Robot Path Planning

Overview:
Visibility Graphs

1.
2. Voronoi Graphs

3.

4. Sampling-Based Planners

Potential Fields

PRM: Probabilistic Roadmap Methods
RRTs: Rapidly-exploring Random Trees

Robot Path Planning

Things to Consider:

« Spatial reasoning/understanding: robots can have many
dimensions in space, obstacles can be complicated

* Global Planning: Do we know the environment apriori ?

« Online Local Planning: is environment dynamic? Unknown
or moving obstacles? Can we compute path “on-the fly"?

« Besides collision-free, should a path be optimal in time,
energy or safety?

« Computing exact “safe” paths is provably computationally
expensive in 3D — “piano movers” problem

« Kinematic, dynamic, and temporal reasoning may also be
required

Configuration Space of a Robot

%

Mobile Base with 2 wheel differential drive

Configuration Space (C-Space) . Set of parameters
that completely describes the robots’ state

Mobile base has 3 Degrees-of-Freedom (DOFSs)

It can translate in the the plane (X,Y) and rotate (©)
C-Space is allowable values of (X,Y,0)

Configuration Space: C-Space

Configurationspace

e_2 Dark is free space

360

270

180

'

0 30 60 90 135 180 270 360

« 2-DOF robot: joints © 1, ®_2 are the robot’s C-Space
 C-Free: values of © 1, 2 where robot is NOT in collision
 C-Free = C-Space — C-Obstacles

Path Planning in Higher Dimensions

A

/a |
-\-

. 8 DOF robot arm
* Plan collision free path to pick
up red ball

Path Planning in Higher Dimensions

A -
@

o\
. —— E—— /
e 8 DOF robot arm

* Plan collision free path to pick
up red ball

Path Planning in Higher Dimensions

(oo

ﬂ/ﬁ Q
. RN

Humanoid robot has MANY DOFs
Anthropomorphic Humanoid: Typically >20 joints:
« 2-6 DOF arms, 2-4 DOF legs, 3 DOF head, 4 DOF
torso, plus up to 20 DOF per multi-fingered hand!
Exact geometric/spatial reasoning difficult
Complex, cluttered environments also add difficulty

Voronoi Path Planning

Find paths that are not close to obstacles, but in fact as
far away as possible from obstacles.

This will create a maximal safe path, in that we never
come closer to obstacles than we need.

Voronol Diagram in the plane. Let P ={p_i}, set of points
In the plane, called sites. Voronoi diagram is the sub-
division of the plane into N distinct cells, one for each site.

|
Cell has property that a point mponds to a site p_i iff:
dist(q, p_i) < dist(g, p_j)forallp je P, j#i

Voronoi Graph

N

e e .
e / e \
Intuitively: Edges and vertices are intersections of
perpendicular bi-sectors of point-pairs
Edges are equidistant from 2 points

Vertices are equidistant from 3 points
Online demo: http://alexbeutel.com/webgl/voronoi.html

http://alexbeutel.com/webgl/voronoi.html

Creating a
VVoronoi Path e 5

Apforoximate the boundaries of the J0oC_Jjo[
polygonal obstacles as a large number of 1 S
points B =
Compute the Voronoi diagram for this —

collection of approximating points |]

Elminate those Voronoi edges which have
oBe orlboth endpoints lying inside any of the Original Map
obstacles

Remaining Voronoi edges form a good
approximation of the generalized Voronoi L BT
diagram for the original obstacles in the map : T

Locate the robot's starting and stopping
points and then compute the Voronoi
vertices which are closest to these two
points

nnnnn
|||||||||

| '!f%a'{. ——
- 2 e =
X 4

=
\ g W s -
N - 4 3
—l, 4
{ 1 !

Connect start/end Foints to nearest Voronoi
vertex (without collision)

Use Djikstra or A* graph search to find path
vertices.

Generates a route that for the most part
remains equidistant between the obstacles

closest to the robot, and gives the robot a , . o _ L .
relatively safe path along which to travel. Full Voronoi for Point approximation Voronoi after eliminating collision edges

Voronoi Path on Columbia Campus

To find a path:

Voronoi Path on Columbia Campus

To find a path: | :

« Create Voronoi graph - O(N log N) complexity in the plane
« Connect g_start, g goal to graph — local search

« Compute shortest path from g_start to q_goal (A* search)

Voronoi Path on Columbia Campus

To find a path:

« Create Voronoi graph - O(N log N) complexity in the plane
« Connect g_start, g _goal to graph — local search

« Compute shortest path from g_start to q_goal using A*

Dijkstra’s Algorithm —Shortest
Path Graph Search

We want to compute the shorterst path distance from a source node S to all other nodes. We associate lengths or
costs on edges and find the shortest path.

We can’t use edges with a negative cost. Otherwise, we can take take endless loops to reduce the cost.

Finding a path from vertex S to vertex T has the same cost as finding a path from vertex S to all other vertices in the
graph (within a constant factor).

If all edge lengths are equal, then the Shortest Path algorithm is equivalent to the breadth-first search algorithm.
Breadth first search will expand the nodes of a graph in the minimum cost order from a specified starting vertex
(assuming equal edge weights everywhere in the graph).

Dijkstra’s Algorithm: This is a greedy algorithm to find the minimum distance from a node to all other nodes. At each
iteration of the algorithm, we choose the minimum distance vertex from all unvisited vertices in the graph,

There are two kinds of nodes: Visited or closed nodes are nodes whose minimum distance from the source node S
Is known.

Unsettled or open nodes are nodes where we don’t know the minimum distance from S.
At each iteration we choose the unsettled node V of minimum distance from source S.

This settles (closes) the node since we know its distance from S. All we have to do now is to update the distance to
any unsettled node reachable by an arc from V

At each iteration we close off another node, and eventually we have all the minimum distances from source node S.

h=ramion
na

e I - T = R AR 5

{a) The gragh

B Bar o cre e oy P Dk sk
1 i 3 4 5. & 7 a 9

1 ! 343 97 I 39 | Balimore
2 345 18 252 445 388 217 Buffala

3 244 265 284 492 | Cincnnas

4 186 244 167 507 125 Ceveland
3 52 45 167 - Detroit

& 5 Ehr 92 3836 Naw York

7| 97 185 92 308 Philadelphia
8|30 07 14 18 386 305 231 | Pitsburgh
9 3 492 pic Washington
EXAMPLE OF DWKSTRA'S ALGORITHM
DETANCES

1 2] i 5 5] T
Satt led Salacted Hal Buff Clne Cley Det WYC Phl
Q oL B inf irf inf inf a7
1 a Q L £ irf inf inf a7
1.9 Iy Q oL BN £ irf inf 189 a7
18,7 g o g Im s inf 189 o7
18976]] e 511 ok inf 184 o7
187EE,] o 45 LS4 =L o5F 184 o7
18,7682 4 o g £14 oS g 184 o7
1876824 = o ME L4 oS & 189 o7
18765245] 245 &4 mEE 555 189 o7

Figure 5: Example of Dijkstra’s algorithm for finding shortest path

4]
Wash
=9
=9
=9
29
29
29
29
29
et

Hermton
nna

LI T = B A B 5)

BAL WdF QX O gt MY P Hee LASH
1 2 3 4 5 . & 7 8 9

L | 343 97 230 39

2 345 186 252 445 385 217

3 244 263 284 492

4 186 244 167 X7 125

5 52 263 167 -

& 145 07 92 386

7| 97 3835 92 208

8|30 N7 284 128 386 305 31

2{ W 492 231

Baltimore
Buffala

Cindnnag
Cleveland

Naw York
Philadelphia
Pittsburgh
Washington

Parent node: At start of search from Baltimore
EXAMPLE OF DUKSTRA'S ALGORITHM

Settled Selected Bal

1
1.9
187
1.9.76
1,978 58,
1978682
18765824
187682453

AN DO DO

1

1

OCOO0OO00CO0O0COO00

1

2
Buff
245
345
345
248
245
245
<. I
248
245

?
DIBTANCES
3 4
Clne Clev
inf inf
£3 inf
521 é irf
&3 (52
S1d K55
514 368
£14 <
514 585
€14 268

S
Det
inf
inf
inf
inf
inf
&7
2
g2
gz

?

3
NYC
inf
inf
189
189
189
189
189
189
189

BEEBERERER »

Wash
39

& 39

29
29
29
39
29
29

9889489882~ +»

Figure 5: Example of Dijkstra’s algorithm for finding shortest path

Dijkstra(Graph G, Source_Vertex S)

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V

If (DIST(S,V) + DIST(V.W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V.W)

Hermton
nna

LI T = B A B 5)

BAL WdF QX O gt MY P Hee LASH
1 2 3 4 5 . & 7 8 9

L | 343 97 230 39

2 345 186 252 445 385 217

3 244 263 284 492

4 186 244 167 X7 125

5 52 263 167 -

& 145 07 92 386

7| 97 3835 92 208

8|30 N7 284 128 386 305 31

2{ W 492 231

Baltimore
Buffala

Cindnnag
Cleveland

Naw York
Philadelphia
Pittsburgh
Washington

Parent node: after opening up Washington node (#9)
EXAMPLE OF DUKSTRA'S ALGORITHM

Settled Selected Bal

1
1.9
187
1.9.76
1,978 58,
1978682
18765824
187682453

AN DO DO

1

1

OCOO0OO00CO0O0COO00

1

2
Buff
245
345
345
248
245
245
<. I
248
245

9 DB’TRNCES
3 4
Cine Clev
inf inf
£ inf
£ é irf
&N (523
514 65
514 355
£14 365
514 e85
£14 2685

S
Det
inf
inf
inf
inf
inf
&7
2
g2
gz

?

3
NYC
inf
inf
189
189
189
189
189
189
189

1 1
7 &
Phl Pitt
&7 0
& 20
@7 20
o 20
@ 20
o 20
& 20
% 20
o 2

Figure 5: Example of Dijkstra’s algorithm for finding shortest path

1

a
Wash

29
& zg
29
29
39
29
29

29
29

Dijkstra(Graph G, Source_Vertex S)

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V

If (DIST(S,V) + DIST(V.W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V.W)

Herzmton
nna

LI I = B A B)

BAL WdF QX O gt MY P Hee LASH
1 2 3 4 5 . & 7 8 9

L | 343 97 230 39

2 345 186 252 445 385 217

3 244 263 284 492

4 186 244 167 X7 125

5 52 263 167 -

& 145 07 92 386

7| 97 3835 92 208

8|30 N7 284 128 386 305 31

2{ W 492 231

Baltimore
Buffala

Cindnnag
Cleveland

Naw York
Philadelphia
Pittsburgh
Washington

Parent node: after opening up Philadelphia Node (#7)
EXAMPLE OF DWKSTRA'S ALGORITHM

Settled Selected Bal

1
1.9
18,7
1976
1.8786 8,
19786582
18765824
1876824532

WANDDm®MH DO

1

1

OCOO0O0COO0COO00

1

2
Buff
2458
248
345
48
245
245
345
245
345

9

3
Clne
inf
£31
£
&2
514
£14
£14
514
14

? ?

DITANCES

4 L
Clev Det
inf inf
inf inf
irf irf
(52 inf
55 inf
365 &7
€5 s
3585 &2
€8 (e

7

6
NYC
irtf
inf
189
189
189
1589
189
159
189

1

8
Pitt Wash
20 39
&0 39
& 220 39
20 29
&0 i)
20 29
20 39
20 29
20

29

9889489882~ »

Figure 5: Example of Dijkstra’s algorithm for finding shortest path

Dijkstra(Graph G, Source_Vertex S)

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V

If (DIST(S,V) + DIST(V.W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V.W)

Herzmton
nna

LI I = B A B)

BAL WdF QX O gt MY P Hee LASH
1 2 3 4 5 . & 7 8 9

L | 343 97 230 39

2 345 186 252 445 385 217

3 244 263 284 492

4 186 244 167 X7 125

5 52 263 167 -

& 145 07 92 386

7| 97 3835 92 208

8|30 N7 284 128 386 305 31

2{ W 492 231

Baltimore
Buffala

Cindnnag
Cleveland

Naw York
Philadelphia
Pittsburgh
Washington

Parent node: after opening up NY Node (#6)
EXAMPLE OF DWKSTRA'S ALGORITHM

Settled Selected Bal

1
1.9
18,7
1976
1.8786 8,
19786582
18765824
1876824532

WANDDm®MH DO

1

1

OCOO0O0COO0COO00

1

2
Buff
2458
248
345
48
245
245
345
245
345

9

3
Clne
inf
£31
£
&2
514
£14
£14
514
14

?
os@mces y
4 L
Clev Det
inf inf
inf inf
irf irf
(52 inf
55 e inf
365 &7
€5 s
3585 &2
€8 (e

7

6
NYC
irtf
inf
189
189
189
1589
189
159
189

Wash
39
39
29
39
e
29
89
39
59

899989883~
BEBBBREERZ

Figure 5: Example of Dijkstra’s algorithm for finding shortest path

Dijkstra(Graph G, Source_Vertex S)

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V

If (DIST(S,V) + DIST(V.W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V.W)

Herzmton
nna

LI I = B A B)

BAL WdF QX O gt MY P Hee LASH
1 2 3 4 5 . & 7 8 9

L | 343 97 230 39

2 345 186 252 445 385 217

3 244 263 284 492

4 186 244 167 X7 125

5 52 263 167 -

& 145 07 92 386

7| 97 3835 92 208

8|30 N7 284 128 386 305 31

2{ W 492 231

Baltimore
Buffala

Cindnnag
Cleveland

Naw York
Philadelphia
Pittsburgh
Washington

Parent node: after opening up PITT Node (#8)
EXAMPLE OF DWKSTRA'S ALGORITHM

Settled Selected Bal

1 9

1.9 7
18,7 ©
1976 8
197865, 2
187682 4
18765824 3
1876824532

1

1

OCOO0O0COO0COO00

1

2
Buff
2458
248
345
48
245
245
345
245
345

8

3
Clne

inf
£31
£
&2
514
£14
£14
514
14

?

D m?uces y
4 L
Clev Det
inf inf
inf inf
irf irf
(52 inf
55 inf
6_35 é_aw
€5 s
3585 &2
€8 (e

7

6
NYC
irtf
inf
189
189
189
1589
189
159
189

N

BEBBBREEEZ

Wash
39
39
29
39
e
29
89
39
59

988989882

Figure 5: Example of Dijkstra’s algorithm for finding shortest path

Dijkstra(Graph G, Source_Vertex S)

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V

If (DIST(S,V) + DIST(V.W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V.W)

Herzmton
nna

LI I = B A B)

BAL WdF QX O gt MY P Hee LASH
1 2 3 4 5 . & 7 8 9

L | 343 97 230 39

2 345 186 252 445 385 217

3 244 263 284 492

4 186 244 167 X7 125

5 52 263 167 -

& 145 07 92 386

7| 97 3835 92 208

8|30 N7 284 128 386 305 31

2{ W 492 231

Baltimore
Buffala

Cindnnag
Cleveland

Naw York
Philadelphia
Pittsburgh
Washington

Parent node: after opening up Buff Node (#2)
EXAMPLE OF DWKSTRA'S ALGORITHM

Settled Selected Bal

1
1.9
18,7
1976
1.8786 8,
19786582
18765824
1876824532

WANDDm®MH DO

1

1

OCOO0O0COO0COO00

1

2
Buff
2458
248
345
48
245
245
345
245
345

8

3
Clne
inf
£31
£
&2
514
£14
£14
514
14

D B%NCES 2
4 S
Clev Det
int inf
inf inf
inf inf
856 inf
x5 inf
255 a7
L 72
%S g2
28 gz

7

e
NYC
irf
inf
189
189
189

e 189
189
189
189

Wash
39
39
29
39
e
29
89
39
59

§8999598988%~
BEBBBREERZ »

Figure 5: Example of Dijkstra’s algorithm for finding shortest path

Dijkstra(Graph G, Source_Vertex S)

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V

If (DIST(S,V) + DIST(V.W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V.W)

BAL WdF QX O gt MY P Hee LASH
1 2 3 4 5 . & 7 8 9

L | 343 97 230 39

2 345 186 252 445 385 217

3 244 263 284 492

4 186 244 167 507 125

5 52 263 167 -

& 145 07 92 386

7| 97 3835 92 208

8|30 N7 284 128 386 305 31

2{ W 492 231

Baltimore
Buffala
Cindnnas
Cleveland
Detroit

Naw York
Philadelphia
Pittsburgh
Washington

Once all nodes are settled, follow parent links to find path:
Detroit — Cleveland - Pittsburgh - Baltimore

e.g.

Herzmton
nna

LI I = B A B)

Parent node: after opening up CLE Node (#4)
EXAMPLE OF DUKSTRA'S ALGORITHM

Settled Selected Bal

1
1.9
18,7
1976
197865,
19786582
18765824
1876824532

WANDDm®MH DO

1

1

OCOO0OO0OO0O0OO0COO0C0

1

2
Buff
2458
248
345
48
245
245
345
245
345

8

3
Clne
inf
£3
£
&2
514
£14
£14
514
14

D B%NCES 4
4 S
Clev Det
int inf
inf inf
inf inf
856 inf
%65 inf
255 £97
L 72
%S g2
28 £z

7

6
NYC
irtf
inf
189
189
189
189
189
159
189

BEBREREEEZR. »

Wash
39
39
29
39
e
29
89
39
59

9889894882~ »

Figure 5: Example of Dijkstra’s algorithm for finding shortest path

Dijkstra(Graph G, Source_Vertex S)

While Vertices in G remain UNVISITED

Find closest Vertex V that is UNVISITED
Mark V as VISITED
For each UNVISITED vertex W visible from V

If (DIST(S,V) + DIST(V.W)) < DIST(S,W)
then DIST(S,W) = DIST(S,V) + DIST(V.W)

6. Pseudo Code for Dijkstra’s Algorithm (see figure 5)
Note: initialize all distances from Start vertex S
to each visible vertex. Al unknown di stances assumed
infinite. WMark Start Vertex S as VISITED, DI ST=0

Dijkstra(Graph G Source Vertex S)

{
While Vertices in Gremain UNVI SI TED
{
Find cl osest Vertex V that is UNVISI TED
Mark V as VI SI TED
For each UNVI SITED vertex Wvisible fromV
{
If (DIST(S,V) + DIST(V,W) < DIST(S, W
then DIST(S,W = DI ST(S,V) + DIST(V, W
}
}
}

7. Sketch of Proof that Dijkstra’s Algorithm Produces Min Cost Path

(a) At each stage of the algorithm, we settle a new node V" and that will be the minimum distance from the source
node S to V. To prove this, assume the algorithm does not report the minimum distance to a node, and let V/
be the first such node reported as settled yet whose distance reported by Dijkstra, Dist(V), is not a minimum.

(b) If Dist(V) is notthe minimum cost, then there must be an unsettled node X such that Dist(X)+ FEdge(X,V) <
Dist(V'). However, this implies that Dist(X) < Dist(V'), and if this were so, Dijkstra’s algorithm would
have chosen to settle node X before we settled node V' since it has a smaller distance value from S. Therefore,
Dist(X) cannot be < Dist(V'), and Dist(V') is the minium cost path from S'to V.

8. Improving Dijkstra: A* Algorithm — Heuristic Search

The A* algorithm searches a graph efficiently, with respect to a chosen heuristic. If the heuristic is “good,”
then the search is efficient; if the heuristic is “bad,” although a path will be found, its search will take more
time than probably required and possibly return a suboptimal path. The path cost at a node is F=G+H,
where G is the minimum distance to the current node from the start node, and H is the heuristic cost of
traveling from the current node to the goal. A* will produce an optimal path if it's heuristic is optimistic. An
optimistic, or admissible, heuristic always returns a value less than or equal to the actual cost of the
shortest path from the current node to the goal node within the graph.

The A* search has a priority queue which contains a list of nodes sorted by priority. This priority is
determined by the sum of the distance from the start node to the current node and the heuristic at the
current node. The first node to be put into the priority queue is naturally the start node. Next, we expand
the start node by popping the start node and putting all adjacent nodes to the start node into the priority
gqueue sorted by their corresponding priorities (path costs). Note that only unvisited nodes are added to
the priority queue. At each step, the highest priority node (i.e. least cost node) is dequeued and expanded
until the goal is reached. A*is greedy in that it tries to skew the search towards the goal. Breadth first
search can be thought of as search with heuristic function H=0 (i.e. no heuristic).

A W N PR, O S W N PR O

A W NP O

Opener

0,0
1,0
2,0
3,0
4,0
4,1
4,2
4,2
43
3,2
33
33
34
3,4
3,5

A* with a heuristic function =0 becomes Breadth First Search

A¥* Search on 4- neighbor Grid
Breadth First search expands more nodes than A*

A* is admissible if heuristic cost is an UNDERESTIMATE of the true cost

0 1 2 3 4 5
S
G

Example 1

0 1 2 3 4 5

0

1

2

3

4 5 6 7 8 9
A* Node Expansion (Example 1)

0 1 2 3 4 5

S

1

2

3 8 9 10 11

4 5 6 7 - G
A* Node Expansion (Example 2)

OPEN LIST - Example 2

Node
[0,0]
[1,0]
[2,0]
[3,0]
[4,0]
[41]
[4,2]
[4,3]
[3,2]
[3,3]
[2,2]
[2,3]
[3,4]
[3,5]
[2,4]
[4,5]

f
0+9
1+8
2+7
3+6
445
5+4
6+3
7+2
7+4
8+3
8+5
8+4
8+2
9+1
9+3

goal

O O WO OWNNOOULE, WNEROOMN

h f

9 9 0

8 9 1

7 9 2

6 9 3

5 9 4

4 9 5

3 9 6

2 9 7

4 11 8

3 11 9

5 13

4 12

2 10 10
1 10 11
3 12

expand order

0 1 2 3 4 5
0 0
1 1 12
2 2 9 13
3 3 7 10 14
4 4 5 6 8 11 15

Breadth First Search Node Expansion

0 1 2 3 4 5
0 9 8 7 6 5 4
1 8 7 6 5 4 3
2 7 6 5 4 3 2
3 6 5 4 3 2 1
4 5 4 3 2 1 0

Heuristic (L1 dist to Goal)
3 4 5

0
1
2
3 8 10|
4 6 7 11

A* Final Path

(follow goal node back via
Opener node to compute path)

Path Cost=f =g+h
g= min distance traveled to this node
h= heuristic cost to goal from this node

(we are using L1 metric cost on 4-neighbor grid)

A* is admissible if heuristic cost is an UNDERESTIMATE

of the true cost: h <= C(i,j)

TopBoft:
Topological Mobile Robot
Localization Using Fast Vision
Techniques

Paul Blaer and Peter Allen
Dept. of Computer Science, Columbia University
{psb15, allen}@cs.columbia.edu

Autonomous Vehicle for Exploration and
Navigation in Urban Environments

<

The AVENUE Robot:
« Autonomous.
 Operates in outdoor
urban environments.
 Builds accurate 3-D
models.

Current Localization
Methods:
« Odometry.
 Differential GPS.
* Vision.

Range Scanning Outdoor Structures

I

-
-~
7
-
-
&
-
2P
e
—
-
-~
e
-
-

."1"|'l|||'.'.

‘
.1 .,' !II qt"‘“

|9"‘

ltalilan House: Textured 3-D Model

R =

S
o Y

R

Main Vision System

.v : \ \.‘ B)\ v
)
\\l..\ \ n

M, A\.\»
Rl e et

m\. \‘:.\N.\m. rg

teees

e

S olgUR IR S AR U

P

fikl

Georgiev and Allen ‘02

Topological Localization

.-
.,,w —.
o Rl .i

")

[?__,.
%

« Odometry and GPS can fail.

 Fine vision techniques need an
estimate of the robot’s current
position.

Histogram Matching of Omnidirectional

Images:

e Fast.

* Rotationally-invariant.

* Finds the region of the robot.

* This region serves as a starting
estimate for the main vision system.

YR I

Omnidi
Ca

rectional
mera

Building the Database

* Divide the environment into a logical set of regions.

 Reference images must be taken in all of these regions.

* The images should be taken in a zig-zag pattern to cover
as many different locations as possible.

 Each Image Is reduced to three 256-bucket histograms,
for the red, green, and blue color bands.

An Image From the

Omnidirectional Camera

T A

» The camera points up to get a clear
picture of the buildings.

 The camera pointing down would
give images of the ground’s brick
pattern - not useful for histogramming.

 With the camera pointing up, the sun
and sky enter the picture and cause
major color variations.

» \We mask out the center of the image to
block out most of the sky.

 WWe also mask out the superstructure
assoclated with the camera.

https://youtu.be/et5Tgo-HJfk
allen
Typewritten Text
video

allen
Typewritten Text

Environmental Effects

* Indoor environments
 Controlled lighting conditions
 No histogram adjustments

 Qutdoor environments
« Large variations in lighting
 Use a histogram normalization with the percentage of color at each
pixel:

R G B

R+G+B R+G+B R+G+B

Indoor Image
Non-Normalized Histogram

Outdoor Image
Normalized Histogram

Matching an Unknown Image with the
Database

Compare unknown image to each image in the database.
Initially we treat each band (r, g, b) separately.

The difference between two histograms is the sum of the
absolute differences of each bucket.

Better to sum the differences for all three bands into a single
metric than to treat each band separately.

The region of the database image with the smallest
difference Is the selected region for this unknown.

Image Matching to the Database

A50000

400000

250000

300000
Histogram

Difference
250000

200000

150000

100000

T
"differences"

200
Database Image

The Test Environments

Indoor Outdoor Outdoor
(Hallway View) (Aerial View) (Campus Map)

Indoor Results

Region Images | Non-Normalized | Normalized
Tested | % Correct % Correct
1 21 100% 95%
2 12 83% 92%
3 9 7% 89%
4 5 20% 20%
5 23 4% 91%
6 9 89% 78%
7 5 0% 20%
8 5 100% 40%
Total 89 78% 80%

Ambiguous Regions

Outdoor Results

Region Images | Non-Normalized | Normalized
Tested | % Correct % Correct
1 50 58% 95%
2 50 11% 39%
3 50 29% 71%
4 50 25% 62%
5 50 49% 55%
6 50 30% 57%
7 50 28% 61%
8 50 41% 78%
Total 400 34% 65%

The Best Candidate Regions

DDDDDD

Difference
DDDDDD

Wrong Region,
Second-Lowest _
Difference P | Correct F_Qeg|on,

' Lowest Difference

DDDDDDD

DDDDDD

DDDDDD

Conclusions

* In 80% of the cases we were able to narrow down the robot’s
location to only 2 or 3 possible regions without any prior knowledge
of the robot’s position.

» Our goal was to reduce the number of possible models that the fine-
grained visual localization method needed to examine.

» Our method effectively quartered the number of regions that the
fine-grained method had to test.

Future Work

What is needed is a fast
secondary discriminator to
distinguish between the 2 or
3 possible regions.

Histograms are limited in
nature because of their total
reliance on the color of the
Scene.

To counter this we want to
Incorporate more geometric
data into our database, such
as edge Images.

