Robot Path Planning

Sampling-Based Planners
— PRM: Probabilistic Roadmap Methods
— RRTs: Rapidly-exploring Random Trees

Sampling-Based Planners

Explicit Geometry based planners (VGRAPH, Voronoi)
are impractical in high dimensional spaces.

Exact solutions with complex geometries are provably
exponential

Sampling based planners can often create plans in high-
dimensional spaces efficiently

Rather than Compute the collision free space explicitly,
we Sample it

Sampling-Based Planners

|dea: Generate random configuration of robot in C-Space

Check to see if it is in C-Free or collides with a member of
C-Obstacles

Find N collision free configs, link them into a graph
Uses fast collision detection - full knowledge of C-Obstacles

Collision detection is separate module - can be application
and robot specific

Different approaches for single-query and multi-query
requests:

— Single: Is there a path from Configuration A to
Configuration B?

— Multiple: Is there a path between ANY 2 configurations

Sampling-Based Planners

 Complete Planner: always answers a path planning
query correctly in bounded time, including no-path

* Probabilistic Complete Planner: if a solution exists,
planner will eventually find it, using denser and denser
random sampling

« Resolution Complete Planner: same as above but based
on a deterministic sampling (e.g. sampling on a fixed

grid).

Probabilistic Roadmap Planner - PRM

Roadmap is a graph G(V,E)
Robot configuration g in Q-Free is a vertex

Edge (g1, g2) implies collision-free path between these
robot configurations — local planner needed here

A metric is needed for distance between configurations:
dist(q1,92) (e.g. Euclidean distance)

Uses coarse sampling of the nodes, and fine sampling of
the edges

Collison free vertices, edges form a roadmap in Q-Free

PRM Roadmap Construction

Initially empty roadmap Graph G

A robot configuration q is randomly chosen

If g—Q-Free (collision free configuration) then add to G
Repeat until N vertices chosen

For each vertex q, select k nearest neighbors

Local planner tries to connect g to neighbor g’

If connect successful (i.e. collision free local path), add
edge (q, q))

2D planar environment with obstacles

1. Randomly sample C-Space for N collision-free configurations

2. Link each vertex in Q-Free with K nearest neighbors

2. Link each vertex in Q-Free with K nearest neighbors

3. Connect start and goal to nearest node in roadmap

4. Graph Search for shortest path

Handles multiple queries-once on roadmap, finds a path

e e e e e
= I T =

o Do F S B & BB I

Algorithm 6 Roadmap Construction Algorithm

Input:

n : number of nodes to put in the roadmap

k : number of closest neighbors to examine for each configuration
Output:

A roadmap G = (V, E)

V<90
E <«
while |V | < n do
repeat
g < arandom configuration in Q
until g is collision-free
V <~V U/{q}
end while
forallg € V do
N, < the k closest neighbors of g chosen from V according to dist
forall g’ € N, do
if (¢,q') € E and A(q, ¢') # NIL then
E < EU{(q,9")}
end if
end for

- end for

Figure 7.3 Anexample of a roadmap for a point robot in a two-dimensional Euclidean space.
The gray areas are obstacles. The empty circles correspond to the nodes of the roadmap. The
straight lines between circles correspond to edges. The number of & closest neighbors for the
construction of the roadmap is three. The degree of a node can be greater than three since it
may be included in the closest neighbor list of many nodes.

PRM Planner: Step 2, Finding a Path

Given g_init and g_goal, need to connect
each to the roadmap

Find k nearest neigbors of g _init and
g_goal in roadmap, plan local path A

Problem: Roadmap Graph may have
disconnected components...

Need to find connections from q_init,
d_goal to same component

Once on roadmap, use Dijkstra algorithm

2R B®RE2

oA R -

- until a connection was succesful or the set N,

- until a connection was succesful or the set N,
. P <« shortest path(ginit, Ggoat» G)
. if P is not empty then

Algorithm 7 Solve Query Algorithm

Input:
Ginit: the initial configuration
goa: the goal configuration

k: the number of closest neighbors to examine for each configuration

G = (V, E): the roadmap computed by algorithm 6

Output:

A path from gini tO Gooa O failure
N, < the k closest neighbors of gy from V according to dist
Ny,.. < the k closest neighbors of ggoa from V according to dist

V = {Qinil} u {ngai} uv
set ¢’ to be the closest neighbor of g, in N,
repeat
if A(Qinits q!) # NIL then
E « (quisg)VE
else
set ¢ to be the next closest neighbor of gy in N,
end if

it

nit

g 1S €MPLY
set ¢’ to be the closest neighbor of ggoq in N,
repeat
if A(Ggoai» ¢') # NIL then
E o (anals q!) U E
else
set g’ to be the next closest neighbor of gga in N,

Ggoal
end if

Ygoal

Hgoal iS empty

return P

. else

return failure

. end if

Figure 7.4 An example of how to solve a query with the roadmap from figure 7.3. The
configurations ginir and ggea are first connected to the roadmap through ¢’ and ¢”. Then a
graph-search algorithm returns the shortest path denoted by the thick black lines.

Problem: Graph may not be fully connected!

Problem: Graph may not be fully connected!

Solution: Denser sampling — more and closer neighbors

PRM Planner Detalls

Choosing configurations:

Use random sampling of entire C-Space

However, collision free areas are easy to navigate, don't
need many samples

Collision regions are where planner needs to find denser
samples —tight navigation areas

OBPRM: Obstacle-Based PRM

— if config q is in collision, then re-sample in the vicinity
of the collision to find safe config near obstacle

— Choose random direction and small distance from g
to generate nearby sample in Q-Free

— Biases sampling to regions where collisions likely

PRM Planner Detalls

Finding nearest neighbors:
— Brute force search — cost is O(N)
— Faster method: Use K-D tree

* K-D tree decomposes dimensions by splitting into 2
regions alternating each dimension

 Search is fast and efficient
« Costis O(sqrt(N)) for dimension D=2

KD-Tree Construction

Order of insertion:

(52,76), (27,41), (12,28), (70,71), (2,12), (40,95), (62,82), (54,10), (48,50)

(40,95)
¢

(62,82)
(52,76)
C

_(70,71)

(48,50)
©

(27,41)

12,28
g %)

o {4,12))(54,10)

2,12

Split

X dim

Y dim

Y dim

KD-Tree Fast Range Query

Find points in Rectangle around Query point. Example: find all points in rectangle 10<X<30, 25<Y<45.

Once points found, a simple distance calculation finds nearest neighbor

27,

(40,95)
¢

(52,76)
C

2,82
1(62.82)

_(70,71)

(48,50)
©

11)

12,28
g %)

©-3,12)

)(54,10)

returns

Split

7

[40,95] [54,10] [62,82] X dim

2,12

(27,41),(12,28)-

only searches part of tree

allen
Typewritten Text
returns (27,41),(12,28)- only searches part of tree

Local Planner

« Used to find collision free paths between nearby nodes
« Also used to connect q_start and g_goal to the roadmap
« Called frequently, needs to be efficient

* Incremental: sample along straight line path in C-Space
« Step-size needs to be small to find collisions

« Subdivision: Check midpoint of straight line path,
recursively sample segment’s midpoints for collisions

qll q”
6 ’
a3 2 1 6 5

Step_size

Distance Function

el \ ,--q ey
7 iwond’ g \ V. - “1@ ¢

o . ﬁ‘;lk

ql q q2

 |s configuration g “closer” to q1 or q27?
» Distance metric needed between 2 configurations
 l|deally, distance is the swept volume of robot as it moves
between configs g and q' - difficult to compute
« Each config is vector of joint angles
« Possible metric: take sum of joint angle differences?
- (6 — 6))°
= 1
But this ignores movement (trans. and rotation) of the robot!

Distance Function

.{0]

f@*ﬁ & W $ 5’ Y id; xt e "‘"\ { 2:,
d et)
ql e q q2

Articulated robots: choose set of P points on robot,
concatenate them, and create a vector of size P - D (dimension
of workspace).

Intuitively, a “sampling” of the object’s Euclidean domain.

For configuration q, sample(q) is the vector of P points
transformed by the translation and rotation that is config q

Transform each of the P points into the vector sample(q). Do
same for configuration q’, create sample(q’).

In 3D, distance is Euclidean distance between the 3-P vectors:

d(a,q’) = || sample(q) - sample(q’)]|
Rigid robot: just choose 2 points of maximal extent as samples

6-DOF Path Planning Example

Robot: Rigid non-convex object in 3 space

Obstacle: Solid wall with small opening

Configuration of solid object: g=(Translation, Rotation)

Random X,Y,Z configuration is chosen for translation

Random axis and angle of rotation chosen for rotation

Distance measure uses 2 extreme points on object,
p1and p2: [|p1-pT|| +||p2 - p2]|

Local planner: Check for collision by interpolating along

3-D translation and rotation angle about axis

e

https://youtu.be/I39OrkmHZSs
allen
Typewritten Text
video

allen
Typewritten Text

allen
Typewritten Text

RRT: Rapidly-exploring Random Trees

Single query planner to get from config A to config B

Randomly sample Q-Free for path from q_start to
g_goal, growing a tree towards goal

Can use 2 trees, rooted at g_start and q_goal.

As trees grow, the eventually share a common node, and
are merged into a path

RRT: Build Tree Algorithm

| @ goal
. q_rand
step size
start
qg_new

Start node is root of tree

Generate new random config q_rand

Find nearest tree node g

Move along path (g, g_rand) distance step_size
If collision free, add g_new as new tree node
Repeat...

L L - L S
: 8 |) . [N
I | | | o
j%’oaﬁ | | - joa W - .
N § .
T || o]
 start "~ start

Expand tree, one node a time, from start node
Randomly generate new sample config each time
Try to connect sample to nearest node in the tree
Create new node small distance (step_size) towards
sample (if collision free) — local planner invoked here

allen
Typewritten Text

Once tree reaches the goal, we have a path
Path is not optimal in any sense

Path can be different each time - stochastic
Scales to higher dimensions

O B oo A W e

Algorithm 10 Build RRT Algorithm
Input:
qo: the configuration where the tree is rooted
n : the number of attempts to expand the tree
Output:
A tree T = (V, E) that is rooted at gy and has < n configurations
V < {q0)
E <0
fori =1tondo
Granda < a randomly chosen free configuration
extend RRT (7', Grand)
end for
return 7'

02 M Gh B B

Algorithm 11 Extend RRT Algorithm
Input:

T ={(V,.E). ah RRT

q: a configuration toward which the tree 7 is grown
Output:

A new configuration gpe toward ¢, or NIL in case of failure

© Gnear < Closest neighbor of ¢ in T

Grew < PrOZIESS Gnear DY step_size along the straight line in Q between g¢.,.,

{rand

if gyew 1s collision-free then
V < V U {gnew}
E < E U {(gnears Gnew)}
return ..,

end if

return NIL

RRT: How do we reach the goal?

. As we add node gq_new, see if it is within step size of goal
« |f so, see if we can add edge (q_new, gq_goal)

. Bias: q_rand determines what direction we go

What if g_rand == q_goal?

Greedy algorithm, can get stuck in local minima

ldea: Use gq_goal as q_rand just some of the time
Moves tree towards goal every now and then

Just 5% bias towards goal can improve performance

RRT: Too Much Bias

goal

start
g_rand

If g_rand == q_goal all the time:
* Greedily tries to reach goal

» (Gets trapped
« Randomness is needed to search the space

BiDirectional RRT

Use 2 trees (T_1, T_2) one rooted at start, one at goal

To connect the trees (and form a path):
 Expand tree T_1 randomly, add node q_new 1
« Expand T_2towards g new 1
« |ftree T_2 connects to g new 1, path formed, done!
elseaddaq new 2for tree T 2
 Now Swap trees T1, T2 and repeat the process

allen
Typewritten Text

BiDirectional RRT

T 2
goal

q 2
T 1 g_new

start q 1

Optimizing Paths

« Try connecting non-adjacent configurations

« Choose g _1 and q_2 randomly, try to connect.

« Greedy approach: try connecting points q_0,
g 1,...q ntoq _goal.

Original Path = = = =

Shorter Path

Time-lapse paths

RRT Summary

Efficient way to form goal-directed search without explicit
computation of C-Free

Scales to higher dimensions — multi-DOF robots
Performance is related to local planner

step-size is an important parameter
nearest-neighbor computation can slow performance

Kinodynamic Planning: Can also include velocity and
other constraints in building trees

Website: hitp:/imsl.cs.uiuc.edulrrt

http://msl.cs.uiuc.edu/rrt

Path Planning Summary

Many methods to choose from

Depends on dimensionality of C-Space, application
Tradeoffs: computation time, accuracy, optimality, safety
Most methods are purely kinematic:

Plans do not incorporate dynamics

A kinematic path for a bi-ped humanoid robot may not be
realizable if robot falls or isn’t stable

Solution: find kinematic paths between KNOWN stable robot
configurations

Can add dynamics stabilizer to the resulting kinematic path to
insure stability

Paths may not be smooth in Cartesian space —
especially true with sampling-based methods

