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Abstract

This chapter surveys basic methods for learning maps arsipiged autonomous navigation for indoor
mobile robots. The methods have been developed in our latttoegast few years, and most of them
have been tested thoroughlyin various indoor environméitie chapter is targeted towards researchers
and engineers who attempt to build reliable mobile robotgestion software.

1 Introduction

Building autonomous mobile robots has been a primary goablodtics and artificial intelligence. This chapter
surveys some of the best methods for indoor mobile roboigadivin that have been developed in our lab over the
past few years. The central objective of our research ismstroct reliable mobile robots, with a special emphasis
on autonomy, learning, and human interaction. In the lagtars, we have built a mobile robot system, RHINO,
which is capable of exploring and navigating in unknown iodaffice environments with a speed of approximately
90 cm/sec. While doing so, it can learn metric and topoldgitps and, based on these, perform all kinds of
missions. In addition, RHINO is capable of locating andiesing objects, delivering them to specific locations or
dumping them into trash-bins without human interventiord giving tours to visitors.

The purpose of this article is to present the key ideas anarigthgns underlying our research in a coherent and
accessible form, in order to share our experiences andstipte, provide some guidance for building autonomous
mobile robots. The following list summarizes the primarjta@re design principles underlying our approach.

¢ Distributed and decentralized processing.Control is distributed and decentralized. Several on-th@ad
off-board machines are dedicated to several sub-problémsodeling and control. All communication
between modules is asynchronous. There is no central clu,no central process controls all other
processes.

¢ Any-time algorithms. Any-time algorithms are able to make decisions regardlégbetime spent for
computation [12]. Whenever possible, any-time algoritlanesemployed to ensure that the robot operates in
real-time.

o Hybrid architecture. Fast, reactive mechanisms are integrated with computdtiomtense, deliberative
modules.

¢ Models. Models, such as the two-dimensional maps described betewsad at all levels of the architecture.
Whenever possible, models are learned from data.



Figure 1: The robot RHINO.

¢ Learning. Machine learning algorithms are employed to increase thxéflay and the robustness of the
system. Thus far, learning has proven most useful closeetgehsory side of the system, where algorithms
such as artificial neural networks interpret the robot’ssses.

¢ Modularity. The software is modular. A plug-and-play architecturevaiais to quickly reconfigure the
system, depending on the particular configuration and egipdin.

¢ Sensor fusion.Different sensors have different perceptual charactesisfo maximize the robustness of the
approach, most of the techniques described here rely on thangust a single type of sensor.

These principles are important, since robots and theirenmients are complex physical systems. Robot envi-
ronments are dynamic and inherently unpredictable, andtrbardware often fails or malfunctions, as do our
computers and our communication networks. To control atrodd@ably, the software must react adequately and
timely to sudden changes, failures, delays, or other uséme events—which requires special care when designing
robot control software.

This chapter focuses exclusively on robot navigation. Iripalar, it describes our current best approaches for
mapping indoor environments, and for high-speed explonaéind navigation in dynamic environments. It is
organized as follows.

1. Mapping. Section 2 describes our method for constructing two-dinuerad occupancy grids using sonar
sensors and the cameras. Artificial neural networks are wgsederpret sonar measurements. On top of the
grid-based maps, more compact topological maps are catestithat facilitate fast planning.

2. Localization. Localization is the problem of aligning the robot’s coorali@a system with the global world
coordinates. Section 3 describes algorithms for selflibagon and position tracking.

3. Navigation. Approaches to global path planning, exploration and reaciollision avoidance are described
in Section 4.

Most of the software has been developed using a B21 mobilet robnufactured by Real World Interface Inc.
The robot, shown in Figure 1, is a synchro-drive robot egathwith a stereo camera system and 24 ultrasonic
transducers (in short: sonars). Its maximum velocity is ®@sec. Our robot is equipped with two on-board 486
personal computers that are connected via a radio Ethénkéblseveral SUN Sparc stations. Notice that currently
some of the processing is done off-board. For robots eqdipgh Pentium computers, the entire software is run
locally on the robot (except for the stereo vision system)sesond radio link communicates video images to a
Datacube, a special-purpose machine for processing iniageal-time. The robot is also equipped with active
infra-red proximity sensors and tactile sensors, whichcaireently being incorporated into our map building and
collision avoidance routines.



2 Mapping

Mapping refers to the process of constructing a model of tivr@nment based on sensor measurements. This
section describes an approach that integrgtesbasedandtopologicalrepresentations. Grid-based approaches,
such as those proposed by Moravec/Elfes [31] and Borerikimien [4] and many others, represent environments
by evenly-spaced grids. Each grid cell contains a value lnidicates the presence or absence of an obstacle in the
corresponding region of the environment. Topological apphes, such asthose described in [15, 25, 26, 28, 35, 47],
represent robot environments by graphs. Nodes in such gaptespond to distinct situations, places, or landmarks
(such as doorways). They are connected by arcs if theresexidirect path between them.

As argued in more detail elsewhere [45], both grid-based tapadlogical representations exhibit orthogonal

strengths and weaknesses: Grid-based maps are consydeesldér to learn, partially because they facilitate
accurate localization, partially because they are easydiatain. Topological maps, on the other hand, are more
compact and thus facilitate fast planning.

2.1 Grid-Based Maps

The metric maps considered here are two-dimensional gtssoccupancy grids, as originally proposed in [14, 31]
and since implemented successfully in various systemsh gad-cell {xz, y) in the map has anccupancy value
attached (denoted b§rob(oce, )), which measures the robot’s subjective belief whetheraits center can be
moved to the center of that cell€., the occupancy map models ttenfiguration spacef the robot, see.g, [27]).
This section describes the two major steps in building aded maps (see also [43}ensor interpretationand
integration Examples of metric maps are shown in various places in tiapter.

2.1.1 Sonar Sensor Interpretation

Sonar sensors measure approximate echo distances to mémtiagles, along with noise. To build metric maps,
sensor reading must be “translated” into occupancy valtres (occ,. ) for each grid cellz, y). The idea here is

to train an artificial neural network using Back-Propagaf{@8] to map sonar measurements to occupancy values
[43, 48]. The input to the network consists of the four semsadings closest tfe, ), along with two values that
encode(z, y) in polar coordinates relative to the robot (angle to the fifsthe four sensors, and distance). The
output target for the network is 1, {f, ) is occupied, and O otherwise. Training examples can be ruddeby
operating a robot in a known environment and recording abdliag its sensor readings; notice that each sonar
scan can be used to construct many training examples ferdiftz-y coordinates. In our implementation, training
examples are generated with a mobile robot simulator.

Once trained, the network generates value®jd] that can be interpreted as probability for occupancy. FEdur
shows three examples of sonar scans (top row, bird’s eye)\aémng with their neural network interpretation
(bottom row). The darker a value in the circular region amthe robot, the larger the occupancy value computed
by the network. Figures 2a&b show situations in a corridoerédthe network predicts the walls correctly. Notice
the interpretation of the erroneous long reading in thedefe of Figure 2a, and the erroneous short reading in
2b. For the area covered by those readings, the network tutpughly 0.5, which indicates its uncertainty.
Figure 2c shows a different situation in which the interatiein of the sensor values is less straightforward. This
example illustrates that the network interprets sensdisdicontext of neighboring sensors. Long readings are only
interpreted as free-space, if the neighboring sensorgag@rtherwise, the network returns values close to 0.5, which
again indicates uncertainty. Situations such as the onersioFigure 2c—that defy simple interpretation—are
typical for cluttered indoor environments.

Training a neural network to interpret sonar sensors hakey@advantages over hand-crafted approaches to sensor
interpretation. First, since neural networks are trainadeal on examples, they can easily be adapted to new
circumstances. For example, the walls in the competiting of the 1994 AAAI robot competition [42] were
much smoother than the walls in the building in which thewafe was originally developed. Even though time
was short, the neural network could quickly be retraineddmpanmodate this new situation. Secondly, multiple
sensor readings are interpreted simultaneously. Modiegiapproaches interpret each sensor reading indiviguall
one-by-one, which can be problematic in practice. For exantpe reflection properties of most surfaces depend
strongly on the angle of the surface to the sonar beam, wiginloaly be detected by interpreting multiple sonar
sensors simultaneously.



Figure 2: Sonar sensor interpretation: Three example sswrs (top row) and local occupancy maps (bottom
row), generated by the neural network. Bright regions iatkdree-space, and dark regions indicate walls and
obstacles (enlarged by a robot radius).

2.1.2 Stereo Camera Interpretation

A second source of occupancy information is the stereo aasystem, which provides pairs of images recorded
simultaneously from different spatial viewpoints. Steremges are transmitted via a radio link tdatacube

a special-purpose computer for image processing. Like timeam visual apparatus, stereo images can be used
to compute depth information.¢., proximity). Put shortly, our approach [20, 21] analyzegesteimages for
co-occurrences of vertical edges. By analyzing the digpafivertical edges found in both images the proximity
of obstacles is estimated, and projected onto a two-dimmaatoccupancy grid.

Figure 3 illustrates the stereo image analysis. Images atepfie-processed (separately for both channels) using
a set of three horizont&abor filters[39]. Gabor filters, which are similar to local Fourier trémsns, basically
band-filter images to obtain two local coefficients: Tdmaplitudeof a certain, filter-specific frequency, and its
phase Vertical edges characterized by a sharp horizontal bniggg difference yield large amplitudes; their precise
locationinthe image is determined with sub-pixel acculzasyed on the phase. Figure 3a depicts one of the images,
and Figure 3b shows the vertical edges extracted from thag@msing Gabor filters. To establish correspondence
between the left and the right image, both amplitude andephrisrmation is used to identify the projection of the
same real-world edge in both images. Once such a vertica bdg been identified in both images, its disparity
(spatial shift between both images) is used to estimaterdtsifpity to the cameras (depth). A simple geometric
projection yields the:-y-location of the edge relative to the robot. Figure 3¢ shdvesgrojected location (bird’s
eye view) of the edges found in Figure 3b; notice that therimfdion concerning the height of an edge is lost
when projecting the edge information onto the two-dimenaig@lane. To construct the final occupancy grid (like
the one shown in Figure 3d), edges are enlarged by a robais;aaind the area between the edge projections and
the robot is marked as free-space. The last step relies aasthiemption that vertical edges correspond to corners
of obstacles; since occupancy maps represent configuisiae, these edges are increased by a robot radius. To
compensate some of the uncertainty in depth estimationeceof obstacles are smoothed with a Gaussian, and
the free-space between obstacles and the robot is smoottied logistic function ¢(z)=(1+ ¢~7)~1). Notice

in our implementation, the Datacube pre-processes imagasoat 4 Hertz. The entire generation of occupancy
maps, most of which is done on a SUN Sparc station, requinesrdly less than a second.

When comparing the original image (Figure 3a) with the riaisglmap (Figure 3b), the door posts and two of the
posters can clearly be identified in the final map (large deeksin the map). The region close to the white poster
does not contain clear vertical edges; thus the robot faildentify the white wall. This example illustrates that
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Figure 3: Estimation of occupancy maps using stereo vigiahteft camera image, (b) sparse disparity map, (c)
two-dimensional edge projections, and (d) local occupanap.

strictly speaking, occupancy maps derived from stere@wisbntain only edges of obstacles—large unstructured
obstacles such as walls are “invisible” and hence will natiag@ped. Consequently, stereo vision alone would not
be sufficient for building accurate maps. On the other hatedes vision gives more accurate obstacle information
than sonar sensors do, due to the higher resolution of camkso frequently detects obstacles that are “invisible
to sonar sensors, such as objects that absorb sound. As sigated below, stereo vision is well-suited to augment
sonar information.

2.1.3 Integration Over Time

Sensor interpretations must be integrated over time, td yeingle, consistent map. To do so, itis convenient to
interpret the interpretation of theth sensor reading (denoted bY) as theprobability that a grid cell(z, y) is
occupied, conditioned on the sensor readitig

Prob(oce, |5(t))

A map is obtained by integrating these probabilities foaadilable sensor readings, denotedidy, s(2 | . . . s(
In other words, the desired occupancy value for each grideely) can be written as the probability

Prob(oce, |s, @ sy

T).



meter

32.2 meter

Figure 4: Grid-based map, constructed at the 1994 AAAI ataous mobile robot competition with the techniques
described here.

which is conditioned orall sensor readings. A straightforward approach to estimatirgyquantity is to apply
Bayes’ rule. To do so, one has to assume independence of ibe inadifferent readings. More specifically,

given the true occupancy of a grid céfl, y), the conditional probability’rob(s'*) oce, ,) must be assumed to be

independent OPTOb(s(tl) loces ) if t # t'. This assumption (a Markov assumption [10]) is commonly eniad
approaches to building occupancy grids. The desired pilityatan now be computed as follows:

Prob(oce, |s(V, @ M)
-1
=1 (14 Prob(ocey y) - Pmb(occxyy|5(7)) 1- Prob(ocey 4) (1)
o 1- Prob(occ, y) ket 1—Prob(occ, |5(7))  Prob(occy y)

Here Prob(oce, ) denotes the prior probability for occupancy (which, if €015, can be omitted in this equation).
The derivation of this formula is straightforward and carfdnend in [31, 34]. Notice that this formula can be used
to update occupancy values incrementally.

An example map of a competition ring constructed at the 198Alkautonomous mobile robot competition is
shown in Figure 4. This map has been constructed exclusfvahy sonar information. Figure 5 illustrates the
advantage of integrating sonar and stereo vision. All thmaps shown there show the same experiment. The
map shown in Figure 5a has been constructed purely basedchanisformation. While sonar models walls well,

it misses the two sound-absorbing chairs in the middle ofrthlwvay. Stereo vision (Figure 5b) detects these
chairs, but fails to detect a glass door at the top of the diagrThe map in Figure 5c, which is superior to both
single-sensor maps since is contains the chairs and mdegelsdlls consistently, is obtained by integrating both
maps. Notice that both maps were integrated by takingrthgimumoccupancy value, at each grid cell. Taking
the maximum is the most conservative way to integrate mapse gl obstacles are preserved. In principle, the
maps could also have been integrated by (1); however, theeretult is influenced by the relative frequency of
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Figure 5: Maps built in a single run (a) using only sonar sess(b) using only stereo information, and (c)
integrating both. Notice that sonar models the world morescgiently, but misses the two sonar-absorbing chairs
which are found using stereo vision.

sonar and camera measurements which in this example makebstacles disappear.

2.2 Topological Maps

Topological maps represent robot environments as graphsremodes correspond to distinct places, and arcs
represent adjacency. A key advantage of topological reptasons is their compactness. In our approach,
topological maps are built on top of the grid-based maps. Bdséc idea is simple but very effective: The free-
space of a grid-based map is partitioned into a small numbesgions, separated lyritical lines. Critical lines
correspond to narrow passages such as doorways. Thegreetitmap is then mapped into an isomorphic graph.
The precise algorithm works as follows:

1. Thresholding. Initially, each occupancy value in the occupancy grid ieshiolded. Cells whose occupancy
value is below the threshold are considered free-spaceoteerby C'). All other points are considered
occupied (denoted by).

2. Voronoi diagram. Consider an arbitrary poift:, y) € C' in free-space. Theasis pointf (x,y) are the
closest point(sj«’, ') in the occupied spacé€, i.e, all points{z’, y') € C that minimize the Euclidean
distance tar, y. We will call these pointgz’, y') thebasis points ofz, y), and the distance betweén, y)
and its basis points theearance of z, y). The Voronoi diagram, which is a form of skeletonization][4g
the set of points in free-space that have at least two diffdegjuidistant) basis-points. Figure 6a sketches
the Voronoi diagram for the map shown in Figure 4.

3. Critical points. The key idea for partitioning the free-space is to findtical points” Critical points(z, y)
are points on the Voronoi diagram that minimize clearancallg. In other words, each critical poift, y)
has the following two properties: (a) it is part of the Vorod@gram, and (b) there exists an> 0 for which
the clearance of all points in anneighborhood ofz, y) is notsmaller.

4. Critical lines. Critical lines are obtained by connecting each criticahpuwiith its basis pointsof. Figure 6b).
Critical points have exactly two basis points (otherwiseytlvould not be local minima of the clearance
function). Critical lines partition the free-space intgjdint regions (see also Figure 6c).

5. Topological graph. The partitioning is mapped into an isomorphic graph. Eaghan corresponds to a node
in the topological graph, and each critical line to an arc.



(a) Voronoi diagram (b) Critical lines (and critical points)
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Figure 6: Extracting the topological graph from the map deg in Figure 4: (a) Voronoi diagram, (b) Critical
points and lines, (c) regions, and (d) the final graph. (e)(@rghow a pruned version (see text).

Figure 6d shows an example of a topological graph. The cossjme is enormous: The topological graph has 67
nodes, whereas the original map contains 27,280 occuplisdNetice that critical lines are useful fordecomposing
metric maps primarily for two reasons. Firstly, when pagdimough a critical line, the robot is forced to move

in a considerably small region. Hence, the loss in perfoaanferred by planning using the topological map

(as opposed to the grid-based map) is considerably smatlon8éy, narrow regions are more likely blocked by

obstacles (such as doors, which can be open or closed).

3 Localization

Localization is the process of aligning the robot’s locabainate system with the global coordinate system of the
map. Localization is particularly important (and partiady difficult) for map-based approaches that learn their
maps, since the accuracy of a metric map depends crucialtije@nlignment of the robot with its map [17, 37].
Figure 7 gives an example that illustrates the importandeaafization in robot mapping. In Figure 7a, the position
is determined solely based on dead-reckoning. After apprately 15 minutes of robot operation, the position
error is approximately 11.5 meter. Obviously, the resgltimap is too erroneous to be of practical use. Figure 7b
is the result of applying the position tracking method digsat below. In fact, none of the maps presented in the
previous section would have been possible without our nu=tlior localizing the robot based on sensor input.
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Figure 7: Map constructed without (a) and with (b) the posigstimation mechanism described in this article. In
(a), only the wheel encoders are used to determine the wpasition. The positional error accumulates to more
than 11 meter, and the resulting map is clearly unusables illbstrates the importance of sensor-based position
estimation for map building.

Identifying and correcting for slippage and drift is thus ashimportant issue in map building.

An excellent overview over different approaches to loian can be found in [17]. Traditionally, localization
addresses two sub-problems which are often attacked sefyara

1. Position Tracking. Position tracking refers to the problem of estimation thetmm of the robot while it is
moving. Drift and slippage impose limits on the ability taiesate the location of the robot within its global
map. As Figure 7 demonstrates, even the smallest errorg iobot’'s odometry can have devastating effects.
The problem of position tracking is particularly difficuti solve if mapping is interleaved with localization.

2. Global localization. Global localization is the problem of determining the piasitof the robot under global
uncertainty. This problem arises, for example, when a rabes a map that has been generated in a previous
run, and when it is not informed about its initial locatiortlwn the map.

Global localization and position tracking are two sidesh® same coin: localization under uncertainty. In our
current implementation, different computational meckars are used for localization within a previously learned
map (global localization and position tracking), and gosittracking when interleaved with exploration and

mapping. Each of these approaches exploits the specifieprep of the two problems.

3.1 Probabilistic Model

The problem of localization is most generally describedrimb@bilistic terms. Let(*) denote the location of the
robot at timet. For mobile robots] is usually three-dimensionat{y location and heading direction}.is not
directly accessibld,e, the robot does not know where it is. Instead, it maintainsternal belief as to where it
might be, and uses its sensors periodically to update thiefbk is convenient to denote the belief as a probability

densityProb(t)(l) over location$. The problem of localization is then to estimal?eob(t)(l) so that it matches as



closely as possible the true locatidfi). Initially, at timet=0, Prob(o)(l) may be distributed uniformly, assuming

that the robot does not know its initial location, or, alttiaely, Prob(o)(l) may contain a single peak &%) if the
robot happens to know its locatiorob(l) is updated whenever the robot senses, using mostly ad hocembies
to determine the conditional probabilifyrob (s(*)|1):

Prob(l) «— o / Prob" V(1) - Prob(s®|1) di )

Herea is a normalizers(*) is the sensor input at time and Prob(s(*)|1) is the probability of observing(*) when

at!. Strictly speaking, the update formula (2) is only valid end conditional independence (Markov) assumption:
Given the true location of the robot and the true model of thdrenment, subsequent sensor readings must be
conditionallyindependent. In practice, we have foundaipisroach to be fairly robust to various kinds of violations
of this assumption (dependencies are due to non-statiomtrg environment, model errors, crude representations
of the space of locations, or unmodeled robot dynamics). évew the key thing to note here is that the problem
of localization requires (a) sensors (to obtaifl) and (b) knowledge aboufrob(s(*)|l), i.e, the probability of

observings(*) atl. We currently employ and integrate a variety of differemsa modalities:

¢ Wheel encodersWheel encoders measure the revolution of the robot's wh&alsed on their measurements,
odometry yields an estimate of the robot’s locatidhwhich, when expressed relative to the robot’s previous
location,/(*— | is impressively accurate. To model errors in odometry, sgime that the position at tine
is distributed normally around the very location measurgatometry. The probability’rob(s(*) ), thus,
is normally distributed.

e Map matching. As described above, every sensor reading is converted ifib@a” map (such as the ones
shown in Figures 2 and 3). The robot can localize itself by garimg the global with the local map. More
specifically, thepixel-wise correlatiorof the local and the global map—uwhich is a function of the tsho
location—is a measure of their correspondence [40]. Theeroorrelated the maps are, the more likely is the
corresponding location of the robot. Thus, the probabifityb(s™*)|l) is assumed to be proportional to the
correlation of both maps if the robot werelatSee [46] for more details.

e Sonar modeling. Another source of information for localization, which wevieabegun to explore more

recently [7], is obtained using a simplistic model of soremsors. In essence, it is assumed that each grid
cell in the global map possesses a certain probability ofdpdetected by a sonar sensor. More specifically,
our model assumes that with probabil®yob(detect; . ,) thei-th sonar sensor detects an obstacleray)
(where Prob(detect; . ,) is a monotonic function of’rob(oce, ), which is 0 if (x, y) does not lie in the
perceptual field of the-th sensor, see [7]). For simplicity, we also assume that#iection probability is
independent for different values ofz, andy.
Sonar sensors return the distance torikarestobstacle. Thus, the probability that an obstacle is dedeate
distanced is given by the probability that one or more cells at distashcespond, times the probability that
no obstacle at distance smaller thais detected. Put mathematically, t&t, (x, y)) denote the distance of
(z, y) to thei-th sonar sensor. Then the probability of measuring a spetistance, say;, is given by

i {z,y))=s; d(i,{z,y))<s;

wheref is a normalization factor that ensures that the probaéditor different measurements sum up to
1. Here only cells that are in the primary perceptive fieldraftth sonar sensor are considered (a 15 degree
cone). Notice that the distribution dfrob(s;) bears close resemblance to a geometric distribution.

The probability of observing the entire sonar sedil atl, Prob(s™)|l), is the product of the individual
sensor probabilities:

Prob(s;) = 5(1_ H (1_Pmb(detecti,x,y))) H (1— Prob(detect; , ,)))
d(i

24
Prob(s®V|ly = T[] Prob(s!") 3)
i=1

Notice that the model of sonar sensors is extremely simligartially because it considers only the main
cone of sonar sensors (ignoring the side cones), and paiietause it assumes independence between
different grid cells, ignoring cumulative effects in thélegtion of sound. However, it can be computed very
efficiently, which is important if the location of the robdtall be estimated in real-time.
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Figure 8: Wall, detected by considering five adjacent soressurements. Wall orientations are used to correct
for dead-reckoning errors in the robot orientation.

¢ Maneuverability. Assuming the map is correct, the mere fact that a robot maveddcation{z, y) makes
it unlikely that this location is occupied. Thus, the glob@p can be used to derive further probabilistic
constraints on the robot location. More specifically, oupraach assumes that the probability of being at
(z, y) is proportional to the probability of this grid cell beingartupied:

Prob({x,y)) = ~(1— Prob(occyy))
wherey is an appropriate normalization factor.

o Wall orientation. A final source information, which can be used to correct iotel errors, is theylobal
wall orientation[11, 22]. This approach rests on the restrictive assumghahwalls are either parallel or
orthogonal to each other, or differ by more than 15 degreesh fthese canonical wall directions. In the
beginning of robot operation, the global orientation of lwé estimated by searching straight line segments
in consecutive sonar measuremerus Figure 8). Once the global wall orientation has been esédhat is
used to readjust the robot’s orientation based on futurarsmeasurements. See [46] for more details.

e Landmarks. Landmarks are used in various approaches to mobile robalitation (seee.g, [3, 25, 32]
and references in [44]). We recently have begun to explomhar@sms that enable a robot to select its own
landmarks, based on sonar and camera input. The key idealyindethis approach is to train artificial
neural networks to recognize landmarks by minimizingakierage localization errofassuming that update
rule (2) is applied in localization). As a result, our robatsessfully “discovered” a variety of useful visual
landmarks, such as doors, wall color, ceiling lights and 8o Details of the algorithm and performance
results are surveyed in [44].

This list of sources for estimatinghas been developed over the last few years. Some of thesedsatiake
strong assumptions on the correctness of the global reap the maneuverability method), hence cannot be
interleaved with map learning. The reader should also adtiat the computational complexity of these approaches
differ significantly. For example, the map matching apphoas it is currently implemented, requires extensive
comparisons of maps, whereas wall orientations can berdigted very efficiently.

3.2 Global Localization

Global localization addresses the problem of mobile roboalization under global uncertainty. To localize the
robot globally, the entire densityrob(l) for arbitrary locationd is computed. In our current implementation,
Prob(l) is approximated using a grid representation, just like tbeupancy grids described in Section 2. The
orientation of the robot is represented withresolution. Currently, only the wheel encoders, sonar rtiegdand
maneuverability are used to localize the robot. To updateb(!) in real-time while the robot is in motion, only
a subset of sonar readings is currently considered in gledisitioning, since the process of updatiRgob(() is
computationally expensive. From the previous list of semsodalities, the global localization approach utilizes
wheel encoders and sonar sensors, using the sonar modetimgameuverability approach.

Figure 9a shows a path taken by the robot in the arena depictedure 4 (same arena, different run). As shown
in that figure, twelve sonar sweeps were used for the gloksitipa estimation, each of which consisted of eight
sensor readings. Figure 9b shows the logarithm of the ded#%ivb(!) (maximized over all orientations) after
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Figure 9: Initial self-localization: (a) Path of the robot, (bfrob(!) after evaluating six sonar readings, and (c)
Prob(l) after evaluating twelve sonar readings, both plotted libgianically.

evaluating six of these twelve sensor scans. Although tebseeadings appear to be insufficient for uniquely
localizing the robot, the density indicates that the rolsatniost likely in a corridor. After evaluating all twelve
sensor readings (Figure 9c), the position of the robot isjugly determined. Notice that the probability of the
“correct” grid cell in Figure 9c is approximately 0.96, whithe value of the second largest peak is less than
8-1075. Notice the approach deals adequately with uncertaintyaamaiguities, as demonstrated by the empirical
examples. The global localization approach has also gieenreliable results for real-time position tracking [8].
However, since this approach estimates the robot's loc@tia previously learned map, it is not applicable during
exploration and map learning.

3.3 Position Tracking When Learning Maps

When learning maps, the initial location is known by defunit{e.qg, is defined to be origin of the global coordinate
system). Thus, during exploration, position control seeksompensate for short-term localization errors such as
slippage and drift. The key assumption here is that the jposif the robot is known except for some small error,
so that instead of estimating an entire probability disttiidn, it suffices to keep track of theost likelylocation of

the robot. Our current best approach for position trackitffgis from the above approach to localization in two
aspectsdf. [43, 46)):

1. The approach estimates only the péititat maximizesProb (1), instead of the entire density. The advantage
of tracking only one value is two-fold: the space of locdii@a does not have to be represented discretely (or
by parametric densities), and the approach is computdlyomaich more efficient. 1t comes at the obvious
disadvantage that complex distributions, such as multtahdistributions, cannot be represented. Thus, once
the position is lost, this approach is unable to recover. &l@s if the initial location is known, we almost
never observed that the location was estimated inaccyratel

2. Mainly for historical reasons, our approach to positi@cking relies only on wheel encoders, map matching
and the wall orientation to estimate location. Position oarttased on wheel encoders and map matching
alone works well if the robot travels through mapped terrbirt ceases to function if the robot explores and
maps unknown terrain. The third mechanism, which arguadligs on a restrictive assumption concerning
the nature of indoor environments, has proven extremelyalde when autonomously exploring and mapping
large-scale indoor environments.

Position tracking is implemented in an any-time fashionnggjradient descent to estimate the location that
maximizesProb(l). When a new sonar reading arrives, the previous gradienttsésterminated and its result



is incorporated into the current position estimation. lagbice, we have found this approach to be fast enough to
accurately track the robot position even if the robot is niagunknown terrain with maximum velocity. Notice
that all maps shown in this chapter (with the exception ofrtiag® shown in Figure 7a) have been generated using
this position tracking approach.

4 Navigation

This section is concerned with robot motion. RHINO’s natigia system consists of two modules: A global
planner [43], and a reactive collision avoidance module IB). Control is generated hierarchically: The global
path planner generates minimum-cost paths to the goaifs ttee map. As a result, it communicates intermediate
sub-goals to the collision avoidance routine, which cdstthe velocity and the exact motion direction of the
robot reactively, based on the most recent sensor measnrgemely. Both modules adjust their plans/controls
continuously in response to the current situation.

Notice that both approaches—the global path planner andetietive collision avoidance approach—are char-
acterized by orthogonal strengths and weaknesses: Thsignlhvoidance approach is easily trapped in local
minima, such as u-shaped obstacle configurations [27]. Menvé reacts in real-time to unforeseen obstacles
such as humans, and is capable of changing the motion dinaetiile the robot is moving. The global planner, in
contrast, does not suffer from the local minimum problemegsiit plans globally. It alone, however, is not sufficient
to control the robot, since it does not take robot dynamits atcount, and since learned maps are incapable of
capturing moving obstacles. Thus, global planning aloneld/simply not avoid collisions with humans and other
rapidly moving obstacles.

4.1 Path Planning with Grid-Based Maps

The idea for path planning is to let the robot always move orramum-cost path to the goal (or the nearest goal,
if multiple goals exist); The cost for traversing a grid dsltletermined by its occupancy value. The minimum-cost
path is computed using a modified versiorvafue iteration a popular dynamic programming algorithm [2, 24]:

1. Initialization. The grid cell that contains the target location is initiatizvith O, all others witlxo:

Vey {O, if (x,y) target cell

oo, Otherwise

2. Update loop. For all non-target grid celléz, y) do:

Vi ¢—min - {Viye yrc + Probloce, e yic)}

£=-101
{=-101

Value iteration updates the value of all grid cells by thareadf their best neighbors, plus the costs of moving
to this neighbor (just like A* [33]). Cost is here equivaleatthe probabilityProb(oce, ,) that a grid cell
(x,y) is occupied. The update rule is iterated. When the updateecges, each valug, , measures the
cumulative costor moving to the nearest goal. However, control can be gerdrat any time, long before
value iteration converges.

3. Determine motion direction. To determine where to move, the robot generates a minimwhpath to the
goal. This is done by steepest descent’irstarting at the actual robot position. The steepest dépeth is
then post-processed to maintain a minimum clearance to &fis &and, if possible, to move parallel to walls,
using the global wall orientation described in the previsestion. Determining the motion direction is done
in regular time intervals and is fully interleaved with upidg 1.

Figure 10 show$” after convergence with one and two goals, respectivelpgusie map shown in Figure 4. The
grey-level indicates the cumulative costsfor moving towards the nearest goal point. Notice that evecal
minimum in the value function corresponds to a goal. Thusetery point(z, y), steepest descent inleads to
the nearest goal point.

Unfortunately, plain value iteration is too inefficient thosv the robot to navigate and learn maps in real-time.
Strictly speaking, the basic value iteration algorithm cary be applied if the cost function does not increase
(which frequently happens when the map is modified). Thietabse when the cost function increases, previously
adjusted value$” might become too small. While value iteration quickly deses values that are too large,



Figure 10:Path planning with dynamic programming. Value functions’, computed by value iteration for (a)
one goal and (b) two goals (goals are marked by “0”). By follugithe grey-scale gradient, the robot moves to the
next unexplored area on a minimum-cost path.

increasingtoo small a value can be arbitrarily slow [43]. Consequetily basic value iteration algorithm requires
that the value function be initialized completely (Step hpmever the map—and thus the cost function—is updated.
This is very inefficient, since the map is updated almost t@orily. To avoid complete re-initializations, and to
further increase the efficiency of the approach, the bas@adigm was extended in the following way:

4. Selective reset phaseEvery time the map is updated, valugs, that are too small are identified and reset.
This is achieved by the following loop, which is iterated:

For all non-goalz, y) do:

Viey ¢— 0 if Voy < min {Voyeyqe + Probloccateyc)}
£=-1,0,1
¢=-101

Notice that the remaininy; ,-values are not affected. Resetting the value table is #oveos value iteration.

5. Bounding box. To focus value iteration, a rectangular bounding baxin, Zmax X [¥min, ¥Ymax IS Maintained
that contains all grid cells in whick, , may change. This box is easily maintained in the value ramat
update. As a result, value iteration focuses on a smallitmacif the grid only, hence converges much faster.
Notice that the bounding box bears similarity to prioriizveeping [30].

Value iteration is a very general procedure, which has s¢yeoperties that make it attractive for real-time mobile
robot navigation:

¢ Any-time algorithm. As mentioned above, value iteration can be understood asyatirae planner [12].
Consequently, value iteration allows the robot to move @t-tene, even though some of its motion commands



might be sub-optimal.

¢ Full exception handling. Value iteration pre-plans for arbitrary robot locationshi§ is becausé’ is
computed for every location in the map, not just the currecation of the robot. Consequently, the robot can
quickly react if it finds itself in an unexpected locationdagenerate appropriate motion directions without
any additional computational effort. This is particulaigportant in our approach, since the robot uses a
fast routine for avoiding collisions (described below) athiadjusts the motion direction commanded by the
planner based on sensor readings.

o Exploration. To autonomously acquire a map, the robot has to explore. ¥jaoration, the same value
iteration algorithm is employed, with the only exceptioratiyoals correspond to unexplored grid cells.
Figure 11a shows an autonomous exploration run. At the supeint, the robot has already explored the
major hallways and is about to continue to explore an intemom. Circular motion, such as found in the
bottom of this plot, occur when two unexplored regions areuhtequally far away (=same costs). Notice
that the complete exploration run shown here took less tfsamibutes. The robot moved constantly and
frequently reached a velocity of 80 to 90 cm/sec (see alsbdp,

Figure 11b shows the exploration value function. All whigions are unexplored, and the grey-level indicates
the cumulative cost¥” for moving towards the nearest unexplored point. The valuetion indicates the
robot would continue exploration by moving straight ahead.

o Multi-agent exploration. Since value iteration generates values for all grid-céllsan easily be used for
collaborative multi-agent exploration.

In grid maps of size 30 by 30 meter, optimized value itergtdmme from scratch, requires approximately 2 to 10
seconds on a SUN Sparc station. In cases where the selezdiestep does not reset large fractions of the map
(which is the common situation), value iteration converyeless than a second. For example, the planning time
in the map shown in Figure 4 lies generally under 2 second$naost of the time under a tenth of a second. In
the light of these results, one might be inclined to think tréd-based maps are sufficient for autonomous robot
navigation. However, value iteration (and similar plarghapproaches) requires time quadratic in the number of
grid cells, imposing intrinsic scaling limitations thatghibit efficient planning in large-scale domains. Due to
their compactness, topological maps scale much betterge émvironments. In what follows we will describe our
approach to path planning with topological maps.

4.2 Path Planning with Topological Maps

The enormous compactness of topological maps—when coohparde underlying grid-based map—increases
the efficiency of planning. To replace the grid-based plabge topological planner, the planning problem is split
into three sub-problems, all of which can be tackled sepbraind very efficiently.

1. Topological planning. First, paths are planned using the abstract, topological n&hortest paths in the
topological maps can easily be found using one of the stargtaph search algorithms, such as Dijkstra’s or
Floyd/Warshal's shortest path algorithm, A*, or dynamiogramming. In our implementation, we used the
value iteration approach described in Section 4.1.

2. Triplet planning. To translate topological plans into motion commands, aadled “triplet planner” generates
(metric) paths for each set of three adjacent topologicabres in the topological plan. More specifically, let
T, T, ..., T, denote the plan generated by the topological planner, wésrh7; corresponds to a region
in the map. Then, for each tripléf;, 7411, T;42) (¢ = 1,...,n—1 and7, 41 := 7;,), and each grid cell in
T;, the triplet planner generates shortest paths to the eest pointirt;» in the grid-based map, under
the constraint that the robot exclusively moves throiigland7; 1. For each triplet, all shortest paths can
be generated in a single value iteration run: Each point;irp is marked as a (potential) goal point, and
value iteration is used to propagate costs throligh to 7; just as described in Section 4.1. Triplet plans
are used to “translate” the topological plan into concretgiom commands: When the robot is 1, it
moves according to the triplet plan obtained{dy, 7; 1, 7;12). When the robot crosses the boundary of two
topological regions, the next triplet pld; 1, 7; 12, T54+3) is activated. Notice that the triplet planner can be
used to move the robot to the region that contains the goatitot

3. Final goal planning. The final step involves moving to the actual goal locationichlagain is done with
value iteration. Notice that the computational cost fos fimial planning step does not depend on the size of
the map. Instead, it depends on the size and the shape of@h&ofiological regiory;,, and the location of
the goal.
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Figure 11: Autonomous exploration. (a) Exploration path and (b) value function during explamat notice that
the large black rectangle in (b) indicates the global wakmtation.

The key advantage of this decomposition is that all the esipercomputation required for path planning can be
done off-line, for all path planning problems. As documenite [45, 46], planning using the topological map is

between three and four orders of magnitude more efficiemt pfenning with the grid-based map, for maps similar
to those shown in this chapter. On the other hand, plans geewith the topological map are typically between
1% and 4% longer than plans generated using the grid-baspdrmambers that are considerably small given the
huge computational savings.

4.3 Collision Avoidance

The task of the collision avoidance routine is to navigaentbot to sub-goals generated by the planner, while
avoiding collisions with obstacles. It adjusts the actuglbeity of the robot and chooses the concrete motion
direction. For obvious reasons, the collision avoidancduf®must operate in real-time. When the robot moves as
fast as 90 cm/sec, itis imperative that the robot dynamrier{jia, torque limits) are taken into account, particylarl
because the path planner considers only robot kinematies.rdmainder of this section describes ttgnamic
window approach'to collision avoidance [19, 18], our currently best coblisiavoidance routine.

The key idea of the dynamic window approach is to choose ebintthevelocity spacef the robot. Figure 12 shows
an example of the robot traveling down a hallway with a certadlocity, and Figure 13 shows the corresponding
velocity space. The velocity space is a projection of thdigomation space (with a fixed kinematic configuration).
The horizontal axis in Figure 13 measures the rotationalorsgl, denoted by, and the vertical axis depicts the
translational velocity, denoted by The actual velocity of the robot is a single pointin thisgiem (in the center

of the white region). The robot sets its velocities in regtiae intervals (in our current implementation every
0.25 seconds). To ensure that the robot travels safely akdsiaogress towards the goal, it has to obey a variety
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of constraints, which are described in turn.

4.3.1 Hard Constraints
Hard constraints are imposed by the requirement to not l@leokith obstacles, and by the dynamics of the robot.

1. Torque limits. Torque limits impose bounds as to how the robot might chatsyeeiocity in the immediate
next decision interval. In the example shown in Figure 18séhbounds are visualized by the rectarigle

2. Safety. Obstacles impose additional constraints on the velocitglodities with which the robot would
inevitably collide, even if decelerated maximally aftee ttiecision interval, are not admissible. The dark
regions in Figure 13 illustrate such regions in the velosipace. Notice that obstacles such as walls are
directly mapped into the velocity space.

These constraints are hard constraings, for obvious reasons the robot must obey them. In Figureli8space
of admissible velocities under these constraints is degigt white color. Notice that these constraints do not
specify preferences, neither do they contain goal-relatidmation.

4.3.2 Soft Constraints

Soft constraints impose preferences on the motion dineciiod velocity of the robot. Currently, three soft
constraints are used:

1. Target heading. The target heading, denoté@adindgv,w), is defined as the absolute angle of the target
(sub-goal) relative to the robot’s heading direction ale25 seconds of robot motion. The target point is
usually set by the path planner. Headindv,w) = 0, the target would be right in front of the robot at the
beginning of the next time interval. To make progress towarsl target, it is desired that the robot move
towards it,i.e., the target heading be as close as possible to zero.

2. Clearance.The clearance, denoted bist(v, w), is defined as the free distance in front of the robot, assgmin
that the robots sets its velocity once and does not changeridfter. By maximizing clearance, the robot
avoids being close to obstacles.

3. Translational velocity. The translational velocity is also maximized, which causes the robot to always
move as fast as permitted by the other constraints.

Notice that all three soft constrainteadingv, w), dist(v, w), andv, are functions of andw. The actual velocity,
denoted byv*, w*), is obtained by maximizing a linear combination of thesestints:

(v,w*) = argmax(—ay-|headingv,w)| + az-distv,w) + az-v) 4)
Hereas, oy, andas are constants which trade off the three different soft aansts, thus determine the overall-
behavior of the robot. In our approach, (4) is optimized bscdéte grid-search.

Figure 14 depicts thealue(argument of the “argmax” in (4)) corresponding to the dituadepicted in Figure 12,
as a function of the velocities andw. Values that would violate the safety constraint are seteim.z The
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shape of the remaining function indicates that higher tedimnal velocities are generally preferable, and that the
rotational velocity possesses an “optimal” value, whicHictated by the target heading (ridge towards the right in
Figure 14). The global maximum, marked by the vertical linéigure 14, corresponds to a sharp right turn for
moving directly through the door (see Figure 12). Noticd tha dynamic window (torque limits) is not shown in
Figure 14. If the dynamics of the robot do not permit such a,ttire robot would instead move straight, decelerate
and eventually backup. Notice that taking the robot dynarnmito account is important if the robot travels at more
than 30 cm/sec—if the dynamics were ignored, an attemptrtoaihigh speed easily results in a collision.

4.3.3 Using Sensors

While the constraints are sufficient to generate collidi@e- robot control if the model of the environment is
correct, sensors are erroneous and models err. Thus, ouwagpemploys a variety of additional strategies to
recover from errors in perception.

1. Sensor data.In reality, exact locations of obstacles are unknown. Ma&ast very slowly to changes in the
environment, they are incapable of modeling fast-movingtatles, and they typically lag behind due to the
computational costs involved in sensor interpretationlacdlization. Thus, the dynamic window approach
works with raw proximity data, as obtained by sonar sensomputer vision (see below). Every sensor
reading can potentially constrain the motion of the robotyéver, sensor readings are only memorized for
approximately three seconds. Such an approach is maxic@tiyervative in the sense that no sensor reading
is ignored. Nevertheless, the relatively short temporaldeiv make it adapt quickly to moving obstacles.

2. Smoothing. The objective function is smoothed, to increase the sidarahce of the robot and to decrease
the sensitivity to noise in the sensor readings.

3. Safety margin. To travel safely at high speed, the robot is enlarged by dysafargin. This safety margin
increases with the forward velocity. As a result, the robeehs safe distances to obstacles when traveling at
high speed, while still being able to move through narrowrdaath low speed.

4. Rotate away mode.Due to sensor noise and changes in the environment, it cgrehapat every non-zero
velocity violates a hard constraint. In such cases, whietrare in practice, the robot turns completely away
from the nearest obstacle, from which point on it resumesiaboperation.

Figure 15 shows an example of the robot traveling throughustered environment, purely based on sonar

information. All obstacles in the corridor are smoothlyctimvented with a maximal speed of 90 cm/sec.

Although in this experiment the robot decelerated to apipnaxely 20 cm/sec when passing through the narrowest
passage, it still maintained an average speed of 65 cm/seexténsive experiments we found that the dynamic
window approach controls the robot very reliably even inyaped environments with obstacles that are hard to
detect for sonar sensors.

4.4 Real-Time Vision



Figure 16: Two indoor scenes with obstacles and the correipg image segmentation.

Sonars are convenient sensors in that they directly generaiimity information. However, they fail to detect
obstacles outside their perceptual rangg, small objects on the floor, and they also frequently fail &tedt
obstacles with sound-absorbing surfaces. To supplemensdhar information, a real-time vision module for
obstacle detection is integrated into collision avoidan©er monocular vision module is able to robustly detect
and locate obstacles on the floor, based on image segmengatibdiscriminant analysis. The main processing
stages are as follows.

1.
2.

Pre-processing.The color image is low—pass filtered and subsampled, tylgitall 50 x 120 pixels.

Edge Detection. The subsampled image is convolved with a gradient operataletect vertically and
horizontally oriented edges.

Pre-segmentation.A fast, pixel-based image segmentation evaluates the ¢ocdtast between pixels and
links them together if the contrast is below a certain thoédty [1]. This pre-segmentation usually results
in an over—segmented image with many small region patches.

Segmentation. Neighboring regions are merged [49], if the mean contrast@ltheir common border is
below a threshold;, and if their average color differs by less than a secondstiokel,o;. Both thresholds
are iteratively increase; ; 1, o+ +1) = (¢, 0¢) + (A6, Ao) to a final threshold tuplér, or).

Interpretation. The segmented image is interpreted to identify the major flegion and to detect regions
that possibly correspond to obstacles. Based on knowledget ahe height and the tilting angle of the
camera, the robot first locates the horizon within its cani@ge. It then identifies floor patches using size
and location relative to the robot and the horizon as the n@ijteria. The remaining non-floor regions are
obstacle candidates, given that they touch the floor, arehgivat they fit certain size constraints.

Feature extraction. For each region of interest, the following features areasttrd: (1) the height, (2) the
width and (3) the total area, (4/5) two color components {thieand “V” channel of the NTSC signal), (6)
average brightness and (7) brightness variance; the fatittrre provides texture information. Height, width
and area are expressed in world-coordinates, computed timel@ssumption that obstacles extend all the
way to the floor.



7. Recognition. Finally, regions are classified by a Bayesian classifiethéf'training phase,” the feature mean
and covariance of typical obstacles that may block the relpatth are estimated from 50 to 100 examples.
During recognition, a region is considered an obstacle—pasded to the collision avoidance module—if its
Mahalanobis distance to one of the pre-trained obstacle&lsexceeds a certain threshold. The Mahalanobis
distance corresponds to the probability of observing afeatector assuming Normal distribution [13].

Once a region has been classified as obstacle, its world ic@ded are passed to the collision avoidance, to
supplement the sonar information. The vision module evalianages with a frequency of more than 1 Hz on a
Pentium computer. Obstacles of the size of a bottle are ysdetected at a maximal range of 5 meter, which is
sufficient for real-time collision avoidance even if our adlis operated at its maximum speed. Fig. 16 shows two
typical images together with random color representataftithe segmentation result. In various experiments, we
found this algorithm to reliably detect small, can-sizetabkes in our university building.

5 Example Application

The RHINO-software described in this paper has served aw-deleel platform for various indoor mobile robot
applications. A complete coverage of our current applasatiis beyond the scope of this chapter. One of the most
recent and most interesting applications, however, isahatrobotic “tour guide” (similar to the one proposed in
[23]). The tour guide offers tours to visitors, explains me® locations and their relation to each other. For this
purpose, RHINO is equipped with a CD ROM for storing and rgjplg music and text.

Figure 17 depicts one of the maps used when giving tours tfiraur university building in Bonn. Maps are
recorded by tele-operating (joy-sticking) the robot thyhuhe building, using some of the techniques described
in this chapter. Each location or object of interesg( an office) is taught by moving towards it, and pressing a
button when the robot is facing the object/location at tretatice of one meter. The grayly shaded numbers in
Figure 17 depict 11 target locations, and the corresponalimgbers with white background show the positions at
which the robot was taught. The entire teach-in requirestlesn 10 minutes, not counting the time required for
recording the verbal explanations of the different toumise When the robot gives a tour, its localization routines
quickly align its position with its previously constructewap. It then sequentially navigates to the target locafions
and replays previously recoded text for each of them (wigrasntrolled levels of granularity). The duration of
the complete tour depends on the amount of information thewants to obtain, and is typically in the order of 5
minutes. If the visitor looses interest, the tour can be teated at any time. In approximately 30 testing runs in
different buildings, we never observed a failure of the gation routines, even in populated hallways. We found
that the integration of speech, sound, interaction andnfiasion contributes significantly to the interestingness of
the guide.

6 Conclusion

This chapter presents our currently best approaches taantous mobile robot navigation. Our current approaches
are map-based. In particular, integrated metric-topaalgnaps are learned autonomously using sonar and camera
information. Bayesian analysis permits the robot to traskpbsition accurately during navigation and mapping,
and to localize itself in cases where it is globally ignorainbut its position. Path planning is performed by a fast
dynamic programming routine, and collisions are avoidealgodule that is capable of reacting to unforeseen
obstacles by adjusting the motion direction and the vejaxfithe robot.

The software has been tested thoroughly using various matilots at different sites, and is now distributed and
regularly exhibited by a major mobile robot manufacturee§RWorld Interface) along with their robots. The
software provides the “low level” control that allows seslef\l researchers inside and outside our University to
perform high-level Al experiments, without having to paychuattention to the low-level navigation.

Certainly, there are a variety of limitations and desidethat warrant future research. The following list addresse
some of the most significant and challenging ones:

¢ Dynamic environments. Maps, as presented in this chapter, are generally incapdistedeling moving
obstacles. In a recent thesis [41], Schneider extendedpmroach to model semi-dynamic obstacles such
as door. Such obstacles are dynamic but only appear at fixadidos, thus can be detected by analyzing
long-term dependencies in the occupancy grid. Modelingingpwebjects such as humans is a significant
open problem in map-based navigation.



Figure 17: Map used for tours through our building. The nurabe grey circles indicate the different target
objects, and the numbers with white background mark theipasiat which these targets were taught.

Three-dimensional maps.Our current maps are two-dimensional, and our planningridlyuos are tailored
towards navigation of a circular robot. This chapter doesatllress manipulation. To facilitate manipu-
lation, three-dimensional representations are clearlyaathgeous. Extending our current approach to 3D
representations is an open problem that clearly warrantisduresearch. Planning using such representations
is necessarily more complex, and more sophisticated appeseare probably required if the robot is to plan
and act in real-time.

Self-tuning sensor interpretation. Currently, our sensor models are adjusted once and frozzadfier. It
is generally desirable to adjust sensor models while thetrishoperating, to compensate for sensor defects
and drift.

A unified approach to localization. Our present approach relies upon two quite different metHod
localization, one of which is specialized to global positiestimation, the other of which is dedicated to
positiontracking during map learning. Since both attagatéime general problem—sensor-based localization
under uncertainty—it is desirable to find a single, unifiecchamism.

Unknown state spacesAt various occasions throughout this chapter, we made thewstion that the robot
environment is Markov and partially observable. In pafécuall our probabilistic approaches, such as our
methods for mapping and localization, make strong assuompts to what the non-observable quantities
(state) of the environment are that make the environmenk®arSince in general it is difficult to specify
what constitutes the “state” of the environment, methods tlan discover hidden state and model it from
data are clearly desirable (seg, [9, 29, 36]).

Other sensors.Integrating sensors other than sonar and cameras into erolbibt navigation is an important
problem, since different sensors have different percéphaaacteristics. In principle, the general mechanisms
for mapping, localization and navigation are not specilito a particular type sensor. However, incorporating
other sensors is not trivial, and we believe many intergstsearch opportunities will come up from actually
trying it.

Scaling up. The largest cycle-free map that has been generated witlapipiach was approximately 100
meter long; the largest single cycle measured approxim&gsby 20 meter. What happens if the environment
is an order of magnitude larger? Clearly, there are intdtisiits as to how well a robot can localize itself
incrementally, without a global positioning system. Weides that by localizing the robot backwards in time,
we can increase the size of the environments that can be haglpgbly. However, the general problem will
never disappear, and the best we can hope for are increniepiadvements in the size of environments that



our software can manage reliably.

As this chapter documents, we have found the map-basedigarsalbe surprisingly powerful and reliable. While

to date, there exists a variety of successful architecturmbbile robot navigation (such as Brooks’s subsumption
architecture [5]) each of which is characterized by différadvantages and disadvantages, we believe that the
map-based paradigm is particularly well-suited for fulli@nomous robots that are to perform a multitude of tasks
in large indoor environments. Maps are well-understood, iis easy to specify new navigation tasks using a
map. We also believe that probabilistic models, such as #yesrdescribed in this chapter, are powerful concepts
in robot navigation, as long as they compile percepts intogact representations that capture relevant details and
are easy to access.
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