
Robot Path Planning

Overview:

1. Visibility Graphs 

2. Voronoi Graphs

3. Potential Fields

4. Sampling-Based Planners

– PRM: Probabilistic Roadmap Methods

– RRTs:  Rapidly-exploring Random Trees



Robot Path Planning

Things to Consider:

• Spatial reasoning/understanding: robots can have many 
dimensions in space, obstacles can be complicated

• Global Planning: Do we know the environment apriori ?

• Online Local Planning:  is environment dynamic? Unknown 
or moving obstacles? Can we compute path “on-the fly”?

• Besides collision-free, should a path be optimal in time, 
energy or safety?

• Computing exact “safe” paths is provably computationally 
expensive in 3D – “piano movers” problem

• Kinematic, dynamic, and temporal reasoning may also be 
required



Configuration Space of a Robot

• Configuration Space (C-Space) : Set of parameters 

that completely describes the robots’ state

• Mobile base has 3 Degrees-of-Freedom (DOFs)

• It can translate in the the plane (X,Y) and rotate (Θ)

• C-Space is allowable values of (X,Y,Θ)



Configuration Space: C-Space

• 2-DOF robot: joints Θ_1, Θ_2 are the robot’s C-Space

• C-Free: values of Θ_1, Θ_2 where robot is NOT in collision

• C-Free = C-Space  – C-Obstacles

X

Y



Path Planning in Higher Dimensions

• 8 DOF robot arm

• Plan collision free path to pick 

up red ball
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• 8 DOF robot arm

• Plan collision free path to pick 

up red ball



Path Planning in Higher Dimensions

• Humanoid robot has MANY DOFs

• Anthropomorphic Humanoid: Typically >20 joints:

• 2-6 DOF arms, 2-4 DOF legs, 3 DOF head, 4 DOF 

torso, plus up to 20 DOF per multi-fingered hand!

• Exact geometric/spatial reasoning difficult

• Complex, cluttered environments also add difficulty



Voronoi Path Planning
• Find paths that are not close to obstacles, but in fact as 

far away as possible from obstacles.

• This will create a maximal safe path, in that we never 

come closer to obstacles than we need.

• Voronoi Diagram in the plane.  Let P = {p_i}, set of points 

in the plane, called sites. Voronoi diagram is the sub-

division of the plane into N distinct cells, one for each site.

• Cell has  property that a point q corresponds to a site p_i iff:
dist(q, p_i) < dist(q, p_j) for all p_j  P, j  i



Voronoi Graph

• Intuitively:  Edges and vertices are intersections of 

perpendicular bi-sectors of point-pairs

• Edges are equidistant from 2 points

• Vertices are equidistant from 3 points

• Online demo:  http://alexbeutel.com/webgl/voronoi.html

http://alexbeutel.com/webgl/voronoi.html


Creating a 
Voronoi Path
• Approximate the boundaries of the 

polygonal obstacles as a large number of 
points

• Compute the Voronoi diagram for this 
collection of approximating points

• Elminate those Voronoi edges which have 
one or both endpoints lying inside any of the 
obstacles

• Remaining Voronoi edges form a good 
approximation of the generalized Voronoi
diagram for the original obstacles in the map

• Locate the robot's starting and stopping 
points and then compute the Voronoi
vertices which are closest to these two 
points

• Connect start/end points to nearest Voronoi
vertex (without collision)

• Use Djikstra or A* graph search to find path 
vertices. 

• Generates a route that for the most part 
remains equidistant between the obstacles 
closest to the robot, and gives the robot a 
relatively safe path along which to travel. 

Original Map Point approximation of boundary

Full Voronoi for Point approximation Voronoi after eliminating collision edges



Voronoi Path on Columbia Campus

To find a path:



Voronoi Path on Columbia Campus

To find a path:

• Create Voronoi graph - O(N log N) complexity in the plane

• Connect q_start, q goal to graph – local search

• Compute shortest path from q_start to q_goal (A* search)



Voronoi Path on Columbia Campus

To find a path:

• Create Voronoi graph - O(N log N) complexity in the plane

• Connect q_start, q_goal to graph – local search

• Compute shortest path from q_start to q_goal using A*

goalstart



Dijkstra’s Algorithm –Shortest 
Path Graph Search

• We want to compute the shorterst path distance from a source node S to all other nodes. We associate lengths or 
costs on edges and find the shortest path.

• We can’t use edges with a negative cost. Otherwise, we can take take endless loops to reduce the cost.

• Finding a path from vertex S to vertex T has the same cost as finding a path from vertex S to all other vertices in the 
graph (within a constant factor).

• If all edge lengths are equal, then the Shortest Path algorithm is equivalent to the breadth-first search algorithm. 
Breadth first search will expand the nodes of a graph in the minimum cost order from a specified starting vertex  
(assuming equal edge weights everywhere in the graph).

• Dijkstra’s Algorithm: This is a greedy algorithm to find the minimum distance from a node to all other nodes. At each 
iteration of the algorithm, we choose the minimum distance vertex from all unvisited vertices in the graph,

• There are two kinds of nodes: Visited or closed nodes are nodes whose minimum distance from the source node S 
is known.

• Unsettled or open nodes are nodes where we don’t know the minimum distance from S.

• At each iteration we choose the unsettled node V of minimum distance from source S.

• This settles (closes) the node since we know its distance from S. All we have to do now is to update the distance to 
any unsettled node reachable by an arc from V 

• At each iteration we close off another node, and eventually we have all the minimum distances from source node S.



Figure 5: Example of Dijkstra’s algorithm for finding shortest path
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Dijkstra(Graph G, Source_Vertex S) 

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V 

If (DIST(S,V) + DIST(V,W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V,W)

Parent node:  At start of search from Baltimore

1        1      ?        ?        ?      ?        1       1       1

←



Dijkstra(Graph G, Source_Vertex S) 

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V 

If (DIST(S,V) + DIST(V,W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V,W)

Parent node: after opening up Washington node (#9)

1        1      9 ?        ?      ?        1       1       1

←



Dijkstra(Graph G, Source_Vertex S) 

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V 

If (DIST(S,V) + DIST(V,W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V,W)

Parent node: after opening up Philadelphia Node (#7)

1        1      9        ?        ?      7 1       1       1

←



Dijkstra(Graph G, Source_Vertex S) 

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V 

If (DIST(S,V) + DIST(V,W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V,W)

Parent node: after opening up NY Node (#6)

1        1      9        6 ?      7        1       1       1

←



Dijkstra(Graph G, Source_Vertex S) 

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V 

If (DIST(S,V) + DIST(V,W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V,W)

Parent node: after opening up PITT Node (#8)

1        1      8 8 ?      7        1       1       1

←←



Dijkstra(Graph G, Source_Vertex S) 

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V 

If (DIST(S,V) + DIST(V,W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V,W)

Parent node: after opening up Buff Node (#2)

1        1      8 8        2 7 1       1       1

←



Dijkstra(Graph G, Source_Vertex S) 

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V 

If (DIST(S,V) + DIST(V,W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V,W)

Parent node: after opening up CLE Node (#4)

1        1      8 8        4 7 1       1       1

←

Once all nodes are settled, follow parent links to find path:
e.g.     Detroit – Cleveland - Pittsburgh - Baltimore



6. Pseudo Code for Dijkstra’s Algorithm (see figure 5)

Note: initialize all distances from Start vertex S
to each visible vertex. All unknown distances assumed
infinite. Mark Start Vertex S as VISITED, DIST=0

Dijkstra(Graph G, Source_Vertex S)
{
While Vertices in G remain UNVISITED
{

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V
{

If (DIST(S,V) + DIST(V,W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V,W)

}
}

}

7. Sketch of Proof that Dijkstra’s Algorithm Produces Min Cost Path

(a) At each stage of the algorithm, we settle a new node V and that will be the minimum distance from the source
node S to V . To prove this, assume the algorithm does not report the minimum distance to a node, and let V

be the first such node reported as settled yet whose distance reported by Dijkstra, Dist(V ), is not a minimum.

(b) If Dist(V ) is not the minimum cost, then there must be an unsettled node X such that Dist(X)+Edge(X, V ) <

Dist(V ). However, this implies that Dist(X) < Dist(V ), and if this were so, Dijkstra’s algorithm would
have chosen to settle node X before we settled node V since it has a smaller distance value from S. Therefore,
Dist(X) cannot be < Dist(V ), and Dist(V ) is the minium cost path from S to V .
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A* Search on 4- neighbor Grid
i Breadth First search expands more nodes than A*
ii A* with a  heuristic function =0 becomes Breadth First Search
iii A* is admissible if heuristic cost is an UNDERESTIMATE of the true cost

0 1 2 3 4 5 0 1 2 3 4 5
0 S 0 0
1 1 1 12
2 2 2 9 13
3 3 3 7 10 14
4 G 4 4 5 6 8 11 15

Example 1 Breadth First  Search  Node Expansion

0 1 2 3 4 5 0 1 2 3 4 5
0 0 0 9 8 7 6 5 4
1 1 1 8 7 6 5 4 3
2 2 2 7 6 5 4 3 2
3 3 3 6 5 4 3 2 1
4 4 5 6 7 8 9 4 5 4 3 2 1 0

A* Node Expansion (Example 1) Heuristic (L1 dist to Goal)

0 1 2 3 4 5 0 1 2 3 4 5
0 S 0 0
1 1 1 1
2 2 2 2
3 3 8 9 10 11 3 3 8 9 10
4 4 5 6 7 G 4 4 5 6 7 11

A* Node Expansion (Example 2) A* Final Path
(follow goal node back via

OPEN LIST - Example 2 Opener node to compute path)

Opener Node f g h f expand order
[0,0] 0+9 0 9 9 0

0,0 [1,0] 1+8 1 8 9 1
1,0 [2,0] 2+7 2 7 9 2 Path Cost= f  = g + h
2,0 [3,0] 3+6 3 6 9 3 g= min distance traveled to this node
3,0 [4,0] 4+5 4 5 9 4 h= heuristic cost to goal from this node
4,0 [4,1] 5+4 5 4 9 5 (we are using L1 metric cost on 4-neighbor grid)
4,1 [4,2] 6+3 6 3 9 6
4,2 [4,3] 7+2 7 2 9 7 A* is admissible if heuristic cost is an UNDERESTIMATE
4,2 [3,2] 7+4 7 4 11 8 of the true cost:  h <= C(i,j)
4,3 [3,3] 8+3 8 3 11 9
3,2 [2,2] 8+5 8 5 13
3,3 [2,3] 8+4 8 4 12
3,3 [3,4] 8+2 8 2 10 10
3,4 [3,5] 9+1 9 1 10 11
3,4 [2,4] 9+3 9 3 12
3,5 [4,5] goal



TopBot:
Topological Mobile Robot 

Localization Using Fast Vision 
Techniques

Paul Blaer and Peter Allen

Dept. of Computer Science, Columbia University

{psb15, allen}@cs.columbia.edu



GPS

DGPS
Scanner

Network

Camera

PTU
Compass

Autonomous Vehicle for Exploration and 

Navigation in Urban Environments

PC

Sonars

Current Localization 

Methods:

• Odometry.

• Differential GPS.

• Vision.

The AVENUE Robot:

• Autonomous.

• Operates in outdoor

urban environments.

• Builds accurate 3-D

models.



Range Scanning Outdoor Structures



Italian House: Textured 3-D Model



Main Vision System

Georgiev and Allen ‘02



Topological Localization

• Odometry and GPS can fail.

• Fine vision techniques need an 

estimate of the robot’s current 

position.

------------------------------------------

Omnidirectional

Camera

Histogram Matching of Omnidirectional 

Images:

• Fast.

• Rotationally-invariant.

• Finds the region of the robot.

• This region serves as a starting

estimate for the main vision system.



Building the Database

• Divide the environment into a logical set of regions.

• Reference images must be taken in all of these regions.

• The images should be taken in  a zig-zag pattern to cover

as many different locations as possible.

• Each image is reduced to three 256-bucket histograms, 

for the red, green, and blue color bands.



An Image From the

Omnidirectional Camera



Masking the Image

• The camera points up to get a clear

picture of the buildings. 

• The camera pointing down would

give images of the ground’s brick

pattern - not useful for histogramming.

• With the camera pointing up, the sun

and sky enter the picture and cause

major color variations.

• We mask out the center of the image to

block out most of the sky.

• We also mask out the superstructure

associated with the camera.

https://youtu.be/et5Tgo-HJfk
allen
Typewritten Text
video

allen
Typewritten Text



Environmental Effects

• Indoor environments

• Controlled lighting conditions

• No histogram adjustments

• Outdoor environments

• Large variations in lighting

• Use a histogram normalization with the percentage of color at each 

pixel:

BGR

B

BGR

G

BGR

R


  ,    ,    



Indoor Image

Non-Normalized Histogram



Outdoor Image

Normalized Histogram



Matching an Unknown Image with the 

Database

• Compare unknown image to each image in the database.

• Initially we treat each band (r, g, b) separately.

• The difference between two histograms is the sum of the 

absolute differences of each bucket.

• Better to sum the differences for all three bands into a single 

metric than to treat each band separately.

• The region of the database image with the smallest 

difference is the selected region for this unknown.



Image Matching to the Database

Image Database

Difference

Histogram



The Test Environments

Indoor

(Hallway View)

Outdoor

(Aerial View)

Outdoor

(Campus Map)



Indoor Results

Region
Images 

Tested

Non-Normalized 

% Correct

Normalized 

% Correct

1 21 100% 95%

2 12 83% 92%

3 9 77% 89%

4 5 20% 20%

5 23 74% 91%

6 9 89% 78%

7 5 0% 20%

8 5 100% 40%

Total 89 78% 80%



Ambiguous Regions

South 

Hallway

North 

Hallway



Outdoor Results

Region
Images 

Tested

Non-Normalized 

% Correct

Normalized 

% Correct

1 50 58% 95%

2 50 11% 39%

3 50 29% 71%

4 50 25% 62%

5 50 49% 55%

6 50 30% 57%

7 50 28% 61%

8 50 41% 78%

Total 400 34% 65%



The Best Candidate Regions

Correct Region,

Lowest Difference

Wrong Region,

Second-Lowest 

Difference

Image Database

Difference

Histogram

                      



Conclusions

• In 80% of the cases we were able to narrow down the robot’s 

location to only 2 or 3 possible regions without any prior knowledge 

of the robot’s position.

• Our goal was to reduce the number of possible models that the fine-

grained visual localization method needed to examine. 

• Our method effectively quartered the number of regions that the 

fine-grained method had to test.



Future Work

• What is needed is a fast 
secondary discriminator to 
distinguish between the 2 or 
3 possible regions.

• Histograms are limited in 
nature because of their total 
reliance on the color of the 
scene. 

• To counter this we want to 
incorporate more geometric 
data into our database, such 
as edge images.




