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Localization | definition, challenges and approach

= Map-based localization
= The robot estimates its position using perceived information and a map

= The map
= might be known (localization)

= Might be built in parallel (simultaneous localization and mapping — SLAM)

= Challenges
= Measurements and the map are inherently error prone
= Thus the robot has to deal with uncertain information

— Probabilistic map-base localization

= Approach

= The robot estimates the belief state about its position
through an ACT and SEE cycle
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Robot Localization: Historical Context

Initially, roboticists thought the world could be modeled exactly
Path planning and control assumed perfect, exact, deterministic world

Reactive robotics (behavior based, ala bug algorithms) were developed
due to imperfect world models

But Reactive robotics assumes accurate control and sensing to react —
also not realistic

Reality: imperfect world models, imperfect control, imperfect sensing

Solution: Probabilistic approach, incorporating model, sensor and
control uncertainties into localization and planning

Reality: these methods work empirically!
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Concept | SEE and ACT to improve belief state

= Robot is placed somewhere in the L
environment — location unknown .
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Concept | SEE and ACT to improve belief state

= Robot is placed somewhere in the L
environment — location unknown -

» SEE: The robot queries its sensors .
— finds itself next to a pillar |
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Concept | SEE and ACT to improve belief state

» SEE: The robot queries its sensors .
— finds itself next to a pillar |

p(x)

A

SEE

<
]

..I—l | S ———J

A A A -

Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Localization | Introduction to Map-Based Localization | 6




oo ASL
E'HZUFICh Autonomous Systems Lab

Concept | SEE and ACT to improve belief state

. = ACT: Robot moves one meter forward
= motion estimated by wheel encoders
u = accumulation of uncertainty
—
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Concept | SEE and ACT to improve belief state

. = ACT: Robot moves one meter forward
= motion estimated by wheel encoders
u = accumulation of uncertainty
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Concept | SEE and ACT to improve belief state

= SEE: The robot queries its sensors again
— finds itself next to a pillar
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Concept | SEE and ACT to improve belief state

Belief update (information fusion)

—
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ACT | using motion model and its uncertainties

= The robot moves and estimates its position through its proprioceptive sensors
= Wheel Encoder (Odometry)

= During this step, the robot’s state uncertainty grows
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SEE | estimation of position based on perception and map

= The robot makes an observation using its exteroceptive sensors
= This results in a second estimation of the current position
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Belief update | fusion of prior belief with observation

= The robot corrects its position by combining its belief before the observation
with the probability of making exactly that observation

= During this step, the robot’s state uncertainty shrinks

Robot’s belief
update
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Take home message |
ACT - SEE Cycle for Localization

= SEE: The robot queries its sensors
— finds itself next to a pillar

= ACT: Robot moves one meter forward
= motion estimated by wheel encoders
= accumulation of uncertainty

= SEE: The robot queries its sensors
again — finds itself next to a pillar

= Belief update (information fusion)
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Probabilistic localization | belief representation

p(x)
a) Continuous map with E:Lr:ﬁ:a'tzlgt: '
single hypothesis probability distribution p(x) )
p(x)
b) Continuous map with
multiple hypotheses probability distribution p(x) /\ )
p(x)
c) Discretized metric map (grid k) with Markov Localization
probability distribution p(k) )
p(x)
d) Discretized topological map (nodes n) with
probability distribution p(n) —
— — 1 — n
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Markov localization | applying probability theory to localization

ASL

Autonomous Systems Lab

position Position Update
(estimation/fusion)
/
Encoder \
(e.g. odometry)
ACT: Motion predicted

(motors) position matched

= observations

q') C

1=

k=10

(O} (]

‘5_ o

. \ 4
= |nformation (measurements) Map predicted .
is error prone (uncertain) (data base) observations
= Odometry
= Exteroceptive sensors (camera, laser, ...) measured
observations

. Map ‘\ (sensor data / features)

—>  Probabilistic map-based localization

Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart

SEE: Perception

(Camera, Laser, ...)

Localization | the Markov Approach | 2



o . ASL
E'HZUFICh Autonomous Systems Lab

Usage | application of probability theory to robot localization

= Probability theory is widely and very successfully used for mobile robot
localization

= |n the following lecture segments, its application to localization will be
illustration
= Markov localization
= Discretized pose representation
= Kalman filter
= Continuous pose representation and Gaussian error model

= Further reading:
=  “Probabilistic Robotics,” Thrun, Fox, Burgard, MIT Press, 2005.
= “Introduction to Autonomous Mobile Robots”, Siegwart, Nourbakhsh, Scaramuzza, MIT Press 2011
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Probability theory | how to deal with uncertainty

Autonomous Systems Lab

= Mobile robot localization has to deal with error prone information

= Mathematically, error prone information (uncertainties)
random variables and probability theory

IS best represented by

= p(x) = p(X = x): probability that the random variable X has value x (x is true).

= X:random variable
= x:a specific value that X might assume.

= The Probability Density Functions (PDF) describes
the relative likelihood for a random variable to take on
a given value

= PDF example: The Gaussian distribution:

Autonomous Mobile Robots
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Autonomous Mobile Robots, Chapter 5

Markov Localization

» Key idea: compute a probability distribution oadlrpossible positions
In the environment.

» This probability distribution represents the likediod that the robot is in a
particular location.

P(Robot Location)

State space = 2D, infinite #states
X

Slide adapted from Dellaert presentation “19-Particles.ppt”
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Markov localization | basics and assumption

= Discretized pose representation x; — grid map

= Markov localization tracks the robot’s belief state bel(x;) using an arbitrary
probability density function to represent the robot’s position

= Markov assumption: Formally, this means that the output of the estimation
process is a function x; only of the robot’s previous state x;_; and its most
recent actions (odometry) u; and perception z;.

p(x¢|x0, Up - Ug, Z¢ =+ Zg) = D(X¢|Xp1, Us, Z¢)

= Markov localization addresses the global localization problem, the position
tracking problem, and the kidnapped robot problem.
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Basic concepts of probability theory | theorem of total probability

= The theorem of total probability (convolution) originates from the axioms of
probability theory and is written as:

p(x) = Z p(x|y)p(y) for discrete probabilities
y

p(x) = f p(x|y)p(y)dy for continuous probabilities
y

= This theorem is used by both Markov and Kalman-filter localization algorithms
during the prediction update.
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Markov localization | applying probability theory to localization

= ACT | probabilistic estimation of the robot’'s new belief state bel (x,) based on
the previous location bel(x;_;) and the probabilistic motion model
p(x;|ug, x.—1) with action u; (control input).

— application of theorem of total probability / convolution
bel(x,) = Jp(xtlut,xt_l)bel(xt_l) dx,_, for continuous probabilities

bel(x,) = z p(x¢|ug, xp—1)bel (xi—1) for discrete probabilities

Xt—1

Autonomous Mobile Robots
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Markov localization | applying probability theory to localization

= SEE | probabilistic estimation of the robot’s new belief state bel(x;) as a
function of its measurement data z; and its former belief state bel (x;):

— application of Bayes rule

bel(x;) = np(z|x, M)m(xt)

where p(z;|x;, M) is the probabilistic measurement model (SEE), that is, the
probability of observing the measurement data z; given the knowledge of the map
M and the robot’s position x,. Thereby n = p(y)~! is the normalization factor so
that ) p = 1.

Autonomous Mobile Robots
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Markov Localization makes use of Bayes Rule

P(A): Probability that A is true.
e.g. p(f=1): probability that the robot r Is at positiohat time t

We wish to compute the probability of each indiatitbbot position
given actions and sensor measures.

P(A|B): Conditional probability of A given that we knds:

e.g. p(r=1]1,): probability that the robot is at position | ginehe
sensors input.i

Product rule:  p(4 A B) = p(4|B)p(B)
p(AnB) = p(Bl4d)p(4)

BayeS rule: p(A |B) _ p(Bll;zlE);)?(A)

© R. Siegwart, I. Nourbakhsh



The “See” update step

Bayes rule: |
p(B|4)p(4)
p(Ad|B) =
| p(B)
“See” operation Maps from a belief state and a sensor input tefaned
belief state:
i[Dp(l — .
p(l]i) = p(}l)()g( ) (5.21) SESSCIAR

pP(l): belief state before perceptual update process

p(i |I): probability we get measurement i when beinga@dition |

To obtain this info: consult robot’'s map and idgnthe probability of a certain sensor
reading if the robot were at position |

p(i): normalization factor so that sum over allqueals].

We apply this operation to all possible robot poss,|

© R. Siegwart, I. Nourbakhsh
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Basic concepts of probability theory | the Bayes rule

= The Bayes rule relates the conditional probability p(x|y) to its inverse p(y|x).
= Under the condition that p(y) > 0, the Bayes rule is written as:

b (xly) = p(y|x)p(x)
r(y)
p(x]y) = np(y|x)p(x) n = p(y)~! normalization factor ([ p = 1)

= This theorem is used by both Markov and Kalman-filter localization algorithms
during the measurement update.

Autonomous Mobile Robots
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Markov localization | the basic algorithms for Markov localization

For all x; do
bel(xy) = Y, , P(xelue, xp—1)bel(xe_1) (prediction update)
bel(x,) = np(z.|x;, M)bel(x,) (measurement update)
endfor

Return bel(x;)

= Markov assumption: Formally, this means that the output is a function x; only
of the robot’s previous state x; and its most recent actions (odometry) u; and
perception z;.

Autonomous Mobile Robots
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ACT | using motion model and its uncertainties
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ACT | using motion model and its uncertainties
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SEE | estimation of position based on perception and map
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Mobile Robot Localization

025 bel(xy) | (@

(b)

0.5 p(x1|u1ax())

bel(x,) | (¢
0.25

05 |, ul | |

L P(Z1|x1»M) (d)

0.67 (e)

Figure 5.23 Markov localization using a grid-map.
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This is
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corrects
before
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the uncertainty.
Note we need to use a scaling factor to make sure
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Calculation of the robots positon  after the ACT move in (a),(b)

plx; =2) = p(xy=0)p(u; =2) = 0.125 (5.44

p(x1 =3) = p(x0 = O)p(u1 =3) +p(x0 = l)p(u1 =2) =025

P =4) = plxg = Dp(uy = 3) +p(xy = 2)p(u; =2) = 0.25

p(x;=5) = p(xg=2)p(u; =3)+p(xy=3)p(u; =2) = 0.25

plx; =6) = p(xy=3)p(u; =3) = 0.125

above:

the ACT probability
belief
in (c).

sensor
distance
has equal probability
from the origin (0.5 probability each.
error  model.

its  position
the observation with  the probability

31

position

robot moves 2 units,
robot moves 3 units

of motion
state in (a) we compute
Note uncertainty increases

on the robot measures
from the origin. The
of measuring the robot

by combining its

using Bayes rule. This reduces

add up to 1

(5.45)
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(5.47)

(5.48)
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SEE: a range sensor on the robot measures
the robot's distance from the origin.  The
sensor has equal probability of measuring the robot 
as 5 or 6 units from the origin (0.5 probability each.
This is the sensor error model.
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Markov localization

= Let us discretize the configuration space into 10 cells

= Suppose that the robot’s initial belief is a uniform distribution from 0 to 3. Observe that all the
elements were normalized so that their sum is 1.

Localization Il ETH zirich



Markov localization

= |nitial belief distribution

= Action phase:
Let us assume that the robot moves forward with the following statistical model

b)

0.5 [ p(xl|u.l’x0)
|

= This means that we have 50% probability that the robot moved 2 or 3 cells forward.
= Considering what the probability was before moving, what will the probability be after the motion?

Localization Il ETH ziich



Markov localization
Action update

= The solution is given by the convolution (cross correlation) of the two distributions

m(xt) = (x1|uq, x9) * bel(xy) = ng(xllul,xo)bel(xo)

b) 0 1 2 3 4 56 7 809
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Markov localization
Perception update

= Let us now assume that the robot uses its onboard range finder and measures the distance
from the origin. Assume that the statistical error model of the sensors is:

p(:l[.\'l, M)

_

01 2 3 4 56 7 89

This plot tells us that the distance of the robot from the origin can be equally 5 or 6 units.

= What will the final robot belief be after this measurement?
The answer is again given by the Bayes rule:

bel(x) = np(z¢lxy, M)m(xt)

0.5 p(z, |_\'1$M)

bel(x,)

Localization Il ETH zirich
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INITIAL BELIEF: Bel(X) at time t
GRID CELL

Now move the robot with probabilities below:

MOTION PROBABILITY: U(t) -robot moves 2 or 3 units
GRID CELL

Now CONVOLVE Bel(X) with U(t)

UPDATED BELIEF: Bel(X)
GRID CELL

Now use sensor to update your Bel(X)

SENSOR Probabilities: Z(t) - origin is 5 or 6 units away
GRID CELL

Apply sensor measurement to current Bel(X)

UNNORMALIZED SENSOR UPDATE
GRID CELL

NORMALIZATION =.0625 + 0.125= 0.1875

NORMALIZED SENSOR UPDATE: Bel(X) at t+1
GRID CELL

Markov Localization Example, p. 313 Siegwart

0.25 | 0.25 § 0.25 | 0.25 0 0 0
0 1 2 3 4 5 6
0 0 0.5 0.5 0 0 0
0 1 2 3 4 5 6
0 0 0.125 0.25 § 0.25 | 0.25 J 0.125
0 1 2 3 4 5 6
0 0 0 0 0 0.5 0.5
0 1 2 3 4 5 6
0 0 0 0 0 0.125 § 0.0625
0 1 2 3 4 5 6

0.125/0.1875 = .667 , 0.0625/ 0.1875 = .33

0 0 0 0 0 0.6667]0.3333
0 1 2 3 4 5 6
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Markov localization | extension to 2D

= The real world for mobile robot is at least 2D (moving in the plane)
— discretized pose state space (grid) consists of x,y, 6
— Markov Localization scales badly with the size of the environment

= Space: 10 m x 10 m with a grid size of 0.1 m
and an angular resolution of 1°
— 100-100-360 = 3.6 10° grid points (states)
— prediction step requires in worst case
(3.6 10°)? multiplications and summations

* Fine fixed decomposition grids result in a huge state space
= Very important processing power needed
= Large memory requirement

Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Localization | the Markov Approach | 10
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Markov localization | reducing computational complexity

start
-

= Adaptive cell decomposition

= Motion model (Odomety) limited to a small ,
number of grid points

= Randomized sampling

= Approximation of belief state by a representative subset
of possible locations o goal

= weighting the sampling process with the probability
values

= |njection of some randomized (not weighted) samples

= randomized sampling methods are also known as
particle filter algorithms, condensation algorithms, and
Monte Carlo algorithms.

Autonomous Mobile Robots
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Kalman Filter Localization | Basics and assumption

= Continuous pose representation x; ﬂ -
= Kalman Filter Assumptions:
= Error approximation with normal distribution: | [
x = N(u,0?) (Gaussian model)
= Qutput y; distribution is a linear (or linearized)
function of the input distribution: y = Ax; + Bx,

= Kalman filter localization tracks the robot’s
belief state p(x;) typically as a single p(x¢)

hypothesis with normal distribution. /Fi

= Kalman localization thus addresses the
position tracking problem, but not the u
global localization or the kidnapped robot
problem.
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Kalman Filter Localization | in summery

1. Prediction (ACT) based on previous estimate and odometry
2. Observation (SEE) with on-board sensors
3. Measurement prediction based on prediction and map
4. Matching of observation and map
5. Estimation — position update (posteriori position)
Estimation:
Robot’s belief
update
X
p( ) Observation:
A Prediction: Probability of
Robot’s belief making this
before the | observation
| observation
| | I *
1 T | | m_ - o >
Xt Xt Xt Xt
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Autonomous Mobile Robots, Chapter 5

Two general approaches:
Markov and Kalman Filter Localization

 Markov localization
» Maintainsmultiple estimateef

>

>

>

robot position

Localization can start fromany
unknown position

Can recovefrom ambiguous
situations

However, to update the probability
of all positions within the state
space requires a discrete
representation of the space (grid);
if a fine grid is used (or many
estimates are maintainedhe
computational and memory
requirements can be large

o Kalman filter localization

» Single estimatef robot position

» Requireknown starting position
of robot

» Tracks the robot andan be very
precise and efficient

» However, if the uncertainty of the
robot becomes too large (e.g. due
collision with an object) the
Kalman filter will fail and the
robot becomes “lost”
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