
Robot Path Planning

Overview:

1. Visibility Graphs

2. Voronoi Graphs

3. Potential Fields

4. Sampling-Based Planners

– PRM: Probabilistic Roadmap Methods

– RRTs: Rapidly-exploring Random Trees

Robot Path Planning

Things to Consider:

• Spatial reasoning/understanding: robots can have many
dimensions in space, obstacles can be complicated

• Global Planning: Do we know the environment apriori ?

• Online Local Planning: is environment dynamic? Unknown
or moving obstacles? Can we compute path “on-the fly”?

• Besides collision-free, should a path be optimal in time,
energy or safety?

• Computing exact “safe” paths is provably computationally
expensive in 3D – “piano movers” problem

• Kinematic, dynamic, and temporal reasoning may also be
required

Configuration Space of a Robot

• Configuration Space (C-Space) : Set of parameters

that completely describes the robots’ state

• Mobile base has 3 Degrees-of-Freedom (DOFs)

• It can translate in the the plane (X,Y) and rotate (Θ)

• C-Space is allowable values of (X,Y,Θ)

Configuration Space: C-Space

• 2-DOF robot: joints Θ_1, Θ_2 are the robot’s C-Space

• C-Free: values of Θ_1, Θ_2 where robot is NOT in collision

• C-Free = C-Space – C-Obstacles

X

Y

Path Planning in Higher Dimensions

• 8 DOF robot arm

• Plan collision free path to pick

up red ball

Path Planning in Higher Dimensions

• 8 DOF robot arm

• Plan collision free path to pick

up red ball

Path Planning in Higher Dimensions

• Humanoid robot has MANY DOFs

• Anthropomorphic Humanoid: Typically >20 joints:

• 2-6 DOF arms, 2-4 DOF legs, 3 DOF head, 4 DOF

torso, plus up to 20 DOF per multi-fingered hand!

• Exact geometric/spatial reasoning difficult

• Complex, cluttered environments also add difficulty

Voronoi Path Planning
• Find paths that are not close to obstacles, but in fact as

far away as possible from obstacles.

• This will create a maximal safe path, in that we never

come closer to obstacles than we need.

• Voronoi Diagram in the plane. Let P = {p_i}, set of points

in the plane, called sites. Voronoi diagram is the sub-

division of the plane into N distinct cells, one for each site.

• Cell has property that a point q corresponds to a site p_i iff:
dist(q, p_i) < dist(q, p_j) for all p_j  P, j  i

Voronoi Graph

• Intuitively: Edges and vertices are intersections of

perpendicular bi-sectors of point-pairs

• Edges are equidistant from 2 points

• Vertices are equidistant from 3 points

• Online demo: http://alexbeutel.com/webgl/voronoi.html

http://alexbeutel.com/webgl/voronoi.html

Creating a
Voronoi Path
• Approximate the boundaries of the

polygonal obstacles as a large number of
points

• Compute the Voronoi diagram for this
collection of approximating points

• Elminate those Voronoi edges which have
one or both endpoints lying inside any of the
obstacles

• Remaining Voronoi edges form a good
approximation of the generalized Voronoi
diagram for the original obstacles in the map

• Locate the robot's starting and stopping
points and then compute the Voronoi
vertices which are closest to these two
points

• Connect start/end points to nearest Voronoi
vertex (without collision)

• Use Djikstra or A* graph search to find path
vertices.

• Generates a route that for the most part
remains equidistant between the obstacles
closest to the robot, and gives the robot a
relatively safe path along which to travel.

Original Map Point approximation of boundary

Full Voronoi for Point approximation Voronoi after eliminating collision edges

Voronoi Path on Columbia Campus

To find a path:

Voronoi Path on Columbia Campus

To find a path:

• Create Voronoi graph - O(N log N) complexity in the plane

• Connect q_start, q goal to graph – local search

• Compute shortest path from q_start to q_goal (A* search)

Voronoi Path on Columbia Campus

To find a path:

• Create Voronoi graph - O(N log N) complexity in the plane

• Connect q_start, q_goal to graph – local search

• Compute shortest path from q_start to q_goal using A*

goalstart

Dijkstra’s Algorithm –Shortest
Path Graph Search

• We want to compute the shorterst path distance from a source node S to all other nodes. We associate lengths or
costs on edges and find the shortest path.

• We can’t use edges with a negative cost. Otherwise, we can take take endless loops to reduce the cost.

• Finding a path from vertex S to vertex T has the same cost as finding a path from vertex S to all other vertices in the
graph (within a constant factor).

• If all edge lengths are equal, then the Shortest Path algorithm is equivalent to the breadth-first search algorithm.
Breadth first search will expand the nodes of a graph in the minimum cost order from a specified starting vertex
(assuming equal edge weights everywhere in the graph).

• Dijkstra’s Algorithm: This is a greedy algorithm to find the minimum distance from a node to all other nodes. At each
iteration of the algorithm, we choose the minimum distance vertex from all unvisited vertices in the graph,

• There are two kinds of nodes: Visited or closed nodes are nodes whose minimum distance from the source node S
is known.

• Unsettled or open nodes are nodes where we don’t know the minimum distance from S.

• At each iteration we choose the unsettled node V of minimum distance from source S.

• This settles (closes) the node since we know its distance from S. All we have to do now is to update the distance to
any unsettled node reachable by an arc from V

• At each iteration we close off another node, and eventually we have all the minimum distances from source node S.

Figure 5: Example of Dijkstra’s algorithm for finding shortest path

6

Dijkstra(Graph G, Source_Vertex S)

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V

If (DIST(S,V) + DIST(V,W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V,W)

Parent node: At start of search from Baltimore

1 1 ? ? ? ? 1 1 1

←

Dijkstra(Graph G, Source_Vertex S)

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V

If (DIST(S,V) + DIST(V,W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V,W)

Parent node: after opening up Washington node (#9)

1 1 9 ? ? ? 1 1 1

←

Dijkstra(Graph G, Source_Vertex S)

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V

If (DIST(S,V) + DIST(V,W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V,W)

Parent node: after opening up Philadelphia Node (#7)

1 1 9 ? ? 7 1 1 1

←

Dijkstra(Graph G, Source_Vertex S)

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V

If (DIST(S,V) + DIST(V,W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V,W)

Parent node: after opening up NY Node (#6)

1 1 9 6 ? 7 1 1 1

←

Dijkstra(Graph G, Source_Vertex S)

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V

If (DIST(S,V) + DIST(V,W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V,W)

Parent node: after opening up PITT Node (#8)

1 1 8 8 ? 7 1 1 1

←←

Dijkstra(Graph G, Source_Vertex S)

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V

If (DIST(S,V) + DIST(V,W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V,W)

Parent node: after opening up Buff Node (#2)

1 1 8 8 2 7 1 1 1

←

Dijkstra(Graph G, Source_Vertex S)

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V

If (DIST(S,V) + DIST(V,W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V,W)

Parent node: after opening up CLE Node (#4)

1 1 8 8 4 7 1 1 1

←

Once all nodes are settled, follow parent links to find path:
e.g. Detroit – Cleveland - Pittsburgh - Baltimore

6. Pseudo Code for Dijkstra’s Algorithm (see figure 5)

Note: initialize all distances from Start vertex S
to each visible vertex. All unknown distances assumed
infinite. Mark Start Vertex S as VISITED, DIST=0

Dijkstra(Graph G, Source_Vertex S)
{
While Vertices in G remain UNVISITED
{

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V
{

If (DIST(S,V) + DIST(V,W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V,W)

}
}

}

7. Sketch of Proof that Dijkstra’s Algorithm Produces Min Cost Path

(a) At each stage of the algorithm, we settle a new node V and that will be the minimum distance from the source
node S to V . To prove this, assume the algorithm does not report the minimum distance to a node, and let V

be the first such node reported as settled yet whose distance reported by Dijkstra, Dist(V), is not a minimum.

(b) If Dist(V) is not the minimum cost, then there must be an unsettled node X such that Dist(X)+Edge(X, V) <

Dist(V). However, this implies that Dist(X) < Dist(V), and if this were so, Dijkstra’s algorithm would
have chosen to settle node X before we settled node V since it has a smaller distance value from S. Therefore,
Dist(X) cannot be < Dist(V), and Dist(V) is the minium cost path from S to V .

7

A* Search on 4- neighbor Grid
i Breadth First search expands more nodes than A*
ii A* with a heuristic function =0 becomes Breadth First Search
iii A* is admissible if heuristic cost is an UNDERESTIMATE of the true cost

0 1 2 3 4 5 0 1 2 3 4 5
0 S 0 0
1 1 1 12
2 2 2 9 13
3 3 3 7 10 14
4 G 4 4 5 6 8 11 15

Example 1 Breadth First Search Node Expansion

0 1 2 3 4 5 0 1 2 3 4 5
0 0 0 9 8 7 6 5 4
1 1 1 8 7 6 5 4 3
2 2 2 7 6 5 4 3 2
3 3 3 6 5 4 3 2 1
4 4 5 6 7 8 9 4 5 4 3 2 1 0

A* Node Expansion (Example 1) Heuristic (L1 dist to Goal)

0 1 2 3 4 5 0 1 2 3 4 5
0 S 0 0
1 1 1 1
2 2 2 2
3 3 8 9 10 11 3 3 8 9 10
4 4 5 6 7 G 4 4 5 6 7 11

A* Node Expansion (Example 2) A* Final Path
(follow goal node back via

OPEN LIST - Example 2 Opener node to compute path)

Opener Node f g h f expand order
[0,0] 0+9 0 9 9 0

0,0 [1,0] 1+8 1 8 9 1
1,0 [2,0] 2+7 2 7 9 2 Path Cost= f = g + h
2,0 [3,0] 3+6 3 6 9 3 g= min distance traveled to this node
3,0 [4,0] 4+5 4 5 9 4 h= heuristic cost to goal from this node
4,0 [4,1] 5+4 5 4 9 5 (we are using L1 metric cost on 4-neighbor grid)
4,1 [4,2] 6+3 6 3 9 6
4,2 [4,3] 7+2 7 2 9 7 A* is admissible if heuristic cost is an UNDERESTIMATE
4,2 [3,2] 7+4 7 4 11 8 of the true cost: h <= C(i,j)
4,3 [3,3] 8+3 8 3 11 9
3,2 [2,2] 8+5 8 5 13
3,3 [2,3] 8+4 8 4 12
3,3 [3,4] 8+2 8 2 10 10
3,4 [3,5] 9+1 9 1 10 11
3,4 [2,4] 9+3 9 3 12
3,5 [4,5] goal

TopBot:
Topological Mobile Robot

Localization Using Fast Vision
Techniques

Paul Blaer and Peter Allen

Dept. of Computer Science, Columbia University

{psb15, allen}@cs.columbia.edu

GPS

DGPS
Scanner

Network

Camera

PTU
Compass

Autonomous Vehicle for Exploration and

Navigation in Urban Environments

PC

Sonars

Current Localization

Methods:

• Odometry.

• Differential GPS.

• Vision.

The AVENUE Robot:

• Autonomous.

• Operates in outdoor

urban environments.

• Builds accurate 3-D

models.

Range Scanning Outdoor Structures

Italian House: Textured 3-D Model

Main Vision System

Georgiev and Allen ‘02

Topological Localization

• Odometry and GPS can fail.

• Fine vision techniques need an

estimate of the robot’s current

position.

--

Omnidirectional

Camera

Histogram Matching of Omnidirectional

Images:

• Fast.

• Rotationally-invariant.

• Finds the region of the robot.

• This region serves as a starting

estimate for the main vision system.

Building the Database

• Divide the environment into a logical set of regions.

• Reference images must be taken in all of these regions.

• The images should be taken in a zig-zag pattern to cover

as many different locations as possible.

• Each image is reduced to three 256-bucket histograms,

for the red, green, and blue color bands.

An Image From the

Omnidirectional Camera

Masking the Image

• The camera points up to get a clear

picture of the buildings.

• The camera pointing down would

give images of the ground’s brick

pattern - not useful for histogramming.

• With the camera pointing up, the sun

and sky enter the picture and cause

major color variations.

• We mask out the center of the image to

block out most of the sky.

• We also mask out the superstructure

associated with the camera.

https://youtu.be/et5Tgo-HJfk
allen
Typewritten Text
video

allen
Typewritten Text

Environmental Effects

• Indoor environments

• Controlled lighting conditions

• No histogram adjustments

• Outdoor environments

• Large variations in lighting

• Use a histogram normalization with the percentage of color at each

pixel:

BGR

B

BGR

G

BGR

R


 , ,

Indoor Image

Non-Normalized Histogram

Outdoor Image

Normalized Histogram

Matching an Unknown Image with the

Database

• Compare unknown image to each image in the database.

• Initially we treat each band (r, g, b) separately.

• The difference between two histograms is the sum of the

absolute differences of each bucket.

• Better to sum the differences for all three bands into a single

metric than to treat each band separately.

• The region of the database image with the smallest

difference is the selected region for this unknown.

Image Matching to the Database

Image Database

Difference

Histogram

The Test Environments

Indoor

(Hallway View)

Outdoor

(Aerial View)

Outdoor

(Campus Map)

Indoor Results

Region
Images

Tested

Non-Normalized

% Correct

Normalized

% Correct

1 21 100% 95%

2 12 83% 92%

3 9 77% 89%

4 5 20% 20%

5 23 74% 91%

6 9 89% 78%

7 5 0% 20%

8 5 100% 40%

Total 89 78% 80%

Ambiguous Regions

South

Hallway

North

Hallway

Outdoor Results

Region
Images

Tested

Non-Normalized

% Correct

Normalized

% Correct

1 50 58% 95%

2 50 11% 39%

3 50 29% 71%

4 50 25% 62%

5 50 49% 55%

6 50 30% 57%

7 50 28% 61%

8 50 41% 78%

Total 400 34% 65%

The Best Candidate Regions

Correct Region,

Lowest Difference

Wrong Region,

Second-Lowest

Difference

Image Database

Difference

Histogram

Conclusions

• In 80% of the cases we were able to narrow down the robot’s

location to only 2 or 3 possible regions without any prior knowledge

of the robot’s position.

• Our goal was to reduce the number of possible models that the fine-

grained visual localization method needed to examine.

• Our method effectively quartered the number of regions that the

fine-grained method had to test.

Future Work

• What is needed is a fast
secondary discriminator to
distinguish between the 2 or
3 possible regions.

• Histograms are limited in
nature because of their total
reliance on the color of the
scene.

• To counter this we want to
incorporate more geometric
data into our database, such
as edge images.

