behind this change of basis is that the principal com-
ponents are vectors in the direction of greater variability (in
this case due to illumination changes). Ramamoorthi de-
rived in [8] an analytic expression for the principal compo-
nents of the image of an object under all possible point light
sources and showed that these are related to the spherical
harmonic basis Ys. In particular, Ramamoorthi shows that
the eigenvectors obtained from PCA of the image space of
an object illuminated under all possible point light sources
can be well approximated as a linear combination of spher-
ical harmonic functions up to order two. If V is the matrix
with the principal eigenvectors as columns, then there exists
a matrix U such that V ≈ Y U , whereY is a matrix whose
columns are the first nine spherical harmonics Y0...Y8. The
matrix U can be computed analytically from the geometry
of the object and details on how to do this are given in [8].
Using the eigenvectors Vi as the new basis, we can now
write the incident irradiance as:

E(n) =
n∑

i=0

eiVi(n), (16)

where ei are the coefficients of the irradiance in principal
components basis. The number of terms to employ in this
new approximation will depend on the object geometry, but
by looking at the eigenvalues associated to each vector it is
possible to determine a good cut-off point. Now, we can
write (15) as:

⎡
⎢⎣

V0(n0) . . . Vn(n0) −R0V0(n0) . . .
...

...
V0(nk) . . . Vn(nk) −RkV0(nk) . . .

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

e10

...
e1n

e20

...
e2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

(17)
Once we find the coefficients e1i and e2i we can find the
corresponding L1s and L2s coefficients by substitution into:

L1s =
∑n

i Usie1i

As
, L2s =

∑n
i Usie2i

As
, (18)

where Us is the sth row of U . To handle color images
we treat each of the RGB channels separately and solve for
three sets of coefficients L1i and L2i. Once again, as before,
there is an inherent chromatic ambiguity that we can only
solve for if we have an image of a color calibration object.

4 Extracting the albedo map
Once we have solved for the relative irradiance we can com-
pute an albedo map. Note that the chromatic and scale am-
biguity in the estimated irradiance will translate to the esti-
mation of the albedo map, so this will also be defined up to
scale. From the image pair I1 and I2 with estimated irradi-
ance E1 and E2 we compute the albedos as:

ρ1(x, y) =
I1(x, y)

E1(n(x, y))
(19)

ρ2(x, y) =
I2(x, y)

E2(n(x, y))
(20)

ρ(x, y) =
I1(x, y)ρ1(x, y) + I2(x, y)ρ(x, y)

I1(x, y) + I2(x, y)
. (21)

In other words, for each pixel (x, y) we set its albedo ρ(x, y)
to a weighted average of the albedos we obtain from I1 and
I2. The weights are set to the pixel intensities, so that dark
pixels, which are usually noise, are down-weighted.

5 Some practical aspects
There are certain practical aspects that are worth mention-
ing:
Surface normal aggregation. Each pixel in the ratio im-
age provides one constraint to the system of equations. If
we use every pixel, the size of the equations matrix could
become too large to handle. Instead of using all pixels we
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Figure 1: Objects used for testing our algorithm. Starting from the left, first come the synthetic renderings: a sphere and the Armadillo;
followed by three objects with their geometry acquired using photometric stereo: the buddha, the cat and the owl; and finally two scanned
objects: the chicken and the girl. Each row shows the objects with a different illumination.

Point source 1 Point source 2 Rel. intensity
x y z x y z (R, G, B)

Actual position -0.58 0.36 0.73 0.28 -0.28 0.92 (5.00, 10.00, 20.00)
Sphere -0.58 0.36 0.73 0.27 -0.28 0.92 (5.03, 10.10, 20.48)

Armadillo -0.58 0.35 0.73 0.27 -0.28 0.92 (5.11, 10.27, 20.88)

Table 1: Ground truth and recovered light directions and relative intensities for the synthetic images of the sphere and the Armadillo

can aggregate the ratios per surface normal. To do this, we
can take any 2D parametrization of the sphere and compute
the average normal and the average ratio for each (u, v) co-
ordinates.

Weighted least squares. For robustness against out-
liers, we can solve the linear systems using weighted least
squares. We weight the equations according to the angle
that the surface normal makes with the camera axis, giving
in this way less importance to foreshortened points. Also,
because we aggregate the surface normals, we can ignore
those orientations that received few contributing pixels dur-
ing the aggregation.

Almost-convex objects and self-shadowing. Our analysis
is based on the assumption that the objects of interest are
convex. But, it is possible to still work with almost-convex
objects. For an object illuminated by a point light source, it
suffices to ignore those pixels that correspond to cast shad-
ows. We implemented this technique by setting a threshold
on the luminance value of the pixels. Pixels that do not
meet the threshold condition are excluded in all stages of
our algorithm. For the generalized illumination case, self-
shadowing is more problematic. We have not completely
addressed this case and a possible solution is proposed in
the final discussion.

6 Results

We tested the point light source and generalized illumina-
tion algorithms on synthetic and real data (see Figure 1).
The synthetic scenes were generated from a model of a
sphere and a model of the Armadillo1 textured with a syn-
thetic wooden pattern and rendered using a ray-tracer . For
the real data sets, we used three models acquired using pho-
tometric stereo: - a buddha, a cat and an owl; and two mod-
els that were scanned using a Polhemus hand-held scanner:
a chicken and a figure of a girl. The synthetic and photo-
metric stereo models are good for ground-truth comparisons
since we know the position of the light sources and do not
require image registration. For the chicken and girl mod-
els, we captured several images varying the position of a
point light source but leaving the viewpoint fixed. We then
manually registered these images with the 3D model using
software that we have developed for that purpose.

6.1. Point light source model
We ran our point-light source estimation model of section
3.1 on all of the image pairs shown in Figure 1. Tables 1 and
2 show the ground truth and recovered light source positions
and relative scales for the synthetic and photometric stereo
models. For the synthetic scenes, the recovered light source

1The Armadillo model was downloaded from the Stanford scanning
repository.
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Point source 1 Point source 2 Rel. intensity
x y z x y z (R, G, B)

Actual position 0.40 0.48 0.78 -0.32 0.49 0.86 (1.00, 1.00, 1.00)
Buddha 0.39 0.57 0.71 -0.34 0.54 0.76 (1.03, 1.03, 1.04)

Cat 0.39 0.49 0.78 -0.33 0.47 0.82 (1.09, 1.09, 1.05)
Owl 0.39 0.48 0.78 -0.31 0.44 0.84 (1.02. 1.01, 1.00)

Table 2: Ground truth and recovered light directions and intensities for the buddha, cat and owl models.

Figure 2: Results obtained using the point light source model for the images in Figure 1. The top row shows the recovered albedo, the
middle row shows the factored irradiance for the first illumination, and the last row the factored irradiance for the second illumination.
Notice how the factorization de-couples texture from shading.

directions and scaling factors shown in Table 1 are almost
identical to the actual directions. Similarly, the computed
light source directions for the buddha, cat and owl models
listed in Table 2 are very close the ground truth data. For the
chicken and girl models we did not have ground truth data,
but we ran our algorithm and computed the light source di-
rections.

As a second step, we used the computed light direction
to factor the input images into their corresponding texture
(albedo maps) and shading (irradiance) components. The
results are shown in Figure 2 - the top row shows the albedo
map, and the second and third rows the irradiance maps
for each of the input images. Note that, with the excep-
tion of a few minor artifacts, the albedo maps do not con-
tain the effects of the illumination. This is certainly true
for the synthetic models: both the sphere and the armadillo
look completely flat. For the real data sets, some artifacts
can be seen where the surfaces are not purely Lambertian.
For example, the owl shows some specular components in
the albedo map. Other artifacts are brighter spots in non-
convex regions, in particular at the junction of the head and

body of the cat and owl models, the junction of the arm
and body in the chicken model, and the junction of the hair
and face in the girl model. The convexity assumption fails
here and inter-reflections influence the final result. The re-
sult can be seen as a brightening of the albedo map, since
the pure Lambertian model can not explain the increase in
irradiance due to inter-reflections. As a final comment, the
pants in the chicken model are not in the albedo map since
the luminance value of those pixels falls below the shadow
threshold, and hence ignored by the algorithm.

To obtain a quantitative measurement of the quality of
the factorization, we compared the obtained irradiance im-
ages with the irradiance images generated using the ground
truth light source position. Since there is a scale ambigu-
ity that is inherent to our method, we normalized all images
before computing the error metric. This normalization was
achieved by setting the norm ‖ I ‖2=

∑
x,y I(x, y)2 equal

to one. Then, for a given pair of normalized ground truth
image I0 and reconstructed irradiance image I1, we com-
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Figure 3: Results obtained using the generalized light source model the images in Figure 1. The top row shows the recovered albedo, the
middle row shows the factored irradiance for the first illumination, and the last row the factored irradiance for the second illumination.

Model Method Error 1 Error 2
Sphere PL < 0.1% < 0.1%

PCA 5 0.40% 0.20%
Armadillo PL < 0.1% < 0.1%

PCA 3 3.50% 4.30%
Buddha PL 0.40% 0.50%

PCA 3 0.10% 1.60%
Cat PL < 0.1% < 0.1%

PCA 3 4.40% 4.50%
Owl PL < 0.1% < 0.1%

PCA 3 3.80% 3.50%

Table 3: Normalized reconstruction error for the irradiance im-
ages. The first column indicates the object, the second one the
method used (PL = point light, PCA n = generalized illumination
using PCA of size n), and the last two columns show the normal-
ized reconstruction error for the two irradiance images.

puted the relative squared error of the reconstruction2:

err(I1, I0) =
‖ I1 − I0 ‖2

‖ I0 ‖2
. (22)

The resulting reconstruction errors are reported as percent-
ages in Table 3. It can be observed that the reconstructed
irradiance images using the point light source algorithm are
very accurate.

2The relative squared error is frequently used in the literature (e.g. [1,
4]) as a metric for evaluating the goodness of image reconstructions.

6.2. Generalized light model
We tested our generalized light algorithm with the images
in Figure 1. In all cases, we first analytically computed the
PCA basis and we used a dimension 3 basis, except for the
sphere for which we used a basis set of dimension 5. We
found these dimensions to be optimal empirically, by testing
with different basis size. The resulting factorizations into ir-
radiance images and albedo maps are shown in Figure 3 and
the reconstruction errors for the irradiance images are tabu-
lated in Table 3. It can be seen that the model approximates
well the irradiance and produces a good factorization. The
reported reconstruction errors are less than 4.5%. For the
sphere, the quality of the approximation is as good as for
the point-light source model. For the remaining models, the
irradiance reconstruction error varies between 0.5% for the
buddha to 4.50% for the cat.

7. Discussion and future work.
We have presented two different methods of factoring tex-
ture and illumination from a pair of images of a diffuse con-
vex object based on the ratio of two images. We ran tests
on real and synthetic data and have shown good results. In
running the experiments we have noticed a number factors
that can affect these results: accuracy of the normals, non-
convex regions and shadows. We found that for the real
data, our algorithm was sensitive to the shadow threshold.
Varying the shadow threshold, which determines which pix-
els are in shadow and should not be considered in the com-
putation of irradiance, produced different results, some of
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which in the extreme case of very low or very high thresh-
olds deviated significantly from the ground truth. We also
found, as expected, that good surface normals and good im-
age registrations are required to obtain good results. This
was quite evident when working with the chicken and girl
models. In particular, for the girl, we had to mask out the re-
gion around the nose and the flowers on the umbrella, since
the surface normals in those areas where not that accurate.
In addition, the scanned geometry was smoothed out sig-
nificantly to reduce noise. Finally, as we have seen in the
results section, inter-reflections in non-convex regions can
cause a bias in the albedo map estimation.

The applicability of the presented algorithms to differ-
ent objects and illumination environments is conditioned by
the geometry of the object and its illumination, but not by
the object’s albedo map, since the albedos are factored out
when computing the ratio image. In particular, the gener-
alized illumination algorithm using PCA basis has proved
to work well for point-light source illumination and some
area light sources, but further research is being conducted
to evaluate its applicability to more complex illumination
environments.

As for future work, we still have to address self-
shadowing problem when working with the generalized
light source illumination model. We can address this issue
by using the geometry information to find those regions in
the object that are occlusion free. If we consider only the
pixels associated with those regions, we fall back into the
convex case and we can estimate the irradiance.

Finally, we want to apply our method to outdoor scenes.
This was our main motivation in developing the ideas ex-
plored in this paper, since illumination in outdoor scenes
can not be controlled during day-time. Our current line of
work is in the area of 3D modeling of historic sites, most of
which are outdoor structures.
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