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11 Localization and Map Making

Chapter Objectives:

� Describe the difference between iconic and feature-based localization.

� Be able to update an occupancy grid using either Bayesian, Dempster-
Shafer, or HIMM methods.

� Describe the two types of formal exploration strategies.

11.1 Overview

The two remaining questions of navigation are: where am I? and where have I
been? The answers to these questions are generally referred to as localization
and map-making, respectively. Both are closely related, because a robot cannot
create an accurate map if it does not know where it is. Fig. 11.1 shows a
hallway in black in a building. The hallway makes a complete circuit around
the center of the building. The gray shows the hallway as sensed by a mobile
robot. The mobile robot senses, updates the map with the portions of the
hallway that have come into view, then moves, updates, and so on. In this
case, it uses shaft encoders to determine where it has moved to and how to
update the map.

As can been seen from the figure, as well as discussions in Ch. 6, shaft
encoders are notoriously inaccurate. Worse yet, the inaccuracies are highly
dependent on surfaces. For example, the robot’s wheel will slip differently
on carpet than on a polished floor. Developing an error model to estimate the
slippage is often unrealistically difficult. The shaft encoder problem might
appear to be eliminated by new hardware technology, especially GPS and
MEMS (micro electrical-mechanical systems) inertial guidance systems (INS).
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Figure 11.1 A map of a circuit of a hallway created from sonars by a Nomad 200
showing the drift in localization. The ground truth is in black.

However, GPS only works reliably outdoors. The signal is often unobtain-
able indoors, in tunnels, or in cities with large buildings (sometimes referred
to as urban canyons). MEMS inertial navigation devices are small, but suf-URBAN CANYONS

fer from significant inaccuracies and have not been packaged in a way to be
easily used with robots.

Researchers have attempted to solve the localization problem in a number
of ways. The first approach was to simply ignore localization errors. While
this had the advantage of being simple, it eliminated the use of global path
planning methods. This was part of the motivation and appeal of purely re-
active systems, which had a “go until you get there” philosophy. Another
approach was to use topological maps, which have some symbolic informa-
tion for localization at certain points such as gateways, but don’t require con-
tinuous localization. Unfortunately, for reasons discussed in Ch. 9, it is hard
to have unique gateways. The move to topological mapping gave rise to a
whole subfield of reasoning about indistinguishable locations.

More sophisticated systems either identified natural landmarks which had
noticeable geometric properties or added artificial landmarks. One robot
proposed for a Canadian mining company intended to navigate through rel-
atively featureless mine shafts by dropping beacons at different intersections,
much like Hansel and Gretel dropping cookie crumbs for a path. (This in-
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spired much humorous discussion of the merits of the biological equivalent
of robot droppings and robots imitating animals that “mark” their territory
in the wild.) Other techniques attempted to match the raw sensor data to
an a priori map using interpretation trees or similar structures. One of the
many problems with these techniques is that the sensor data rarely comes in
a form amenable to matching against a map. Consider attempting to match
noisy sonar data to the layout of a room. In the end, the basic approach used
by most systems is to move a little, build up a small map, match the new map
to the last map, and merge it in, then merge the small map with the overall
map. The use of small, local maps for localization brings the process back
full circle to the need for good map-making methods.

Localization algorithms fall into two broad categories: iconic and feature-
based. Iconic algorithms appear to be the more popular in practice, in part
because they usually use an occupancy grid. Occupancy grids are a mech-
anism for fusing sensor data into a world model or map. Fusion is done
either following an algorithm provided by a formal theory of evidence, ei-
ther Bayesian or Dempster-Shafer, or by a popular quasi-evidential method
known as HIMM. Since occupancy grids fuse sensor data, the resulting map
does not contain as much sensor noise. Many Hybrid architectures also use
the occupancy grid as a virtual sensor for obstacle avoidance.

The chapter first covers occupancy grids, which are also known as cer-
tainty and evidence grids. Since sonars are a popular range sensor for map-
ping and obstacle avoidance, the chapter next covers sonar sensor models
and the three methods for using sensor models to update a grid: Bayesian,
Dempster-Shafer, and HIMM. The Bayesian and Dempster-Shafer methods
can be used with any sensor, not just range from sonar. The comparison
of the three methods discusses practical considerations such as performance
and ease in tuning the method for a new environment. Iconic localization
is described next. It is useful for metric map building and generally uses
an occupancy grid-like structure. Feature-based localization, which is better
suited for topological map building, is discussed next. Feature-based meth-
ods have become popular with the advent of partially ordered Markov deci-
sion process (POMDP) methods to simplify reasoning about them; POMDPs
are outside the scope of this book but the basic localization strategy is pre-
sented. The chapter ends with a brief description of frontier and Voronoi
methods of using the data in an occupancy grid to direct exploration of an
unknown environment.
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11.2 Sonar Sensor Model

All methods of updating uncertainty require a sensor model. Models of sen-
sor uncertainty can be generated in a number of ways. Empirical methods for
generating a sensor model focus on testing the sensor and collecting data as
to the correctness of the result. The frequency of a correct reading leads to
a belief in an observation; the set of beliefs from all possible observations
form the model. Analytical methods generate the sensor model directly from
an understanding of the physical properties of the device. Subjective methods
rely on a designer’s experience, which are often an unconscious expression
of empirical testing.

One robotic sensor which has been heavily studied is the Polaroid ultra-
sonic transducer, or sonar. This chapter will use Polaroid sonars as an exam-
ple; however, the principles of scoring and fusing belief apply to any sensor.
Most roboticists have converged on a model of sonar uncertainty which looks
like Fig. 11.2, originally presented in Ch. 6.

The basic model of a single sonar beam has a field of view specified by �, theSONAR MODAL

PARAMETERS half angle representing the width of the cone, and R, the maximum range it
can detect. This field of view can be projected onto a regular grid. The grid
will be called an occupancy grid, because each element l (for eLement) in theOCCUPANCY GRID

ELEMENT L grid will hold a value representing whether the location in space is occupied
or empty. As shown in Fig. 11.2, the field of view can be divided into three
regions:

Region I: where the affected elements are probably occupied (drawn as a
“hill”),

Region II: where the affected elements are probably empty (drawn as a “val-
ley”), and

Region III: where the condition of the affected elements is unknown (drawn
as a flat surface).

Given a range reading, Region II is more likely to be really empty than Re-
gion I is to be really occupied. Regardless of empty or occupied, the readings
are more likely to be correct along the acoustic axis than towards the edges.
Recall that this is in part because an obstacle which was only along one edge
would be likely to reflect the beam specularly or generate other range errors.

While the sensor model in Fig 11.2 reflects a general consensus, there is
much disagreement over how to convert the model into a numerical value
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Figure 11.2 A sensor model for a sonar: a.) three dimensional representation and
b.) two dimensional representation projected onto an occupancy grid.



380 11 Localization and Map Making

Figure 11.3 Neptune, a robot using occupancy grids during the early 1980’s. (Pho-
tograph courtesy of Hans Moravec.)

for belief. Each of the three methods covered in the following sections does
the translation slightly differently.

11.3 Bayesian

The most popular evidential method for fusing evidence is to translate sen-
sor readings into probabilities and to combine probabilities using Bayes’ rule.
Elfes and Moravec at Carnegie Mellon University pioneered the probabilis-
tic approach in the early 1980’s. Later Moravec turned to a form of Bayes’
Rule which uses probabilities expressed as likelihoods and odds. 95 This has
some computational advantages and also side-steps some of the problems
with priors. The likelihood/odds formulation is equivalent to the traditional
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approach presented here. In a Bayesian approach, the sensor model gener-
ates conditional probabilities of the form P (sjH). These are then converted
to P (H js) using Bayes’ rule. Two probabilities, either from two different sen-
sors sensing at the same time or from two different times, can be fused using
Bayes’ rule.

11.3.1 Conditional probabilities

To review, a probability function scores evidence on a scale of 0 to 1 as toPROBABILITY

FUNCTION whether a particular event H (H stands for “hypothesis”) has occurred given
an experiment. In the case of updating an occupancy grid with sonar read-
ings, the experiment is sending the acoustic wave out and measuring the
time of flight, and the outcome is the range reading reporting whether the
region being sensed is Occupied or Empty.

Sonars can observe only one event: whether an element grid[i][j] is Occu-
pied or Empty. This can be written H = fH;:Hg or H = fOccupied; Emptyg.

The probability that H has really occurred is represented by P (H):

0 � P (H) � 1

An important property of probabilities is that the probability that H didn’t
happen, P (:H), is known if P (H) is known. This is expressed by:

1� P (H) = P (:H)

As a result, if P (H) is known, P (:H) can be easily computed.
Probabilities of the form P (H) or P (:H) are called unconditional probabil-UNCONDITIONAL

PROBABILITIES ities. An example of an unconditional probability is a robot programmed to
explore an area on Mars where 75% of the area is covered with rocks (obsta-
cles). The robot knows in advance (or a priori) that the next region it scans
has P (H = Occupied) = 0:75.

Unconditional probabilities are not particularly interesting because they
only provide a priori information. That information does not take into ac-
count any sensor readings, S. It is more useful to a robot to have a func-
tion that computes the probability that a region grid[i][j] is either Occupied
or Empty given a particular sensor reading s. Probabilities of this type are
called conditional probabilities. P (H js) is the probability that H has really oc-CONDITIONAL

PROBABILITIES curred given a particular sensor reading s (the “j” denotes “given”). Uncon-
ditional probabilities also have the property that P (H js) + P (:H js) = 1:0.
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In an occupancy grid, P (Occupiedjs) and P (Emptyjs) are computed for
each element, grid[i][j], that is covered by a sensor scan. At each grid ele-
ment, the tuple of the two probabilities for that region is stored. A tuple can
be implemented as a C struct

typedef struct {

double occupied;

double empty;

} P;

P occupancy_grid[ROWS][COLUMNS];

Probabilities provide a representation for expressing the certainty about a
region grid[i][j]. There still needs to be a function which transfers a partic-
ular sonar reading into the probability for each grid element in a way that
captures Fig. 11.2. One set of functions which quantify this model into prob-
abilities is given below.

For every grid element falling into Region I:

P (Occupied) =
(R�r

R
) + (���

�
)

2
�Maxoccupied

P (Empty) = 1:0� P (Occupied)(11.1)

where r and � are the distance and angle to the grid element, respectively.
The ���

�
term in Eqn. 11.1 captures the idea that the closer the grid element

is to the acoustic axis, the higher the belief. Likewise, the nearer the grid ele-
ment is to the origin of the sonar beam, the higher the belief (the R�r

R
term).

The Maxoccupied term expresses the assumption that a reading of occupied is
never fully believable. A Maxoccupied = 0:98 means that a grid element can
never have a probability of being occupied greater than 0.98.

It is important to note that Region I in Fig. 11.2 has a finite thickness. Due
to the resolution of the sonar, a range reading of 0.87 meters might actually be
between 0.82 and 0.92 meters, or 0.87�0.05 meters. The �0:05 is often called
a tolerance. It has the impact of making Region I wider, thereby coveringTOLERANCE

more grid elements.
Each grid element in Region II should be updated using these equations:

P (Occupied) = 1:0� P (Empty)

P (Empty) =
(R�r

R
) + (���

�
)

2
(11.2)
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s=6

R=10
β=15

r=3.5
α=0

Figure 11.4 Example 1: Updating an element in Region II (sonar reading of 6).

Note that unlike an element in Region I, an element in Region II can have
a probability of being empty of 1.0.

To see how these formulas would be applied, consider the example in
Fig. 11.4. The sonar has returned a range reading of 6.0 feet with a tolerance
of �0:5 feet. The Maxoccupied value is 0.98. The robot is shown on a grid,
and all elements are measured relative to it. The element of interest grid[i][j]
is shown in black, and is at a distance r = 3:5 feet and an angle of � = 0�

from the robot. In a computer program, r and � would be computed from
the distance and arctangent between the element of interest and the element
representing the origin of the sonar, but for the sake of focus, these examples
will give r and �.

The first step is to determine which region covers the element. Since 3:5 <

(6:0 � 0:5), the element is in Region II. Therefore, the correct formulas to
apply are those in Eqn. 11.2:

P (Empty) =
(R�r

R
)+( ���

�
)

2 =
( 10�3:5

10
)+( 15�0

15
)

2 = 0:83

P (Occupied) = 1:0� P (Empty) = 1� 0:83 = 0:17

The example in Fig. 11.5 shows an element in Region I. The probability for
the element in black is computed the same way, only using the equations for
that region.
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r=6
α=5

R=10
β=15

s=6

Figure 11.5 Example 2: Updating a element in Region I (sonar reading at 6).

P (Occupied) =
(R�r

R
)+( ���

�
)

2 �Maxoccupied =
( 10�6

10
)+( 15�5

15
)

2 � 0:98 = 0:52

P (Empty) = 1:0� P (Occupied) = 1� 0:52 = 0:48

11.3.2 Conditional probabilities for P (Hjs)

The sensor model represents P (sjH): the probability that the sensor would
return the value being considered given it was really occupied. Unfortu-
nately, the probability of interest is P (H js): the probability that the area
at grid[i][j] is really occupied given a particular sensor reading. The laws
of probability don’t permit us to use the two conditionals interchangeably.
However, Bayes’ rule does specify the relationship between them:

P (H js) =
P (sjH)P (H)

P (sjH)P (H) + P (sj:H)P (:H)
(11.3)

Substituting in Occupied for H , Eqn. 11.3 becomes:

P (Occupiedjs) =
P (sjOccupied) P(Occupied)

P (sjOccupied) P(Occupied) + P (sjEmpty) P(Empty)
(11.4)

P (sjOccupied) and P (sjEmpty) are known from the sensor model. The
other terms, P (Occupied) and P (Empty), are the unconditional probabili-
ties, or prior probabilities sometimes called priors. The priors are shown in
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Eqn. 11.4 in boxes. If these are known, then it is straightforward to convert
the probabilities from the sonar model to the form needed for the occupancy
grid.

In some cases, such as for a planetary rover, there may be some knowledge
that produces the prior probabilities. In most cases, that knowledge isn’t
available. In those cases, it is assumed that P (Occupied) = P (Empty) =

0:5. Using that assumption, the probabilities generated for the example in
Fig. 11.5 can be transformed as follows.

For grid[i][j]:

P (s = 6jOccupied) = 0:62

P (s = 6jEmpty) = 0:38

P (Occupied) = 0:5

P (Empty) = 0:5

Substituting into Eqn. 11.4 yields:

P (Occupiedjs = 6) =
(0:62)(0:5)

(0:62)(0:5) + (0:38)(0:5)
= 0:62

P (Emptyjs = 6) =
(0:38)(0:5)

(0:38)(0:5) + (0:62)(0:5)
= 0:38

The use of 0.5 for the priors made P (Occupiedjs) numerically equivalent
to P (sjOccupied), but in general P (H js) 6= P (sjH).

11.3.3 Updating with Bayes’ rule

Now that there is a method for computing conditional probabilities of the
correct form, the question becomes how to fuse it with other readings. The
first update is simple. Each element in the occupancy grid is initialized with
the a priori probability of being occupied or empty. Recall that this is gener-
ally implemented as a data structure consisting of two fields. If the a priori
probabilities are not known, it is assumed P (H) = P (:H) = 0:5. The first
observation affecting grid[i][j] can use Bayes’ rule to compute a new proba-
bility and replace the prior P (H) = 0:5 with the new value.

But what about the second observation? Or an observation made from
another sonar at the same time? It turns out that in both cases, Bayes’ rule
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can be used iteratively where the probability at time tn�1 becomes the prior
and is combined with the current observation (tn).

To see this, consider the following derivation. For n multiple observations,
s1; s2; : : : sn, Bayes’ rule becomes:

P (H js1; s2; : : : sn) =
P (s1; s2; : : : snjH)P (H)

P (s1; s2; : : : snjH)P (H) + P (s1; s2; : : : snj:H)P (:H)
(11.5)

This introduces the problem of generating P (s1; s2; : : : snjH). Ideally, this
requires a sonar model of getting occupied and empty values for all grid[i][j]
with n combinations of sensor readings. Fortunately, if the reading from s1
can be considered the result of a different experiment than s2 and the others,
P (s1; s2; : : : snjH) simplifies to P (s1jH)P (s2jH) : : : P (snjH). Now, the pro-
gram only has to remember all previous n�1 readings. Since there is no way
of predicting how many times a particular grid element will be sensed, this
creates quite a programming problem. The occupancy grid goes from being
a two dimensional array with a single two field structure to being a two di-
mensional array with each element a potentially very long linked list. Plus,
whereas Eqn. 11.3 involved 3 multiplications, updating now takes 3(n � 1)

multiplications. The computational overhead begins to be considerable since
an element in a hallway may have over 100 observations.

Fortunately, by clever use of P (H js)P (s) = P (sjH)P (H), a recursive ver-
sion of Bayes’ rule can be derived:

P (H jsn) =
P (snjH)P (H jsn�1)

P (snjH)P (H jsn�1) + P (snj:H)P (:H jsn�1)
(11.6)

So at each time a new observation is made, Eqn. 11.6 can be employed and
the result stored at grid[i][j]. The rule is commutative, so it doesn’t matter in
what order two or more simultaneous readings are processed.

11.4 Dempster-Shafer Theory

An alternative theory of evidence is Dempster-Shafer theory which produces
results similar to Bayesian probabilities. It is a much newer theory, origi-
nating in the work of A.P. Dempster, a mathematician at Harvard, during
the 1960’s with extensions by Glen Shafer in 1987.126 Whereas Bayes’ rule
relies on evidence being represented by probability functions, Dempster-
Shafer theory represents evidence as a possibilistic belief function. Possibilis-
tic means that the function represents partial evidence. For example, a reading
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