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Abstract

This chapter surveys basic methods for learning maps and high speed autonomous navigation for indoor
mobile robots. The methods have been developed in our lab over the past few years, and most of them
have been tested thoroughly in various indoor environments. The chapter is targeted towards researchers
and engineers who attempt to build reliable mobile robot navigation software.

1 Introduction

Building autonomous mobile robots has been a primary goal ofrobotics and artificial intelligence. This chapter
surveys some of the best methods for indoor mobile robot navigation that have been developed in our lab over the
past few years. The central objective of our research is to construct reliable mobile robots, with a special emphasis
on autonomy, learning, and human interaction. In the last few years, we have built a mobile robot system, RHINO,
which is capable of exploring and navigating in unknown indoor office environments with a speed of approximately
90 cm/sec. While doing so, it can learn metric and topological maps and, based on these, perform all kinds of
missions. In addition, RHINO is capable of locating and retrieving objects, delivering them to specific locations or
dumping them into trash-bins without human intervention, and giving tours to visitors.

The purpose of this article is to present the key ideas and algorithms underlying our research in a coherent and
accessible form, in order to share our experiences and, if possible, provide some guidance for building autonomous
mobile robots. The following list summarizes the primary software design principles underlying our approach.� Distributed and decentralized processing.Control is distributed and decentralized. Several on-board and

off-board machines are dedicated to several sub-problems of modeling and control. All communication
between modules is asynchronous. There is no central clock,and no central process controls all other
processes.� Any-time algorithms. Any-time algorithms are able to make decisions regardless of the time spent for
computation [12]. Whenever possible, any-time algorithmsare employed to ensure that the robot operates in
real-time.� Hybrid architecture. Fast, reactive mechanisms are integrated with computationally intense, deliberative
modules.� Models. Models, such as the two-dimensional maps described below, are used at all levels of the architecture.
Whenever possible, models are learned from data.



Figure 1: The robot RHINO.� Learning. Machine learning algorithms are employed to increase the flexibility and the robustness of the
system. Thus far, learning has proven most useful close to the sensory side of the system, where algorithms
such as artificial neural networks interpret the robot’s sensors.� Modularity. The software is modular. A plug-and-play architecture allows us to quickly reconfigure the
system, depending on the particular configuration and application.� Sensor fusion.Different sensors have different perceptual characteristics. To maximize the robustness of the
approach, most of the techniques described here rely on morethan just a single type of sensor.

These principles are important, since robots and their environments are complex physical systems. Robot envi-
ronments are dynamic and inherently unpredictable, and robot hardware often fails or malfunctions, as do our
computers and our communication networks. To control a robot reliably, the software must react adequately and
timely to sudden changes, failures, delays, or other unforeseen events—which requires special care when designing
robot control software.

This chapter focuses exclusively on robot navigation. In particular, it describes our current best approaches for
mapping indoor environments, and for high-speed exploration and navigation in dynamic environments. It is
organized as follows.

1. Mapping. Section 2 describes our method for constructing two-dimensional occupancy grids using sonar
sensors and the cameras. Artificial neural networks are usedto interpret sonar measurements. On top of the
grid-based maps, more compact topological maps are constructed that facilitate fast planning.

2. Localization. Localization is the problem of aligning the robot’s coordinate system with the global world
coordinates. Section 3 describes algorithms for self-localization and position tracking.

3. Navigation. Approaches to global path planning, exploration and reactive collision avoidance are described
in Section 4.

Most of the software has been developed using a B21 mobile robot manufactured by Real World Interface Inc.
The robot, shown in Figure 1, is a synchro-drive robot equipped with a stereo camera system and 24 ultrasonic
transducers (in short: sonars). Its maximum velocity is 90 cm/sec. Our robot is equipped with two on-board 486
personal computers that are connected via a radio Ethernet link to several SUN Sparc stations. Notice that currently
some of the processing is done off-board. For robots equipped with Pentium computers, the entire software is run
locally on the robot (except for the stereo vision system). Asecond radio link communicates video images to a
Datacube, a special-purpose machine for processing imagesin real-time. The robot is also equipped with active
infra-red proximity sensors and tactile sensors, which arecurrently being incorporated into our map building and
collision avoidance routines.



2 Mapping

Mapping refers to the process of constructing a model of the environment based on sensor measurements. This
section describes an approach that integratesgrid-basedandtopologicalrepresentations. Grid-based approaches,
such as those proposed by Moravec/Elfes [31] and Borenstein/Koren [4] and many others, represent environments
by evenly-spaced grids. Each grid cell contains a value which indicates the presence or absence of an obstacle in the
corresponding region of the environment. Topological approaches,such as those described in [15, 25, 26, 28, 35, 47],
represent robot environments by graphs. Nodes in such graphs correspond to distinct situations,places, or landmarks
(such as doorways). They are connected by arcs if there exists a direct path between them.

As argued in more detail elsewhere [45], both grid-based andtopological representations exhibit orthogonal
strengths and weaknesses: Grid-based maps are considerably easier to learn, partially because they facilitate
accurate localization, partially because they are easy to maintain. Topological maps, on the other hand, are more
compact and thus facilitate fast planning.

2.1 Grid-Based Maps

The metric maps considered here are two-dimensional, discrete occupancy grids, as originally proposed in [14, 31]
and since implemented successfully in various systems. Each grid-cell hx; yi in the map has anoccupancy value
attached (denoted byProb(occx;y)), which measures the robot’s subjective belief whether or not its center can be
moved to the center of that cell (i.e., the occupancy map models theconfiguration spaceof the robot, seee.g., [27]).
This section describes the two major steps in building grid-based maps (see also [43]):sensor interpretation, and
integration. Examples of metric maps are shown in various places in this chapter.

2.1.1 Sonar Sensor Interpretation

Sonar sensors measure approximate echo distances to nearbyobstacles, along with noise. To build metric maps,
sensor reading must be “translated” into occupancy valuesProb(occx;y) for each grid cellhx; yi. The idea here is
to train an artificial neural network using Back-Propagation[38] to map sonar measurements to occupancy values
[43, 48]. The input to the network consists of the four sensorreadings closest tohx; yi, along with two values that
encodehx; yi in polar coordinates relative to the robot (angle to the firstof the four sensors, and distance). The
output target for the network is 1, ifhx; yi is occupied, and 0 otherwise. Training examples can be obtained by
operating a robot in a known environment and recording and labeling its sensor readings; notice that each sonar
scan can be used to construct many training examples for differentx-y coordinates. In our implementation, training
examples are generated with a mobile robot simulator.

Once trained, the network generates values in[0; 1] that can be interpreted as probability for occupancy. Figure 2
shows three examples of sonar scans (top row, bird’s eye view) along with their neural network interpretation
(bottom row). The darker a value in the circular region around the robot, the larger the occupancy value computed
by the network. Figures 2a&b show situations in a corridor. Here the network predicts the walls correctly. Notice
the interpretation of the erroneous long reading in the leftside of Figure 2a, and the erroneous short reading in
2b. For the area covered by those readings, the network outputs roughly 0.5, which indicates its uncertainty.
Figure 2c shows a different situation in which the interpretation of the sensor values is less straightforward. This
example illustrates that the network interprets sensors inthe context of neighboring sensors. Long readings are only
interpreted as free-space, if the neighboringsensors agree. Otherwise, the network returns values close to 0.5, which
again indicates uncertainty. Situations such as the one shown in Figure 2c—that defy simple interpretation—are
typical for cluttered indoor environments.

Training a neural network to interpret sonar sensors has twokey advantages over hand-crafted approaches to sensor
interpretation. First, since neural networks are trained based on examples, they can easily be adapted to new
circumstances. For example, the walls in the competition ring of the 1994 AAAI robot competition [42] were
much smoother than the walls in the building in which the software was originally developed. Even though time
was short, the neural network could quickly be retrained to accommodate this new situation. Secondly, multiple
sensor readings are interpreted simultaneously. Most existing approaches interpret each sensor reading individually,
one-by-one, which can be problematic in practice. For example, the reflection properties of most surfaces depend
strongly on the angle of the surface to the sonar beam, which can only be detected by interpreting multiple sonar
sensors simultaneously.
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Figure 2: Sonar sensor interpretation: Three example sonarscans (top row) and local occupancy maps (bottom
row), generated by the neural network. Bright regions indicate free-space, and dark regions indicate walls and
obstacles (enlarged by a robot radius).

2.1.2 Stereo Camera Interpretation

A second source of occupancy information is the stereo camera system, which provides pairs of images recorded
simultaneously from different spatial viewpoints. Stereoimages are transmitted via a radio link to aDatacube,
a special-purpose computer for image processing. Like the human visual apparatus, stereo images can be used
to compute depth information (i.e., proximity). Put shortly, our approach [20, 21] analyzes stereo images for
co-occurrences of vertical edges. By analyzing the disparity of vertical edges found in both images the proximity
of obstacles is estimated, and projected onto a two-dimensional occupancy grid.

Figure 3 illustrates the stereo image analysis. Images are first pre-processed (separately for both channels) using
a set of three horizontalGabor filters[39]. Gabor filters, which are similar to local Fourier transforms, basically
band-filter images to obtain two local coefficients: Theamplitudeof a certain, filter-specific frequency, and its
phase. Vertical edges characterized by a sharp horizontal brightness difference yield large amplitudes; their precise
location in the image is determined with sub-pixel accuracybased on the phase. Figure 3a depicts one of the images,
and Figure 3b shows the vertical edges extracted from this image using Gabor filters. To establish correspondence
between the left and the right image, both amplitude and phase information is used to identify the projection of the
same real-world edge in both images. Once such a vertical edge has been identified in both images, its disparity
(spatial shift between both images) is used to estimate its proximity to the cameras (depth). A simple geometric
projection yields thex-y-location of the edge relative to the robot. Figure 3c shows the projected location (bird’s
eye view) of the edges found in Figure 3b; notice that the information concerning the height of an edge is lost
when projecting the edge information onto the two-dimensional plane. To construct the final occupancy grid (like
the one shown in Figure 3d), edges are enlarged by a robot radius, and the area between the edge projections and
the robot is marked as free-space. The last step relies on theassumption that vertical edges correspond to corners
of obstacles; since occupancy maps represent configurationspace, these edges are increased by a robot radius. To
compensate some of the uncertainty in depth estimation, corners of obstacles are smoothed with a Gaussian, and
the free-space between obstacles and the robot is smoothed with a logistic function (f(x)=(1+ e�x)�1). Notice
in our implementation, the Datacube pre-processes images at about 4 Hertz. The entire generation of occupancy
maps, most of which is done on a SUN Sparc station, requires currently less than a second.

When comparing the original image (Figure 3a) with the resulting map (Figure 3b), the door posts and two of the
posters can clearly be identified in the final map (large dark areas in the map). The region close to the white poster
does not contain clear vertical edges; thus the robot fails to identify the white wall. This example illustrates that
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Figure 3: Estimation of occupancy maps using stereo vision:(a) Left camera image, (b) sparse disparity map, (c)
two-dimensional edge projections, and (d) local occupancymap.

strictly speaking, occupancy maps derived from stereo vision contain only edges of obstacles—large unstructured
obstacles such as walls are “invisible” and hence will not bemapped. Consequently, stereo vision alone would not
be sufficient for building accurate maps. On the other hand, stereo vision gives more accurate obstacle information
than sonar sensors do, due to thehigher resolutionof cameras. It also frequentlydetects obstacles that are “invisible”
to sonar sensors, such as objects that absorb sound. As demonstrated below, stereo vision is well-suited to augment
sonar information.

2.1.3 Integration Over Time

Sensor interpretations must be integrated over time, to yield a single, consistent map. To do so, it is convenient to
interpret the interpretation of thet-th sensor reading (denoted bys(t)) as theprobability that a grid cellhx; yi is
occupied, conditioned on the sensor readings(t):Prob(occx;yjs(t))
A map is obtained by integrating these probabilities for allavailable sensor readings, denoted bys(1); s(2); : : : ; s(T ).
In other words, the desired occupancy value for each grid cell hx; yi can be written as the probabilityProb(occx;yjs(1); s(2); : : : ; s(T ));
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Figure 4: Grid-based map, constructed at the 1994 AAAI autonomous mobile robot competition with the techniques
described here.

which is conditioned onall sensor readings. A straightforward approach to estimatingthis quantity is to apply
Bayes’ rule. To do so, one has to assume independence of the noise in different readings. More specifically,
given the true occupancy of a grid cellhx; yi, the conditional probabilityProb(s(t)joccx;y) must be assumed to be
independent ofProb(s(t0)joccx;y) if t 6= t0. This assumption (a Markov assumption [10]) is commonly made in
approaches to building occupancy grids. The desired probability can now be computed as follows:Prob(occx;yjs(1); s(2); : : : ; s(T ))= 1� 1+ Prob(occx;y)

1�Prob(occx;y) TY�=1

Prob(occx;yjs(�))
1�Prob(occx;yjs(�)) 1�Prob(occx;y)Prob(occx;y) !�1

(1)

HereProb(occx;y) denotes the priorprobability for occupancy (which, if set to 0.5, can be omitted in this equation).
The derivation of this formula is straightforward and can befound in [31, 34]. Notice that this formula can be used
to update occupancy values incrementally.

An example map of a competition ring constructed at the 1994 AAAI autonomous mobile robot competition is
shown in Figure 4. This map has been constructed exclusivelyfrom sonar information. Figure 5 illustrates the
advantage of integrating sonar and stereo vision. All threemaps shown there show the same experiment. The
map shown in Figure 5a has been constructed purely based on sonar information. While sonar models walls well,
it misses the two sound-absorbing chairs in the middle of thehallway. Stereo vision (Figure 5b) detects these
chairs, but fails to detect a glass door at the top of the diagram. The map in Figure 5c, which is superior to both
single-sensor maps since is contains the chairs and models the walls consistently, is obtained by integrating both
maps. Notice that both maps were integrated by taking themaximumoccupancy value, at each grid cell. Taking
the maximum is the most conservative way to integrate maps, since all obstacles are preserved. In principle, the
maps could also have been integrated by (1); however, then the result is influenced by the relative frequency of
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Figure 5: Maps built in a single run (a) using only sonar sensors, (b) using only stereo information, and (c)
integrating both. Notice that sonar models the world more consistently, but misses the two sonar-absorbing chairs
which are found using stereo vision.

sonar and camera measurements which in this example makes the obstacles disappear.

2.2 Topological Maps

Topological maps represent robot environments as graphs, where nodes correspond to distinct places, and arcs
represent adjacency. A key advantage of topological representations is their compactness. In our approach,
topological maps are built on top of the grid-based maps. Thebasic idea is simple but very effective: The free-
space of a grid-based map is partitioned into a small number of regions, separated bycritical lines. Critical lines
correspond to narrow passages such as doorways. The partitioned map is then mapped into an isomorphic graph.
The precise algorithm works as follows:

1. Thresholding. Initially, each occupancy value in the occupancy grid is thresholded. Cells whose occupancy
value is below the threshold are considered free-space (denoted byC). All other points are considered
occupied (denoted bȳC).

2. Voronoi diagram. Consider an arbitrary pointhx; yi 2 C in free-space. Thebasis pointsof hx; yi are the
closest point(s)hx0; y0i in the occupied spacēC, i.e., all pointshx0; y0i 2 C̄ that minimize the Euclidean
distance tox; y. We will call these pointshx0; y0i thebasis points ofhx; yi, and the distance betweenhx; yi
and its basis points theclearance ofhx; yi. The Voronoi diagram, which is a form of skeletonization [27], is
the set of points in free-space that have at least two different (equidistant) basis-points. Figure 6a sketches
the Voronoi diagram for the map shown in Figure 4.

3. Critical points. The key idea for partitioning the free-space is to find“critical points.” Critical pointshx; yi
are points on the Voronoi diagram that minimize clearance locally. In other words, each critical pointhx; yi
has the following two properties: (a) it is part of the Voronoi diagram, and (b) there exists an" > 0 for which
the clearance of all points in an"-neighborhood ofhx; yi is notsmaller.

4. Critical lines. Critical lines are obtained by connecting each critical point with its basis points (cf. Figure 6b).
Critical points have exactly two basis points (otherwise they would not be local minima of the clearance
function). Critical lines partition the free-space into disjoint regions (see also Figure 6c).

5. Topological graph. The partitioning is mapped into an isomorphic graph. Each region corresponds to a node
in the topological graph, and each critical line to an arc.



(a) Voronoi diagram (b) Critical lines (and critical points)

(c) Regions (d) Topological graph

Figure 6: Extracting the topological graph from the map depicted in Figure 4: (a) Voronoi diagram, (b) Critical
points and lines, (c) regions, and (d) the final graph. (e) and(f) show a pruned version (see text).

Figure 6d shows an example of a topological graph. The compression is enormous: The topological graph has 67
nodes, whereas the original map contains 27,280 occupied cells. Notice that critical lines are useful fordecomposing
metric maps primarily for two reasons. Firstly, when passing through a critical line, the robot is forced to move
in a considerably small region. Hence, the loss in performance inferred by planning using the topological map
(as opposed to the grid-based map) is considerably small. Secondly, narrow regions are more likely blocked by
obstacles (such as doors, which can be open or closed).

3 Localization

Localization is the process of aligning the robot’s local coordinate system with the global coordinate system of the
map. Localization is particularly important (and particularly difficult) for map-based approaches that learn their
maps, since the accuracy of a metric map depends crucially onthe alignment of the robot with its map [17, 37].
Figure 7 gives an example that illustrates the importance oflocalization in robot mapping. In Figure 7a, the position
is determined solely based on dead-reckoning. After approximately 15 minutes of robot operation, the position
error is approximately 11.5 meter. Obviously, the resulting map is too erroneous to be of practical use. Figure 7b
is the result of applying the position tracking method described below. In fact, none of the maps presented in the
previous section would have been possible without our methods for localizing the robot based on sensor input.
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Figure 7: Map constructed without (a) and with (b) the position estimation mechanism described in this article. In
(a), only the wheel encoders are used to determine the robot’s position. The positional error accumulates to more
than 11 meter, and the resulting map is clearly unusable. This illustrates the importance of sensor-based position
estimation for map building.

Identifying and correcting for slippage and drift is thus a most important issue in map building.

An excellent overview over different approaches to localization can be found in [17]. Traditionally, localization
addresses two sub-problems which are often attacked separately:

1. Position Tracking. Position tracking refers to the problem of estimation the location of the robot while it is
moving. Drift and slippage impose limits on the ability to estimate the location of the robot within its global
map. As Figure 7 demonstrates, even the smallest errors in the robot’s odometry can have devastating effects.
The problem of position tracking is particularly difficult to solve if mapping is interleaved with localization.

2. Global localization. Global localization is the problem of determining the position of the robot under global
uncertainty. This problem arises, for example, when a robotuses a map that has been generated in a previous
run, and when it is not informed about its initial location within the map.

Global localization and position tracking are two sides of the same coin: localization under uncertainty. In our
current implementation, different computational mechanisms are used for localization within a previously learned
map (global localization and position tracking), and position tracking when interleaved with exploration and
mapping. Each of these approaches exploits the specific properties of the two problems.

3.1 Probabilistic Model

The problem of localization is most generally described in probabilistic terms. Letl(t) denote the location of the
robot at timet. For mobile robots,l is usually three-dimensional (x-y location and heading direction).l is not
directly accessible,i.e., the robot does not know where it is. Instead, it maintains aninternal belief as to where it
might be, and uses its sensors periodically to update this belief. It is convenient to denote the belief as a probability
densityProb(t)(l) over locationsl. The problem of localization is then to estimateProb(t)(l) so that it matches as



closely as possible the true location,l(t). Initially, at timet=0,Prob(0)(l) may be distributed uniformly, assuming
that the robot does not know its initial location, or, alternatively,Prob(0)(l) may contain a single peak atl(0) if the
robot happens to know its location.Prob(l) is updated whenever the robot senses, using mostly ad hoc approaches
to determine the conditional probabilityProb(s(t)jl):Prob(t)(l)  � � Z Prob(t�1)(l) �Prob(s(t)jl) dl (2)

Here� is a normalizer,s(t) is the sensor input at timet, andProb(s(t)jl) is the probability of observings(t) when
at l. Strictly speaking, the update formula (2) is only valid under a conditional independence (Markov) assumption:
Given the true location of the robot and the true model of the environment, subsequent sensor readings must be
conditionally independent. In practice, we have found thisapproach to be fairly robust to various kinds of violations
of this assumption (dependencies are due to non-stationaryin the environment, model errors, crude representations
of the space of locations, or unmodeled robot dynamics). However, the key thing to note here is that the problem
of localization requires (a) sensors (to obtains(t)) and (b) knowledge aboutProb(s(t)jl), i.e., the probability of
observings(t) at l. We currently employ and integrate a variety of different sensor modalities:� Wheel encoders.Wheel encoders measure the revolutionof the robot’swheels. Based on theirmeasurements,

odometry yields an estimate of the robot’s locationl(t) which, when expressed relative to the robot’s previous
location,l(t�1), is impressively accurate. To model errors in odometry, we assume that the position at timet
is distributed normally around the very location measured by odometry. The probabilityProb(s(t)jl), thus,
is normally distributed.� Map matching. As described above, every sensor reading is converted into a“local” map (such as the ones
shown in Figures 2 and 3). The robot can localize itself by comparing the global with the local map. More
specifically, thepixel-wise correlationof the local and the global map—which is a function of the robot’s
location—is a measure of their correspondence [40]. The more correlated the maps are, the more likely is the
corresponding location of the robot. Thus, the probabilityProb(s(t)jl) is assumed to be proportional to the
correlation of both maps if the robot were atl. See [46] for more details.� Sonar modeling. Another source of information for localization, which we have begun to explore more
recently [7], is obtained using a simplistic model of sonar sensors. In essence, it is assumed that each grid
cell in the global map possesses a certain probability of being detected by a sonar sensor. More specifically,
our model assumes that with probabilityProb(detecti;x;y) thei-th sonar sensor detects an obstacle athx; yi
(whereProb(detecti;x;y) is a monotonic function ofProb(occx;y), which is 0 if hx; yi does not lie in the
perceptual field of thei-th sensor, see [7]). For simplicity, we also assume that thedetection probability is
independent for different values ofi, x, andy.
Sonar sensors return the distance to thenearestobstacle. Thus, the probability that an obstacle is detected at
distanced is given by the probability that one or more cells at distanced respond, times the probability that
no obstacle at distance smaller thand is detected. Put mathematically, letd(i; hx; yi) denote the distance ofhx; yi to thei-th sonar sensor. Then the probability of measuring a specific distance, saysi, is given byProb(si) = �0@1� Yd(i;hx;yi)=si(1�Prob(detecti;x;y))1A Yd(i;hx;yi)<si(1�Prob(detecti;x;y))
where� is a normalization factor that ensures that the probabilities for different measurementssi sum up to
1. Here only cells that are in the primary perceptive field of thei-th sonar sensor are considered (a 15 degree
cone). Notice that the distribution ofProb(si) bears close resemblance to a geometric distribution.

The probability of observing the entire sonar scans(t) at l, Prob(s(t)jl), is the product of the individual
sensor probabilities:Prob(s(t)jl) = 24Yi=1

Prob(s(t)i ) (3)

Notice that the model of sonar sensors is extremely simplistic, partially because it considers only the main
cone of sonar sensors (ignoring the side cones), and partially because it assumes independence between
different grid cells, ignoring cumulative effects in the reflection of sound. However, it can be computed very
efficiently, which is important if the location of the robot shall be estimated in real-time.



Figure 8: Wall, detected by considering five adjacent sonar measurements. Wall orientations are used to correct
for dead-reckoning errors in the robot orientation.� Maneuverability. Assuming the map is correct, the mere fact that a robot moves to a locationhx; yi makes

it unlikely that this location is occupied. Thus, the globalmap can be used to derive further probabilistic
constraints on the robot location. More specifically, our approach assumes that the probability of being athx; yi is proportional to the probability of this grid cell being unoccupied:Prob(hx; yi) = (1� Prob(occx;y))
where is an appropriate normalization factor.� Wall orientation. A final source information, which can be used to correct rotational errors, is theglobal
wall orientation[11, 22]. This approach rests on the restrictive assumptionthat walls are either parallel or
orthogonal to each other, or differ by more than 15 degrees from these canonical wall directions. In the
beginning of robot operation, the global orientation of walls is estimated by searching straight line segments
in consecutive sonar measurements (cf. Figure 8). Once the global wall orientation has been estimated, it is
used to readjust the robot’s orientation based on future sonar measurements. See [46] for more details.� Landmarks. Landmarks are used in various approaches to mobile robot localization (seee.g., [3, 25, 32]
and references in [44]). We recently have begun to explore mechanisms that enable a robot to select its own
landmarks, based on sonar and camera input. The key idea underlying this approach is to train artificial
neural networks to recognize landmarks by minimizing theaverage localization error(assuming that update
rule (2) is applied in localization). As a result, our robot successfully “discovered” a variety of useful visual
landmarks, such as doors, wall color, ceiling lights and so on. Details of the algorithm and performance
results are surveyed in [44].

This list of sources for estimatingl has been developed over the last few years. Some of these methods make
strong assumptions on the correctness of the global map (e.g., the maneuverability method), hence cannot be
interleaved with map learning. The reader should also notice that the computational complexity of these approaches
differ significantly. For example, the map matching approach, as it is currently implemented, requires extensive
comparisons of maps, whereas wall orientations can be determined very efficiently.

3.2 Global Localization

Global localization addresses the problem of mobile robot localization under global uncertainty. To localize the
robot globally, the entire densityProb(l) for arbitrary locationsl is computed. In our current implementation,Prob(l) is approximated using a grid representation, just like the occupancy grids described in Section 2. The
orientation of the robot is represented with 1� resolution. Currently, only the wheel encoders, sonar modeling and
maneuverability are used to localize the robot. To updateProb(l) in real-time while the robot is in motion, only
a subset of sonar readings is currently considered in globalpositioning, since the process of updatingProb(l) is
computationally expensive. From the previous list of sensor modalities, the global localization approach utilizes
wheel encoders and sonar sensors, using the sonar modeling and maneuverability approach.

Figure 9a shows a path taken by the robot in the arena depictedin Figure 4 (same arena, different run). As shown
in that figure, twelve sonar sweeps were used for the global position estimation, each of which consisted of eight
sensor readings. Figure 9b shows the logarithm of the density Prob(l) (maximized over all orientations) after
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Figure 9: Initial self-localization: (a) Path of the robot, (b)Prob(l) after evaluating six sonar readings, and (c)Prob(l) after evaluating twelve sonar readings, both plotted logarithmically.

evaluating six of these twelve sensor scans. Although thosesix readings appear to be insufficient for uniquely
localizing the robot, the density indicates that the robot is most likely in a corridor. After evaluating all twelve
sensor readings (Figure 9c), the position of the robot is uniquely determined. Notice that the probability of the
“correct” grid cell in Figure 9c is approximately 0.96, while the value of the second largest peak is less than
8 � 10�6. Notice the approach deals adequately with uncertainty andambiguities, as demonstrated by the empirical
examples. The global localization approach has also given very reliable results for real-time position tracking [8].
However, since this approach estimates the robot’s location in a previously learned map, it is not applicable during
exploration and map learning.

3.3 Position Tracking When Learning Maps

When learning maps, the initial location is known by definition (e.g., is defined to be origin of the global coordinate
system). Thus, during exploration, position control seeksto compensate for short-term localization errors such as
slippage and drift. The key assumption here is that the position of the robot is known except for some small error,
so that instead of estimating an entire probability distribution, it suffices to keep track of themost likelylocation of
the robot. Our current best approach for position tracking differs from the above approach to localization in two
aspects (cf. [43, 46]):

1. The approach estimates only the pointl that maximizesProb(l), instead of the entire density. The advantage
of tracking only one value is two-fold: the space of localization does not have to be represented discretely (or
by parametric densities), and the approach is computationally much more efficient. It comes at the obvious
disadvantage that complex distributions, such as multi-modal distributions, cannot be represented. Thus, once
the position is lost, this approach is unable to recover. However, if the initial location is known, we almost
never observed that the location was estimated inaccurately.

2. Mainly for historical reasons, our approach to position tracking relies only on wheel encoders, map matching
and the wall orientation to estimate location. Position control based on wheel encoders and map matching
alone works well if the robot travels through mapped terrain, but ceases to function if the robot explores and
maps unknown terrain. The third mechanism, which arguably relies on a restrictive assumption concerning
the nature of indoorenvironments, has proven extremely valuable when autonomously exploring and mapping
large-scale indoor environments.

Position tracking is implemented in an any-time fashion, using gradient descent to estimate the location that
maximizesProb(l). When a new sonar reading arrives, the previous gradient search is terminated and its result



is incorporated into the current position estimation. In practice, we have found this approach to be fast enough to
accurately track the robot position even if the robot is mapping unknown terrain with maximum velocity. Notice
that all maps shown in this chapter (with the exception of themap shown in Figure 7a) have been generated using
this position tracking approach.

4 Navigation

This section is concerned with robot motion. RHINO’s navigation system consists of two modules: A global
planner [43], and a reactive collision avoidance module [19, 18]. Control is generated hierarchically: The global
path planner generates minimum-cost paths to the goal(s) using the map. As a result, it communicates intermediate
sub-goals to the collision avoidance routine, which controls the velocity and the exact motion direction of the
robot reactively, based on the most recent sensor measurements only. Both modules adjust their plans/controls
continuously in response to the current situation.

Notice that both approaches—the global path planner and thereactive collision avoidance approach—are char-
acterized by orthogonal strengths and weaknesses: The collision avoidance approach is easily trapped in local
minima, such as u-shaped obstacle configurations [27]. However, it reacts in real-time to unforeseen obstacles
such as humans, and is capable of changing the motion direction while the robot is moving. The global planner, in
contrast, does not suffer from the local minimum problem, since it plans globally. It alone, however, is not sufficient
to control the robot, since it does not take robot dynamics into account, and since learned maps are incapable of
capturing moving obstacles. Thus, global planning alone would simply not avoid collisions with humans and other
rapidly moving obstacles.

4.1 Path Planning with Grid-Based Maps

The idea for path planning is to let the robot always move on a minimum-cost path to the goal (or the nearest goal,
if multiple goals exist); The cost for traversing a grid cellis determined by its occupancy value. The minimum-cost
path is computed using a modified version ofvalue iteration, a popular dynamic programming algorithm [2, 24]:

1. Initialization. The grid cell that contains the target location is initialized with 0, all others with1:Vx;y  � �
0; if hx; yi target cell1; otherwise

2. Update loop. For all non-target grid cellshx; yi do:Vx;y  �min�=�1;0;1�=�1;0;1 fVx+�;y+� + Prob(occx+�;y+�)g
Value iteration updates the value of all grid cells by the value of their best neighbors, plus the costs of moving
to this neighbor (just like A* [33]). Cost is here equivalentto the probabilityProb(occx;y) that a grid cellhx; yi is occupied. The update rule is iterated. When the update converges, each valueVx;y measures the
cumulative costfor moving to the nearest goal. However, control can be generated at any time, long before
value iteration converges.

3. Determine motion direction. To determine where to move, the robot generates a minimum-cost path to the
goal. This is done by steepest descent inV , starting at the actual robot position. The steepest descent path is
then post-processed to maintain a minimum clearance to the walls and, if possible, to move parallel to walls,
using the global wall orientation described in the previoussection. Determining the motion direction is done
in regular time intervals and is fully interleaved with updatingV .

Figure 10 showsV after convergence with one and two goals, respectively, using the map shown in Figure 4. The
grey-level indicates the cumulative costsV for moving towards the nearest goal point. Notice that everylocal
minimum in the value function corresponds to a goal. Thus, for every pointhx; yi, steepest descent inV leads to
the nearest goal point.

Unfortunately, plain value iteration is too inefficient to allow the robot to navigate and learn maps in real-time.
Strictly speaking, the basic value iteration algorithm canonly be applied if the cost function does not increase
(which frequently happens when the map is modified). This is because when the cost function increases, previously
adjusted valuesV might become too small. While value iteration quickly decreases values that are too large,



Figure 10:Path planning with dynamic programming. Value functionsV , computed by value iteration for (a)
one goal and (b) two goals (goals are marked by “0”). By following the grey-scale gradient, the robot moves to the
next unexplored area on a minimum-cost path.

increasingtoo small a value can be arbitrarily slow [43]. Consequently, the basic value iteration algorithm requires
that the value function be initialized completely (Step 1) whenever the map—and thus the cost function—isupdated.
This is very inefficient, since the map is updated almost constantly. To avoid complete re-initializations, and to
further increase the efficiency of the approach, the basic paradigm was extended in the following way:

4. Selective reset phase.Every time the map is updated, valuesVx;y that are too small are identified and reset.
This is achieved by the following loop, which is iterated:
For all non-goalhx; yi do:Vx;y  �1 if Vx;y < min�=�1;0;1�=�1;0;1 fVx+�;y+� +Prob(occx+�;y+� )g
Notice that the remainingVx;y-values are not affected. Resetting the value table is a version of value iteration.

5. Bounding box. To focus value iteration, a rectangular bounding box[xmin; xmax]� [ymin; ymax] is maintained
that contains all grid cells in whichVx;y may change. This box is easily maintained in the value iteration
update. As a result, value iteration focuses on a small fraction of the grid only, hence converges much faster.
Notice that the bounding box bears similarity to prioritized sweeping [30].

Value iteration is a very general procedure, which has several properties that make it attractive for real-time mobile
robot navigation:� Any-time algorithm. As mentioned above, value iteration can be understood as an any-time planner [12].

Consequently, value iteration allows the robot to move in real-time, even though some of its motion commands



might be sub-optimal.� Full exception handling. Value iteration pre-plans for arbitrary robot locations. This is becauseV is
computed for every location in the map, not just the current location of the robot. Consequently, the robot can
quickly react if it finds itself in an unexpected location, and generate appropriate motion directions without
any additional computational effort. This is particularlyimportant in our approach, since the robot uses a
fast routine for avoiding collisions (described below) which adjusts the motion direction commanded by the
planner based on sensor readings.� Exploration. To autonomously acquire a map, the robot has to explore. For exploration, the same value
iteration algorithm is employed, with the only exception that goals correspond to unexplored grid cells.
Figure 11a shows an autonomous exploration run. At the current point, the robot has already explored the
major hallways and is about to continue to explore an interior room. Circular motion, such as found in the
bottom of this plot, occur when two unexplored regions are about equally far away (=same costs). Notice
that the complete exploration run shown here took less than 15 minutes. The robot moved constantly and
frequently reached a velocity of 80 to 90 cm/sec (see also [6,19]).
Figure 11b shows the exploration value function. All white regions are unexplored,and the grey-level indicates
the cumulative costsV for moving towards the nearest unexplored point. The value function indicates the
robot would continue exploration by moving straight ahead.� Multi-agent exploration. Since value iteration generates values for all grid-cells,it can easily be used for
collaborative multi-agent exploration.

In grid maps of size 30 by 30 meter, optimized value iteration, done from scratch, requires approximately 2 to 10
seconds on a SUN Sparc station. In cases where the selective reset step does not reset large fractions of the map
(which is the common situation), value iteration convergesin less than a second. For example, the planning time
in the map shown in Figure 4 lies generally under 2 seconds, and most of the time under a tenth of a second. In
the light of these results, one might be inclined to think that grid-based maps are sufficient for autonomous robot
navigation. However, value iteration (and similar planning approaches) requires time quadratic in the number of
grid cells, imposing intrinsic scaling limitations that prohibit efficient planning in large-scale domains. Due to
their compactness, topological maps scale much better to large environments. In what follows we will describe our
approach to path planning with topological maps.

4.2 Path Planning with Topological Maps

The enormous compactness of topological maps—when compared to the underlying grid-based map—increases
the efficiency of planning. To replace the grid-based planner by a topological planner, the planning problem is split
into three sub-problems, all of which can be tackled separately and very efficiently.

1. Topological planning. First, paths are planned using the abstract, topological map. Shortest paths in the
topological maps can easily be found using one of the standard graph search algorithms, such as Dijkstra’s or
Floyd/Warshal’s shortest path algorithm, A*, or dynamic programming. In our implementation, we used the
value iteration approach described in Section 4.1.

2. Triplet planning. To translate topological plans into motion commands,a so-called “triplet planner” generates
(metric) paths for each set of three adjacent topological regions in the topological plan. More specifically, letT1; T2; : : : ; Tn denote the plan generated by the topological planner, whereeachTi corresponds to a region
in the map. Then, for each triplethTi; Ti+1; Ti+2i (i = 1; : : : ; n�1 andTn+1 := Tn), and each grid cell inTi, the triplet planner generates shortest paths to the cost-nearest point inTi+2 in the grid-based map, under
the constraint that the robot exclusively moves throughTi andTi+1. For each triplet, all shortest paths can
be generated in a single value iteration run: Each point inTi+2 is marked as a (potential) goal point, and
value iteration is used to propagate costs throughTi+1 to Ti just as described in Section 4.1. Triplet plans
are used to “translate” the topological plan into concrete motion commands: When the robot is inTi, it
moves according to the triplet plan obtained forhTi; Ti+1; Ti+2i. When the robot crosses the boundary of two
topological regions, the next triplet planhTi+1; Ti+2; Ti+3i is activated. Notice that the triplet planner can be
used to move the robot to the region that contains the goal location.

3. Final goal planning. The final step involves moving to the actual goal location, which again is done with
value iteration. Notice that the computational cost for this final planning step does not depend on the size of
the map. Instead, it depends on the size and the shape of the final topological regionTn, and the location of
the goal.
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Figure 11:Autonomous exploration. (a) Exploration path and (b) value function during exploration. notice that
the large black rectangle in (b) indicates the global wall orientation.

The key advantage of this decomposition is that all the expensive computation required for path planning can be
done off-line, for all path planning problems. As documented in [45, 46], planning using the topological map is
between three and four orders of magnitude more efficient than planning with the grid-based map, for maps similar
to those shown in this chapter. On the other hand, plans generated with the topological map are typically between
1% and 4% longer than plans generated using the grid-based map, numbers that are considerably small given the
huge computational savings.

4.3 Collision Avoidance

The task of the collision avoidance routine is to navigate the robot to sub-goals generated by the planner, while
avoiding collisions with obstacles. It adjusts the actual velocity of the robot and chooses the concrete motion
direction. For obvious reasons, the collision avoidance module must operate in real-time. When the robot moves as
fast as 90 cm/sec, it is imperative that the robot dynamics (inertia, torque limits) are taken into account, particularly
because the path planner considers only robot kinematics. The remainder of this section describes the“dynamic
window approach”to collision avoidance [19, 18], our currently best collision avoidance routine.

The key idea of the dynamic window approach is to choose control in thevelocity spaceof the robot. Figure 12 shows
an example of the robot traveling down a hallway with a certain velocity, and Figure 13 shows the corresponding
velocity space. The velocity space is a projection of the configuration space (with a fixed kinematic configuration).
The horizontal axis in Figure 13 measures the rotational velocity, denoted by!, and the vertical axis depicts the
translational velocity, denoted byv. The actual velocity of the robot is a single point in this diagram (in the center
of the white region). The robot sets its velocities in regular time intervals (in our current implementation every
0.25 seconds). To ensure that the robot travels safely and makes progress towards the goal, it has to obey a variety
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of constraints, which are described in turn.

4.3.1 Hard Constraints

Hard constraints are imposed by the requirement to not to collide with obstacles, and by the dynamics of the robot.

1. Torque limits. Torque limits impose bounds as to how the robot might change its velocity in the immediate
next decision interval. In the example shown in Figure 13, these bounds are visualized by the rectangleVd.

2. Safety. Obstacles impose additional constraints on the velocity. Velocities with which the robot would
inevitably collide, even if decelerated maximally after the decision interval, are not admissible. The dark
regions in Figure 13 illustrate such regions in the velocityspace. Notice that obstacles such as walls are
directly mapped into the velocity space.

These constraints are hard constraints,i.e., for obvious reasons the robot must obey them. In Figure 13, the space
of admissible velocities under these constraints is depicted in white color. Notice that these constraints do not
specify preferences, neither do they contain goal-relatedinformation.

4.3.2 Soft Constraints

Soft constraints impose preferences on the motion direction and velocity of the robot. Currently, three soft
constraints are used:

1. Target heading. The target heading, denotedheading(v; !), is defined as the absolute angle of the target
(sub-goal) relative to the robot’s heading direction after0.25 seconds of robot motion. The target point is
usually set by the path planner. Ifheading(v; !) = 0, the target would be right in front of the robot at the
beginning of the next time interval. To make progress towards its target, it is desired that the robot move
towards it,i.e., the target heading be as close as possible to zero.

2. Clearance.The clearance, denoted bydist(v; !), is defined as the free distance in front of the robot, assuming
that the robots sets its velocity once and does not change it thereafter. By maximizing clearance, the robot
avoids being close to obstacles.

3. Translational velocity. The translational velocityv is also maximized, which causes the robot to always
move as fast as permitted by the other constraints.

Notice that all three soft constraints,heading(v; !), dist(v; !), andv, are functions ofv and!. The actual velocity,
denoted byhv�; !�i, is obtained by maximizing a linear combination of these constraints:hv�; !�i = argmaxv;! ���1 � jheading(v; !)j + �2 � dist(v; !) + �3 � v� (4)

Here�1, �2, and�3 are constants which trade off the three different soft constraints, thus determine the overall-
behavior of the robot. In our approach, (4) is optimized by discrete grid-search.

Figure 14 depicts thevalue(argument of the “argmax” in (4)) corresponding to the situation depicted in Figure 12,
as a function of the velocitiesv and!. Values that would violate the safety constraint are set to zero. The
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Figure 15. Trajectory through a cluttered corridor.

shape of the remaining function indicates that higher translational velocities are generally preferable, and that the
rotational velocity possesses an “optimal” value, which isdictated by the target heading (ridge towards the right in
Figure 14). The global maximum, marked by the vertical line in Figure 14, corresponds to a sharp right turn for
moving directly through the door (see Figure 12). Notice that the dynamic window (torque limits) is not shown in
Figure 14. If the dynamics of the robot do not permit such a turn, the robot would instead move straight, decelerate
and eventually backup. Notice that taking the robot dynamics into account is important if the robot travels at more
than 30 cm/sec—if the dynamics were ignored, an attempt to turn at high speed easily results in a collision.

4.3.3 Using Sensors

While the constraints are sufficient to generate collision-free robot control if the model of the environment is
correct, sensors are erroneous and models err. Thus, our approach employs a variety of additional strategies to
recover from errors in perception.

1. Sensor data.In reality, exact locations of obstacles are unknown. Maps react very slowly to changes in the
environment, they are incapable of modeling fast-moving obstacles, and they typically lag behind due to the
computational costs involved in sensor interpretation andlocalization. Thus, the dynamic window approach
works with raw proximity data, as obtained by sonar sensors or computer vision (see below). Every sensor
reading can potentially constrain the motion of the robot; however, sensor readings are only memorized for
approximately three seconds. Such an approach is maximallyconservative in the sense that no sensor reading
is ignored. Nevertheless, the relatively short temporal window make it adapt quickly to moving obstacles.

2. Smoothing. The objective function is smoothed, to increase the side-clearance of the robot and to decrease
the sensitivity to noise in the sensor readings.

3. Safety margin. To travel safely at high speed, the robot is enlarged by a safety margin. This safety margin
increases with the forward velocity. As a result, the robot keeps safe distances to obstacles when traveling at
high speed, while still being able to move through narrow doors with low speed.

4. Rotate away mode.Due to sensor noise and changes in the environment, it can happen that every non-zero
velocity violates a hard constraint. In such cases, which are rare in practice, the robot turns completely away
from the nearest obstacle, from which point on it resumes normal operation.

Figure 15 shows an example of the robot traveling through a cluttered environment, purely based on sonar
information. All obstacles in the corridor are smoothly circumvented with a maximal speed of 90 cm/sec.
Although in this experiment the robot decelerated to approximately 20 cm/sec when passing through the narrowest
passage, it still maintained an average speed of 65 cm/sec. In extensive experiments we found that the dynamic
window approach controls the robot very reliably even in populated environments with obstacles that are hard to
detect for sonar sensors.

4.4 Real–Time Vision



Figure 16: Two indoor scenes with obstacles and the corresponding image segmentation.

Sonars are convenient sensors in that they directly generate proximity information. However, they fail to detect
obstacles outside their perceptual range,e.g., small objects on the floor, and they also frequently fail to detect
obstacles with sound-absorbing surfaces. To supplement the sonar information, a real–time vision module for
obstacle detection is integrated into collision avoidance. Our monocular vision module is able to robustly detect
and locate obstacles on the floor, based on image segmentation and discriminant analysis. The main processing
stages are as follows.

1. Pre-processing.The color image is low–pass filtered and subsampled, typically to 150� 120 pixels.

2. Edge Detection. The subsampled image is convolved with a gradient operator to detect vertically and
horizontally oriented edges.

3. Pre-segmentation.A fast, pixel–based image segmentation evaluates the localcontrast between pixels and
links them together if the contrast is below a certain threshold �0 [1]. This pre-segmentation usually results
in an over–segmented image with many small region patches.

4. Segmentation. Neighboring regions are merged [49], if the mean contrast along their common border is
below a threshold�t, and if their average color differs by less than a second threshold,�t. Both thresholds
are iteratively increased(�t+1; �t+1) = (�t; �t) + (4�;4�) to a final threshold tuple(�T ; �T ).

5. Interpretation. The segmented image is interpreted to identify the major floor region and to detect regions
that possibly correspond to obstacles. Based on knowledge about the height and the tilting angle of the
camera, the robot first locates the horizon within its cameraimage. It then identifies floor patches using size
and location relative to the robot and the horizon as the major criteria. The remaining non-floor regions are
obstacle candidates, given that they touch the floor, and given that they fit certain size constraints.

6. Feature extraction. For each region of interest, the following features are extracted: (1) the height, (2) the
width and (3) the total area, (4/5) two color components (the“U” and “V” channel of the NTSC signal), (6)
average brightness and (7) brightness variance; the latterfeature provides texture information. Height, width
and area are expressed in world-coordinates, computed under the assumption that obstacles extend all the
way to the floor.



7. Recognition.Finally, regions are classified by a Bayesian classifier. In the “training phase,” the feature mean
and covariance of typical obstacles that may block the robot’s path are estimated from 50 to 100 examples.
During recognition, a region is considered an obstacle—andpassed to the collision avoidance module—if its
Mahalanobis distance to one of the pre-trained obstacles models exceeds a certain threshold. The Mahalanobis
distance corresponds to the probability of observing a feature vector assuming Normal distribution [13].

Once a region has been classified as obstacle, its world coordinates are passed to the collision avoidance, to
supplement the sonar information. The vision module evaluates images with a frequency of more than 1 Hz on a
Pentium computer. Obstacles of the size of a bottle are usually detected at a maximal range of 5 meter, which is
sufficient for real-time collision avoidance even if our robot is operated at its maximum speed. Fig. 16 shows two
typical images together with random color representationsof the segmentation result. In various experiments, we
found this algorithm to reliably detect small, can-size obstacles in our university building.

5 Example Application

The RHINO-software described in this paper has served as a low-level platform for various indoor mobile robot
applications. A complete coverage of our current applications is beyond the scope of this chapter. One of the most
recent and most interesting applications, however, is thatof a robotic “tour guide” (similar to the one proposed in
[23]). The tour guide offers tours to visitors, explains rooms, locations and their relation to each other. For this
purpose, RHINO is equipped with a CD ROM for storing and replaying music and text.

Figure 17 depicts one of the maps used when giving tours through our university building in Bonn. Maps are
recorded by tele-operating (joy-sticking) the robot through the building, using some of the techniques described
in this chapter. Each location or object of interest (e.g., an office) is taught by moving towards it, and pressing a
button when the robot is facing the object/location at the distance of one meter. The grayly shaded numbers in
Figure 17 depict 11 target locations, and the correspondingnumbers with white background show the positions at
which the robot was taught. The entire teach-in requires less then 10 minutes, not counting the time required for
recording the verbal explanations of the different tour items. When the robot gives a tour, its localization routines
quickly align its position with its previously constructedmap. It then sequentially navigates to the target locations,
and replays previously recoded text for each of them (with user-controlled levels of granularity). The duration of
the complete tour depends on the amount of information the user wants to obtain, and is typically in the order of 5
minutes. If the visitor looses interest, the tour can be terminated at any time. In approximately 30 testing runs in
different buildings, we never observed a failure of the navigation routines, even in populated hallways. We found
that the integration of speech, sound, interaction and fastmotion contributes significantly to the interestingness of
the guide.

6 Conclusion

This chapter presents ourcurrently best approaches to autonomous mobile robot navigation. Ourcurrent approaches
are map-based. In particular, integrated metric-topological maps are learned autonomously using sonar and camera
information. Bayesian analysis permits the robot to track its position accurately during navigation and mapping,
and to localize itself in cases where it is globally ignorantabout its position. Path planning is performed by a fast
dynamic programming routine, and collisions are avoided bya module that is capable of reacting to unforeseen
obstacles by adjusting the motion direction and the velocity of the robot.

The software has been tested thoroughly using various mobile robots at different sites, and is now distributed and
regularly exhibited by a major mobile robot manufacturer (Real World Interface) along with their robots. The
software provides the “low level” control that allows several AI researchers inside and outside our University to
perform high-level AI experiments, without having to pay much attention to the low-level navigation.

Certainly, there are a variety of limitations and desiderata that warrant future research. The following list addresses
some of the most significant and challenging ones:� Dynamic environments. Maps, as presented in this chapter, are generally incapableof modeling moving

obstacles. In a recent thesis [41], Schneider extended our approach to model semi-dynamic obstacles such
as door. Such obstacles are dynamic but only appear at fixed locations, thus can be detected by analyzing
long-term dependencies in the occupancy grid. Modeling moving objects such as humans is a significant
open problem in map-based navigation.



Figure 17: Map used for tours through our building. The numbers in grey circles indicate the different target
objects, and the numbers with white background mark the positions at which these targets were taught.� Three-dimensional maps.Our current maps are two-dimensional, and our planning algorithms are tailored

towards navigation of a circular robot. This chapter does not address manipulation. To facilitate manipu-
lation, three-dimensional representations are clearly advantageous. Extending our current approach to 3D
representations is an open problem that clearly warrants further research. Planning using such representations
is necessarily more complex, and more sophisticated approaches are probably required if the robot is to plan
and act in real-time.� Self-tuning sensor interpretation. Currently, our sensor models are adjusted once and frozen thereafter. It
is generally desirable to adjust sensor models while the robot is operating, to compensate for sensor defects
and drift.� A unified approach to localization. Our present approach relies upon two quite different methods for
localization, one of which is specialized to global position estimation, the other of which is dedicated to
position tracking duringmap learning. Since both attack the same general problem—sensor-based localization
under uncertainty—it is desirable to find a single, unified mechanism.� Unknown state spaces.At various occasions throughout this chapter, we made the assumption that the robot
environment is Markov and partially observable. In particular, all our probabilistic approaches, such as our
methods for mapping and localization, make strong assumptions as to what the non-observable quantities
(state) of the environment are that make the environment Markov. Since in general it is difficult to specify
what constitutes the “state” of the environment, methods that can discover hidden state and model it from
data are clearly desirable (seee.g., [9, 29, 36]).� Other sensors.Integrating sensors other than sonar and cameras into mobile robot navigation is an important
problem, since different sensors have different perceptual characteristics. In principle, the general mechanisms
for mapping, localization and navigation are not specialized to a particular type sensor. However, incorporating
other sensors is not trivial, and we believe many interesting research opportunities will come up from actually
trying it.� Scaling up. The largest cycle-free map that has been generated with thisapproach was approximately 100
meter long; the largest single cycle measured approximately 58 by 20 meter. What happens if the environment
is an order of magnitude larger? Clearly, there are intrinsic limits as to how well a robot can localize itself
incrementally, without a global positioningsystem. We believe that by localizing the robot backwards in time,
we can increase the size of the environments that can be mapped reliably. However, the general problem will
never disappear, and the best we can hope for are incrementalimprovements in the size of environments that



our software can manage reliably.

As this chapter documents, we have found the map-based paradigm to be surprisingly powerful and reliable. While
to date, there exists a variety of successful architecture for mobile robot navigation (such as Brooks’s subsumption
architecture [5]) each of which is characterized by different advantages and disadvantages, we believe that the
map-based paradigm is particularly well-suited for fully autonomous robots that are to perform a multitude of tasks
in large indoor environments. Maps are well-understood, and it is easy to specify new navigation tasks using a
map. We also believe that probabilistic models, such as the maps described in this chapter, are powerful concepts
in robot navigation, as long as they compile percepts into compact representations that capture relevant details and
are easy to access.
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