Visibility Graph Path Planning

How does a Mobile Robot get from A to B?

Assume robot is a point in 2-D planar space
Assume obstacles are 2-D polygons

Create a Visibility Graph:

— Nodes are start point, goal point, vertices of
obstacles

— Connect all nodes which are “visible” — straight line
un-obstructed path between any 2 nodes

— Includes all edges of polygonal obstacles
Use A* to search for path from start to goal

Visibility Graph - VGRAPH

goal _—y goal

start start

« Start, goal, vertices of obstacles are graph nodes
« Edges are “visible” connections between nodes,
iIncluding obstacle edges

Visibility Graph - VGRAPH

* A* search for shortest path via visible vertices

VGRAPH: Grown Obstacles

 VGRAPH algorithm assumes point robot
 What if robot has mass, size?

e Solution: expand each obstacle by size of the robot —
create Grown Obstacle Set

o B A -
origin —

robot obstacle grown obstacle
* This effectively “shrinks” the robot back to a point

e Graph search of the VGRAPH will now find shortest
path if one exists using grown obstacle set

C34733 Class Notes

1 2-D Robot Motion Planning Algorithm Using Grown Obstacles

e Reference: An Algorithmfor Planning Collision Free Paths Among Poyhedral Obstaclesby T. Lozano-Perez and M.
Wesley.

e This method of 2-D mation planning assumes a set of 2-D convex polygonal obstacles and a 2-D convex polygonal
mobile robot.

e The general idea is grow the obstacles by the size of the mobile robot, thereby reducing the analysis of the robot’s
motion from a moving area to a single moving point. The point will always be a safe disatnce away form each
obstacle due the growing step of each obstacle. Once we shrink the robot to a point, we can then find a safe path for
the robot using a graph search technique.

2 Algorithm

e Method I: Grow each obstacle in the scene by the size of the mobile robot. This is done by finding a set of vertices
that determine the grown obstacle (see figure 1). First, we reflect the robot about its X and Y axes. Placing this
reflected object at each obstacle vertex, we can map the robot reference points when added to these vertices. This
constitutes a grown set of vertices.

e Given the grown set of vertices, we can find its convex hull and form a grown polygonal obstacle. The obstacle is
guaranteed to be the convex hull.

e We can now create a visibility graph (see figure 2). A visibility graph is an undirected graph G = (V, E) where the
V is the set of vertices of the grown obstacles plus the start and goal points, and £ is a set of edges consisting of all
polygonal obstacle boundary edges, or an edge between any 2 vertices in V' that lies entirely in free space except for
its endpoints. Intuitively, if you place yourself at a vertex, you create an edge to any other vertex you can see (i.e.
is visible). A simple algorithm to compute G is the following. Assume all N vertices of the G are connected. This
forms w edges. Now, check each edge to see if it intersects (excepting its endpoints) any of the grown obstacle
edges in the graph If so, reject this edge. The remaining edges (including the grown obstacle edges) are the edges
of the visibility graph. This algorithm is brute force and slow (O(/N3) but simple to compute. Faster algorithms are
known.

e The shortest path in distance can be found by searching the Graph G using a shortest path search (Dijkstra’s Algo-
rithm) or other heuristic search method.

e Method II: Every grown obstacle has edges from the original obstacle and edges from the robot. These edges occur
in order of the obstacle edge’s outward facing normals and the inward facing normals of the robot. By sorting these
normals, you can construct the boundary of the grown obstacle(see figures 4.14. and 4.15 in this handout from
Planning Algorithms, S. Lavalle, Cambridge U. Press, 2006. http://planning.cs.uiuc.edu/)

VGRAPH: Growing Obstacles

Reflect robot about X, Y axes Add reflected robot vertices to
each obstacle vertex

. Triangular
obstacle

Compute convex hull of vertices Convex hull is grown obstacle

VGRAPH: Grown Obstacles

Point Robot Path ¢ Path after growing obstacles
with square robot 8

= i i
i »Expanded |
’ ¢, object o

€, 0 R R d? n
_—
! R (reference point) Start Flip 1 cls
w ; Vertices (b

(a)
A = Convex
L 4Vertices & hll
, g .
#
Ia‘
() (d)

Figure 1: Reflection method for computing grown obstacles (from P. McKerrow, Introduction to Robotics).

Hutart

Figure 2: Visibility graph with edges.

160 S. M. LaValle: Planning Algorithms

Cobs O

(a) (b)

Figure 4.14: (a) Slide the robot around the obstacle while keeping them both in
contact. (b) The edges traced out by the origin of A form Cps.

B2
} W
aq
Qe ., --— —— a2
i ;; O% 33 B 4, 3

#

Ba B
(a) (b)

Figure 4.15: (a) Take the inward edge normals of A and the outward edge normals
of O. (b) Sort the edge normals around S*. This gives the order of edges in Cyps.

VGRAPH Extensions

« Rotation: Mobile Robot can rotate

« Solution:
— Grow obstacles by size that includes all rotations
— Over-conservative. Some paths will be missed
— Create multiple VGRAPHS for different rotations

— Find regions in graphs where rotation is safe, then
move from one VGRAPH mapping to another

* Non-convex obstacles/robots: any concave polygon can
be modeled as set of convex polygons

VGRAPH: Rotations

Left: Rectangular robot that can rotate
Right: Polygon that approximates all rotations
Polygon is over-conservative, will miss legal paths

Fig. 5. Fig. 6.

A
=}
S
A A I~
{a,8) 7

Path for grown obstacles with fixed robot orientation Path for grown obstacles with robot rotation

Growing Non-Convex robots

| A

B B, By,

Figure 3: Concave objects. Decompose concave robot A into convex regions, Compute grown space of each convex region
with obstacle B, union the resulting grown spaces (from R. Schilling, /'undamentals of Robotics).

VGRAPH Summary

Guaranteed to give shortest path in 2D

Path is dangerously close to obstacles — no
room for error

Does not scale well to 3D. Shortest path in 3D
IS hot via vertices:

Growing obstacles //% Goal

is difficult in 3D /

Start /

Lt

4 Finding the Convex Hull of a 2-D Set of Points

e Reference: Computational Geometry in C by J. O’Rourke

e Given a set of points .S in a plane, we can compute the convex hull of the point set. The convex hull is an enclosing
polygon in which every point in S is in the interior or on the boundary of the polygon.

¢ An intuitve definition is to pound nails at every point in the set S and then stretch a rubber band around the outside
of these nails - the resulting image of the rubber band forms a polygonal shape called the Convex Hull. In 3-D, we
can think of “wrapping” the point set with plastic shrink wrap to form a convex polyhedron.

e A test for convexity: Given a line segment between any pair of points inside the Convex Hull, it will never contain
any points exterior to the Convex Hull.

o Another definition is that the convex hull of a point set S is the intersection of all half-spaces that contain S. In 2-D,
half spaces are half-planes, or planes on one side of a separating line.

5 Computing a 2-D Convex Hull: Grahams's Algorithm

There are many algorithms for computing a 2-D convex hull. The algorithm we will use is Graham’s Algorithm which is
an O(N Log N) algorithm (see figure 4).

1.

a > D>

Given N points, find the righmost, lowest point, label it Py.

Sort all other points angularly about P,. Break ties in favor of closeness to P,. Label the sorted points Py - - - Py_1.
Push the points labeled Py _; and P, onto a stack. These points are guaranteed to be on the Convex Hull (why?).
Seti=1

While 7 < N do

If P; is strictly left of the line formed by top 2 stack entries (Pjop, Piop—1), then Push P; onto the stack and
increment i; else Pop the stack (remove P,,;).

. Stack contains Convex Hull vertices.

f- 8 =7 6 .3
0 " AN
-‘_” : ™,
4 »2
S .
. /
y : *5 /
14 13 11 : 4 V4
’ :
2 f/
151 i g 4
. : Vd
I L
s R~ N o 4// e
16! ;
S~ ’/
\\\ E /
- e 0
18 : 17

Below is shown the stack (point indices only) and the value of i at the top of
the while loop. The stack is initialized to (0, 18), where the top is shown
leftmost (the opposite of our earlier convention). Point p, is added to form
(1,0,18), but then p, causes p, to be deleted, and so on. Note that p; causes
the deletion of p,, when i = 18, as it should. For this example, the total number
of iterations s 29 < 2 p=2-19 =38,

i= 1:
i= 2:
i= 2:
i= 3:
i= 4:
i= 5:
i= 5:
i= B:
i= 6:
fi=- T
i= 7:
i= 8:
i= 8:
i= 9:
i=10:
i=10:
i=11:
i=12:
i=13:
i=13:
i=13:
i=14:
i=14:
i=15:
i=16:
i=16:
i=mi7s
i=18:
1=18:
i=19:

8,

10, 8, 3,

115
13,
11,
10,
13,
10,
14,
15,
14,
16,
17,
16,
18,

3,

18
0,
18
ol
2,
3,
2,
3,
2,
3,
2,
3!
2!
3,
8,

2,

10!
11,
10,

8,
10, 8,
8,

3

3

10,
14,
10,
14,
15,
14,
16,

18

18
0,
2y
0,
2,
0,
2,
0,
2'
or
2,
3

0,
2,
8,
10,
8, 3
P 2y
3
;2
8, 3
10,
8,
10,
14,
10,
14,

3

18
o,
18
o,
18
o,
18
0!
18
0,
2,

18

0,
3, Z;
3,

8,

18
18
18
18

18
0,

18
0,
2,

12;

0,

i 2i'

0,
2y
ER
i 2!
3,
8.
3!
8,

g,

8,

10,

B r

10,

o,
18
0,
18
0,
2,
0,
2,

2'

18

18
a,
18

18

18

18
0,
18
0,
2,
0,
2,

18

18
0,
18,
ol’

3, 18

3, 18

After popping off the redundant copy of p,,, we have the precise hull we seek;
(0,2,3,8,10,14, 16, 18).

Figure 4: Graham Convex Hull Algorithm example from J. O’ Rourke, Computational Geometry in C

	astargrid.pdf
	Sheet1

