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Chapter 1

Introduction

No bugs to report, yet!



CHAPTER 1. INTRODUCTION



Chapter 2

Bug Algorithms

Even a simple planner can present interesting and difficult issues. The Bugl
and Bug2 algorithms [289] are among the earliest and simplest sensor-based
planners with provable guarantees. These algorithms assume the robot is a
point operating in the plane with a contact sensor or a zero range sensor to
detect obstacles. When the robot has a finite range (non-zero range) sensor,
then the Tangent Bug algorithm [208] is a Bug derivative that can use that
sensor information to find shorter paths to the goal. The Bug and Bug-like
algorithms are straightforward to implement; moreover, a simple analysis
shows that their success is guaranteed, when possible. These algorithms
require two behaviors: move on a straight line and follow a boundary. To
handle boundary-following, we introduce a curve-tracing technique based on
the implicit function theorem at the end of this chapter. This technique is
general to following any path, but we focus on following a boundary at a
fixed distance.

2.1 Bugl and Bug?2

Perhaps the most straight forward path planning approach is to move toward
the goal, unless an obstacle is encountered, in which case, circumnavigate the
obstacle until motion toward the goal is once again allowable. Essentially,
the Bugl algorithm formalizes the “common sense” idea of moving toward
the goal and going around obstacles. The robot is assumed to be a point
with perfect positioning (no positioning error) with a contact sensor that can
detect an obstacle boundary if the point robot “touches” it. The robot can
also measure the distance d(x,y) between any two points x and y. Finally,
assume that the workspace is bounded. Let B,(x) denote a ball of radius
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4 CHAPTER 2. BUG ALGORITHMS

r centered on z, i.e., B.(z) = {y € R?|d(z,y) < r}. The fact that the
workspace is bounded implies that for all x € W, there exists an r such that
W C B, (x).

The start and goal are labeled ggtart and ggoal, respectively. Let qé =
Gstart and the m-line be the line segment that connects ql-L to ggoar. Imi-
tially, ¢ = 0. The Bugl algorithm exhibits two behaviors: motion-to-goal
and boundary-following. During motion-to-goal, the robot moves along the
m-line toward ¢go, until it either encounters the goal or an obstacle. If
the robot encounters an obstacle, let q{{ be the point where the robot first
encounters an obstacle and call this point a hit point. The robot then cir-
cumnavigates the obstacle until it returns to qf{ . Then, the robot determines
the closest point to the goal on the perimeter of the obstacle and traverses to
this point. This point is called a leave point and is labeled qlL . From qlL , the
robot heads straight toward the goal again, i.e., it reinvokes the motion-to-
goal behavior. If the line that connects ¢ and the goal intersects the current
obstacle, then there is no path to the goal; note that this intersection would
occur immediately “after” leaving ¢i. Otherwise, the index i is incremented
and this procedure is then repeated for qiL and qu until the goal is reached
or the planner determines that the robot cannot reach the goal (figures 2.1,
2.2). Finally, if the line to the goal “grazes” an obstacle, the robot need not
invoke a boundary following behavior, but rather continues onward toward
the goal. See algorithm 1 for a description of the Bugl approach.

Like its Bugl sibling, the Bug2 algorithm exhibits two behaviors:
motion-to-goal and boundary-following. During motion-to-goal, the robot
moves toward the goal on the m-line; however, in Bug2 the m-line connects
start and @goal, and thus remains fixed. The boundary-following behavior
is invoked if the robot encounters an obstacle, but this behavior is different
from that of Bugl. For Bug2, the robot circumnavigates the obstacle until it
reaches a new point on the m-line closer to the goal than the initial point of
contact with the obstacle. At this time, the robot proceeds toward the goal,
repeating this process if it encounters an object. If the robot re-encounters
the original departure point from the m-line, then the robot concludes there
is no path to the goal (figures 2.3, 2.4).

Let £ € Whee C R? be the current position of the robot, i = 1, and qé be
the start location. See algorithm 2 for a description of the Bug2 approach.

At first glance, it seems that Bug2 is a more effective algorithm than
Bugl because the robot does not have to entirely circumnavigate the obsta-
cles; however, this is not always the case. This can be seen by comparing
the lengths of the paths found by the two algorithms. For Bugl, when
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Gstart

FIGURE 2.1. The Bugl algorithm successfully finds the goal.

FIGURE 2.2. The Bugl algorithm reports the goal is un-
reachable.

the ith obstacle is encountered, the robot completely circumnavigates the
boundary, and then returns to the leave point. In the worst case, the robot
must traverse half the perimeter, p;, of the obstacle to reach this leave point.
Moreover, in the worst case, the robot encounters all n obstacles. If there
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Algorithm 1 Bugl Algorithm
Input: A point robot with a tactile sensor
Output: A path to the gyoa or a conclusion no such path exists

while Forever do
repeat
From qiL_l, move toward ggoal.
until ggoa is reached or an obstacle is encountered at qu .
if Goal is reached then
Exit.
end if
repeat
Follow the obstacle boundary.
until ggoa is reached or qu is re-encountered.
Determine the point ¢ on the perimeter that has the shortest distance
to the goal.
Go to gF.

if the robot were not able to-move toward the goal then

Conclude ggoqa1 is not reachable and exit.
end if

end while

are no obstacles, the robot must traverse a distance of length d(gstart, Ggoal)-
Thus, we obtain

n
LBugl < d(QStarta ngal) +1.5 Zpi' (21)

i=1
For Bug2, the path length is a bit more complicated. Suppose that the
line through ggtart and ggoa1 intersects the ith obstacle n; times. Then, there
are at most n; leave points for this obstacle, since the robot may only leave
the obstacle when it returns to a point on this line. It is easy to see that
half of these intersection points are not valid leave points because they lie
on the “wrong side” of the obstacle, i.e., moving toward the goal would
cause a collision. In the worst case, the robot will traverse nearly the entire

perimeter of the obstacle for each leave point. Thus, we obtain

1
LBug2 < d(Qstarta ngal) + 5 Z ;s (2'2)
i=1

Naturally, (2.2) is an upper-bound because the summation is over all of the
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Algorithm 2 Bug2 Algorithm
Input: A point robot with a tactile sensor
Output: A path to geea or a conclusion no such path exists

while True do
repeat
From qiL_l, move toward ggoa1 along m-line.
until
(goal 1s reached or
an obstacle is encountered at hit point qZH .
Turn left (or right).
repeat
Follow boundary
until
goal is reached or
q!! is re-encountered or
m-line is re-encountered at a point m such that
m # qu (robot did not reach the hit point),
d(m, ggoa1) < d(m,qiT) (robot is closer), and
if robot moves toward goal, it would not hit the obstacle
if Goal is reached then
Exit.
end if
if qZH is re-encountered then
Conclude goal is unreachable
end if
Let &, =m
Increment ¢
end while

obstacles as opposed to over the set of obstacles that are encountered by the
robot.

A casual examination of (2.1) and (2.2) shows that Lp,g2 can be arbi-
trarily longer than Lpyg1. This can be achieved by constructing an obstacle
whose boundary has many intersections with the m-line. Thus, as the “com-
plexity” of the obstacle increases, it becomes increasingly likely that Bugl
could outperform Bug2 (figure 2.4).

In fact, Bugl and Bug?2 illustrate two basic approaches to search prob-
lems. For each obstacle that it encounters, Bugl performs an ezhaustive
search to find the optimal leave point. This requires that Bugl traverse
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F1cure 2.3. (Top) The Bug2 algorithm finds a path to the
goal. (Bottom) The Bug2 algorithm reports failure.

the entire perimeter of the obstacle, but having done so, it is certain to
have found the optimal leave point. In contrast, Bug2 uses an opportunistic
approach. When Bug2 finds a leave point that is better than any it has
seen before, it commits to that leave point. Such an algorithm is also called
greedy, since it opts for the first promising option that is found. When the
obstacles are simple, the greedy approach of Bug2 gives a quick payoff, but
when the obstacles are complex, the more conservative approach of Bugl
often yields better performance.

2.2 Tangent Bug

Tangent Bug [207] serves as an improvement to the Bug2 algorithm in that it
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FIGURE 2.4. Bug2 Algorithm.

determines a shorter path to the goal using a range sensor with a 360 degree
infinite orientation resolution. Sometimes orientation is called azimuth. We
model this range sensor with the raw distance function p: R?> x S — R.
Consider a point robot situated at x € R? with rays radially emanating
from it. For each § € S', the value p(z,#) is the distance to the closest
obstacle along the ray from z at an angle §. More formally,

p(z,0) = min d(x,z + Ncos 6, sin]7),
A€[0,00]

such that x4 Acos6,sin )7 € UWOi. (2.3)

Note that there are infinitely many 6 € S* and hence the infinite resolu-
tion. This assumption is approximated with a finite number of range sensors
situated along the circumference of a circular mobile robot which we have
modeled as a point.

Since real sensors have limited range, we define the saturated raw distance
function , denoted pr: R? x S — R, which takes on the same values as p
when the obstacle is within sensing range, and has a value of infinity when
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the ray lengths are greater than the sensing range, R, meaning that the
obstacles are outside the sensing range. More formally,

pr(z,0) = { pla,0), i p(w,0) < R

oo, otherwise.
The set of points within sensing range of the robot can be denoted by
Vr(z) = {y € Qpeeld(z,y) < RandAz + (1 — \)y € Wheefor allX € [0, 1]}

The Tangent Bug planner assumes that the robot can detect discon-
tinuities in pgr as depicted in figure ??. For a fixed € R?, an interval
of continuity is defined to be a connected set of points on OV (x) where pr
varies continuously and is finite. These are the points x4 p(z, 8)[cos 8, sin 6]
on the boundary of the free space where pr(z,0) is finite and continuous
with respect to 6.

The endpoints of these intervals occur where pr(z,0) loses continuity,
either as a result of one obstacle blocking another or the sensor reaching
its range limit. The endpoints are denoted O;. Figure 2.5 contains an
example where pg loses continuity. The points O1, 02, O3, Os, Og, O7, and
Og correspond to losses of continuity associated with obstacles blocking other
portions of Wk.ee; note the rays are tangent to the obstacles here. The point
Oy is a discontinuity because the obstacle boundary falls out of range of the
sensor. The sets of points on the boundary of the free space between Oq
and Os, O3 and Oy, Os and Og, O7 and Og are the intervals of continuity.

Just like the other Bugs, Tangent Bug (algorithm 3) iterates between
two behaviors: motion-to-goal and boundary-following. However, these be-
haviors are different than in the Bugl and Bug2 approaches. Although
motion-to-goal directs the robot to the goal, this behavior may have a phase
where the robot follows the boundary. Likewise, the boundary-following
behavior may have a phase where the robot does not follow the boundary.

The robot initially invokes the motion-to-goal behavior, which itself has
two parts. First, the robot attempts to move in a straight line toward the
goal until it senses an obstacle R units away and directly between it and the
goal. This means that a line segment connecting the robot and goal must
intersect an interval of continuity. For example, in figure 2.6, WQO5 is within
sensing range, but does not block the goal, but WO, does. When the robot
initially senses an obstacle, the circle of radius R becomes tangent to the
obstacle. Immediately after, this tangent point splits into two O;’s, which
are the endpoints of the interval. If the obstacle is in front of the robot,
then this interval intersects the segment connecting the robot and the goal.
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FIGURE 2.5. The points of discontinuity of pg(z,6) corre-
spond to points O; on the obstacles. The thick solid curves
represent connected components of the range of pgr(z,0),
i.e., the intervals of continuity. In this example, the robot,
to the best of its sensing range, believes there is a straight-
line path to the goal.

Consider the O; where d(O;, ¢goal) < d(,goa1). The robot then moves
toward one of these O; that maximally decreases a heuristic distance to the
goal. An example of a heuristic distance is the sum d(x, O;) + d(O;, ggoal)-
(The heuristic distance can be more complicated when factoring in available
information with regard to the obstacles.) In figure 2.7 (left), the robot sees
WO, and drives to Oy because i = 2 minimizes d(x, O;) +d(O;, ¢goa). When
the robot is located at x, it cannot know that WO blocks the path from O,
to the goal. In figure 2.7(right), when the robot is located at x but the goal
is different, it has enough sensor information to conclude that WO, indeed
blocks a path from O to the goal, and therefore drives toward O4. So, even
though driving toward O may initially minimize d(x, O;) +d(O;, ggoa1) more
than driving toward Oy, the planner effectively assigns an infinite cost to
d(Og,qgoal) because it has enough information to conclude that any path
through O will be suboptimal.
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® Jgoal

FIGURE 2.6. The vertical represents the path of the robot
and the dotted circle its sensing range. Currently, the
robot is located at the “top” of the line segment. The
points O; represent the points of discontinuity of the sat-
urated raw distance function. Note that the robot passes
by WO,.

O,

Ggoal

WOQ WOQ

04 Ggoal

FIGurE 2.7. (Left) The planner selects Oy as a subgoal for
the robot. (Right) The planner selects Oy as a subgoal
for the robot. Note the line segment between O4 and ggoal
cuts through the obstacle.

The set {O;} is continuously updated as the robot moves toward a par-
ticular O;, which can be seen in figure 2.8. At ¢ = 1, the robot has not
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FIGURE 2.8. Demonstration of motion-to-goal behavior for
a robot with a finite sensor range moving toward a goal
which is “above” the light gray obstacle.

sensed the obstacle, hence the robot moves toward the goal. At t = 2, the
robot initially senses the obstacle, depicted by a thick solid curve. The robot
continues to move toward the goal, but off to the side of the obstacle heading
toward the discontinuity in p. For ¢ = 3 and ¢ = 4, the robot senses more
of the obstacle and continues to decrease distance toward the goal while
hugging the boundary.

The robot undergoes motion-to-goal until it can no longer decrease the
heuristic distance to the goal following the rules of motion-to-goal. Put
differently, it finds a point that is like a local minimum of d(-, O;)+d(O;, ggoal)
restricted to the path that motion-to-goal dictates.

When the robot switches to boundary-following, it determines the point
M on the currently sensed portion of the blocking obstacle that has the
shortest distance to the goal. The robot then moves in the same direction
as if it were in the motion - to - goal behavior. It continuously moves
toward the O; on the blocking obstacle in the chosen direction (figure 2.9).
While undergoing this motion, the planner also updates two values: dnin
and djeave- The value dpiy is the shortest distance between the goal and
any point on the blocking obstacle boundary that has been sensed thus far.
The value djeave is the shortest distance between the goal and any point in
the currently sensed environment at that robot location, i.e., OVgr(z). Let
dicave(T) = Minyey (2)d(7,y). When dieave(z) < dmin, the Tobot terminates
the boundary-following behavior.
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® (goal

FIGURE 2.9. The workspace is the same as in figure 2.6.
The solid and dashed segments represent the path gen-
erated by motion-to-goal and the dotted path represents
the boundary-following path. Note that M is the “local
minimum” point.

Note that in many cases, when the robot terminates the boundary-
following behavior, it will drive toward the goal. In such a case, there is no
blocking obstacle; define T' to be the point where a circle, centered at x of
radius 2, intersects the segment that connects o and ggoa1. This is the point
on the periphery of the sensing range that is closest to the goal when the
robot is located at . When there is no blocking obstacle, dicave = d(T', ggoal)-
Otherwise, T is undefined and djeaye is constantly updated to be the shortest
distance between the goal and any point on an obstacle boundary that is
viewable within the robot’s current sensor range.

Figure 2.10 contains a path for a robot with zero sensor range. Here
the robot invokes a motion-to-goal behavior until it encounters the first
obstacle at hit point H;. Unlike Bugl and Bug2, encountering a hit point
does not change the behavior mode for the robot. The robot continues with
the motion-to-goal behavior by turning right and following the boundary of
the first obstacle. The robot turned right because that direction minimized
its heuristic distance to the goal. The robot departs this boundary at a
depart point Dy,. The robot continues with the motion-to-goal behavior,
maneuvering around a second obstacle, until it encounters the third obstacle
at H3. The robot turns left and continues to invoke the motion-to-goal
behavior until it reaches M3, a minimum point. Now, the planner invokes
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Algorithm 3 Tangent Bug Algorithm
Input: A point robot with a range sensor
Output: A path to the gyo or a conclusion no such path exists

while True do

repeat
Continuously move toward the point n € {7T,0;} which minimizes
d(l’, n) + d(n, ngal) where d(n, ngal) < d(l’, ngal)
until
e the goal is encountered or
e  The direction that minimizes d(z,n) + d(n, ¢goa1) begins to increase
d(z, ggoal), i-€., the robot detects a “local minimum” of d(-, ggoal)-
Choose a boundary following direction which continues in the same direc-
tion as the most recent motion-to-goal direction.
repeat
Continuously update djeave, dmin, and {O;}.
Continuously moves toward n € {O;} that is in the chosen boundary
direction.
until
e The goal is reached.
e The robot completes a cycle around the obstacle in which case the
goal cannot be achieved.
L dleave < dmin
end while

the boundary-following behavior until the robot reaches Ls. Note that since
we have zero sensing range, djcave is the distance between the robot and the
goal. The procedure continues until the robot reaches the goal. Only at M;
and L; does the robot switch between behaviors.

Figures 2.11 and 2.12 contain examples where the robot has finite and
infinite sensing ranges, respectively. Note that in these examples, since the
robot has a non-zero sensor range, it does not reach an M; but rather reaches
an sw; where it detects its corresponding M;. The sw; are sometimes called
switch points.

Figures 2.13 demonstrates a situation in which the robot invokes bound-
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F1GURE 2.10. The path generated by Tangent Bug with zero
sensor range. The dashed lines correspond to the mo-
tion - to - goal behavior and the dotted lines correspond
to boundary-following.

FIGURE 2.11. Path generated by Tangent Bug with finite
sensor range. The dashed lines correspond to the mo-
tion - to - goal behavior and the dotted lines correspond
to boundary-following. The dashed-dotted circles corre-
spond to the sensor range of the robot.

ary following at a minimum point M7 but must update the value for dp,
when it encounters another minimum Ms. The boundary following behavior
in this case continues until the robot reaches Lo.
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Gstart
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H1 - ///,/’// Ggoal
Dq e
H, ///

FIGURE 2.12. Path generated by Tangent Bug with infinite
sensor range. The dashed-lines correspond to the motion -
to - goal behavior and there is no boundary-following.

Gstart
® -

FIGURE 2.13. Path generated by Tangent Bug with zero
sensor range and an update to dy,i, due to two minima in
the blocking obstacle.

2.3 Implementation

Essentially, the bug algorithms have two behaviors: drive toward a point and
follow an obstacle. The first behavior is simply a form of gradient descent
of d(-,n) where n is either ggoa or an O;. The second behavior, boundary-
following, presents a challenge because the obstacle boundary is not known
a priori. Therefore, the robot planner must rely on sensor information
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to determine the path. However, we must concede that the full path will
not be determined from one sensor reading: the sensing range of the robot
may be limited and the robot may not be able to “see” the entire world
from one vantage point. So, the robot planner has to be incremental. We
must determine first what information the robot requires and then where
the robot should move to acquire more information. This is indeed the
challenge of sensor-based planning. Ideally, we would like this approach to
be reactive with sensory information feeding into a simple algorithm that
outputs translational and rotational velocity for the robot.

There are three questions: What information does the robot require to
circumnavigate the obstacle? How does the robot infer this information
from its sensor data? How does the robot use this information to determine
(locally) a path?

2.3.1 What Information: The Tangent Line

If the obstacle were flat, such as a long wall in a corridor, then following
the obstacle is trivial: simply move parallel to the obstacle. This is readily
implemented using a sensing system that can determine the obstacle’s sur-
face normal n(x), and hence a direction parallel to its surface. However, the
world is not necessarily populated with flat obstacles; many have non-zero
curvature. However, the robot can follow a path that is consistently orthog-
onal to the surface normal; this direction can be written as n(z)* and the
resulting path satisfies ¢(t) = v where v is a basis vector in (n (¢ (¢)))*. The
sign of v is based on the “previous” direction of ¢.

Consistently determining the surface normal can be quite challenging
and therefore for implementation, we can assume that obstacles are “locally
flat.” This means the sensing system determines the surface normal, the
robot moves orthogonal to this normal for a short distance, and then the
process repeats. In a sense, the robot determines the sequence of short
straight-line segments to follow based on sensor information.

This flat line, loosely speaking, is the tangent (figure 2.14). It is a linear
approximation of the curve at the point where the tangent intersects the
curve. The tangent can also be viewed as a first-order approximation to the
function that describes the curve. Let c¢: [0, 1] — Qgee be the function that
defines a path. Let x = c(sq) for a sy € [0,1]. The tangent at x is %

The tangent space can be viewed as a line whose basis vector is %

{o]_,, |acR).

‘5:50 :

|S:SO, ie.,
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VD(x)

FIGURE 2.14. The solid curve is the offset curve. The
dashed line represents the tangent to the offset curve at
T.

2.3.2 How to Infer Information with Sensors: Distance and
Gradient

The next step is to infer the tangent from sensor data. Instead of thinking
of the robot as a point in the plane, let’s think of it as a circular base which
has a fine array of tactile sensors radially distributed along its circumference
(figure 2.15). When the robot contacts an obstacle, the direction from the
contacted sensor to the robot’s center approximates the surface normal.
With this information, the robot can determine a sequence of tangents to
follow the obstacle.

Unfortunately, using a tactile sensor to prescribe a path requires the
robot to collide with obstacles, which endangers the obstacles and the robot.
Instead, the robot should follow a path at a safe distance W* € R from the
nearest obstacle. Such a path is called an offset curve [360]. Let D(x) be
the distance from x to the closest obstacle, i.e.,

D(z) =miny, wo, d(z, c). (2.4)

To measure this distance with a mobile robot equipped with an onboard
range sensing ring, we use the raw distance function again. However, instead
of looking for discontinuities, we look for the global minimum. In other
words, D(z) = ming p(z, s) (figure 2.16).

We will need to use the gradient of distance. In general, the gradient is
a vector that points in the direction that maximally increases the value of
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Tactile Ring

M \ ‘ . Robot

~~_

/
Obstacle

FIGURE 2.15. A fine-resolution tactile sensor.

a function. See appendix ?7 for more details. Typically, the ith component
of the gradient vector is the partial derivative of the function with respect
to its ¢th coordinate. In the plane, VD(z) = [agz(f) %DT(:)]T which points
in the direction that increases distance the most. Finally, the gradient is
the unit direction associated with the smallest value of the raw distance
function. Since the raw distance function seemingly approximates a sensing
system with individual range sensing elements radially distributed around
the perimeter of the robot, an algorithm defined in terms of D can often be
implemented using realistic sensors.

There are many choices for range sensors; here, we investigate the use of
ultrasonic sensors (figure 2.17), which are commonly found on mobile robots.
Conventional ultrasonic sensors measure distance using time of flight. When
the speed of sound in air is constant, the time that the ultrasound requires
to leave the transducer, strike an object, and return is proportional to the
distance to the point of reflection on the object [106]. This object, however,
can be located anywhere along the angular spread of the sonar sensor’s
beam pattern (figure 2.18). Therefore, the distance information that sonars
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FIGURE 2.16. The global minimum of the rays determines
the distance to the closest obstacle; the gradient points in
a direction away from the obstacle along the ray.

provide is fairly accurate in depth, but not in azimuth. The beam pattern
can be approximated with a cone (figure 2.19). For the commonly used
Polaroid transducer, the arcbase is 22.5 degrees. When the reading of the
sensor is d, the point of reflection can be anywhere along the arc base of
length —2”??6202'5.

Initially, assume that the echo originates from the center of the sonar
cone. We acknowledge that this is a naive model, hence we term this the cen-
terline model (figure 2.19). The ultrasonic sensor with the smallest reading
approximates the global minimum of the raw distance function, and hence
D(x). The direction that this sensor is facing approximates the negated gra-
dient —VD(z) because this sensor faces the closest obstacle. The tangent is
then the line orthogonal to the direction associated with the smallest sensor
reading.

2.3.3 How to Process Sensor Information: Continuation
Methods

The tangent to the offset curve is (VD(z))*, the line orthogonal to V.D(x)
(figure 2.14). The vector VD(z) points in the direction that maximally in-
creases distance; likewise, the vector —VD(z) points in the direction that
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Ficure 2.17. The disk on the right is the standard Polaroid
ultrasonic transducer found on many mobile robots; the
circuitry on the left drives the transducer.

TYPICAL BEAM PATTERN Note: dB normalized to on-axix response

FIGURE 2.18. Beam pattern for the Polaroid transducer.

maximally decreases distance; they both point along the same line, but in
opposite directions. Therefore, the vector (V.D(x))" points in the direc-
tion that locally maintains distance; it is perpendicular to both VD(x) and
—VD(z). This would be the tangent of the offset curve which maintains
distance to the nearby obstacle.

Another way to see why (VD(z))' is the tangent is to look at the def-
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FIGURE 2.19. Centerline model.

inition of the offset curve. For a safety distance W*, we can define the
offset curve implicitly as the set of points where G(z) = D(z) — W* maps
to zero. The set of nonzero points (or vectors) that map to zero is called
the null space of a map. For a curve implicitly defined by G, the tangent
space at a point x is the null space of DG(z), the Jacobian of G [388]. In
general, the 7, jth component of the Jacobian matrix is the partial derivative
of the ith component function with respect to the jth coordinate and thus
the Jacobian is a mapping between tangent spaces. Since in this case, G
is a real-valued function (i = 1), the Jacobian is just a row vector DD(z).
Here, we are reusing the symbol D. The reader is forced to use context to
determine if D means distance or differential.

In Euclidean spaces, the ith component of a single-row Jacobian equals
the ith component of the gradient and thus VD(z) = (DD(x))?. Therefore,
since the tangent space is the null space of DD(z), the tangent for boundary-
following in the plane is the line orthogonal to VD(x), i.e., (VD(x))*, and
can be derived from sensor information.

Using distance information, the robot can determine the tangent direc-
tion to the offset curve. If the obstacles are flat, then the offset curve is also
flat, and simply following the tangent is sufficient to follow the boundary
of an unknown obstacle. Consider, instead, an obstacle with curvature. We
can, however, assume that the obstacle is locally flat. The robot can then
move along the tangent for a short distance, but since the obstacle has cur-
vature, the robot will not follow the offset curve, i.e., it will “fall off” of the
offset curve. To reaccess the offset curve, the robot moves either toward or
away from the obstacle until it reaches the safety distance W*. In doing so,
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FiGURE 2.20. The dashed line is the actual path, but the
robot follows the thin black lines, predicting and correct-
ing along the path. The black circles are samples along
the path.

the robot is moving along a line defined by VD(z), which can be derived
from sensor information.

Essentially, the robot is performing a numerical procedure of prediction
and correction. The robot uses the tangent to locally predict the shape of
the offset curve and then invokes a correction procedure once the tangent
approximation is not valid. Note that the robot does not explicitly trace
the path but instead “hovers” around it, resulting in a sampling of the path,
not the path itself (figure 2.20).

A numerical tracing procedure can be posed as one which traces the
roots of the expression G(z) = 0, where in this case G(z) = D(z) — W*.
Numerical curve-tracing techniques rest on the implicit function theorem
[6,222, 294] which locally defines a curve that is implicitly defined by a
map G: Y xR — Y. Specifically, the roots of GG locally define a curve
parameterized by A € R. See appendix ?? for a formal definition.

For boundary following at a safety distance W*, the function G(y, \) =
D(y,\) —W* implicitly defines the offset curve. Note that the A-coordinate
corresponds to a tangent direction and the y-coordinates to the line or hy-
perplane orthogonal to the tangent. Let Y denote this hyperplane and Dy G
be the matrix formed by taking the derivative of G(x) = D(x)—W* = 0 with
respect to the y-coordinates. It takes the form Dy G(x) = Dy D(z) where
Dy denotes the gradient with respect to the y-coordinates. If Dy G(y, )
is surjective at x = ()\,y)T, then the implicit function theorem states that
the roots of G(y, ) locally define a curve that follows the boundary at a
distance W* as A is varied, i.e., y(A).

By numerically tracing the roots of GG, we can locally construct a path.
While there are a number of curve tracing techniques [222], let us consider
an adaptation of a common predictor-corrector scheme. Assume that the
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robot is located at a point x which is a fixed distance W* away from the
boundary. The robot takes a “small” step, A\, in the A-direction (i.e., the
tangent to the local path). In general, this prediction step takes the robot
off the offset path. Next, a correction method is used to bring the robot
back onto the offset path. If A\ is small, then the local path will intersect a
correcting plane, which is a plane orthogonal to the A-direction at a distance
A\ away from the origin.

The correction step finds the location where the offset path intersects the
correcting plane and is an application of the Newton convergence theorem
[222]. See appendix ?? for a more formal definition of this theorem. The
Newton convergence theorem also requires that Dy G(y, A) be full rank at
every (y,A) in a neighborhood of the offset path. This is true because for
G(xr) = D(x) — W*, [0 DyG(y,\)]¥ = DG(y,)). Since DG(y, ) is full
rank, so must be Dy G(y, A) on the offset curve. Since the set of nonsingular
matrices is an open set, we know there is a neighborhood around each (y, A)
in the offset path where DG(y,\) is full rank and hence we can use the
iterative Newton method to implement the corrector step. If " and A" are
the hth estimates of y and A, the h + 1st iteration is defined as

Yyt =yt — (Dy@) T G, A, (2.5)

where Dy G is evaluated at (3", \"). Note that since we are working in a
Euclidean space, we can determine Dy G solely from distance gradient, and
hence, sensor information.

Problems

1. Prove that D(x) is the global minimum of p(z, s) with respect to s.
2. What are the tradeoffs between the Bugl and Bug2 algorithms?
3. Extend the Bugl and Bug2 algorithms to a two-link manipulator.

4. What is the difference between the Tangent Bug algorithm with zero
range detector and Bug2? Draw examples.

5. What are the differences between the path in figure 2.10 and the paths
that Bugl and Bug2 would have generated?

6. The Bug algorithms also assume the planner knows the location of the
goal and the robot has perfect positioning. Redesign one of the Bug
algorithms to relax the assumption of perfect positioning. Feel free
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10.

11.
12.

13.
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to introduce a new type of “reasonable” sensor (not a high-resolution
Global Positioning System).

In the Bugl algorithm, prove or disprove that the robot does not
encounter any obstacle that does not intersect the disk of radius
d(QStarta ngal) centered at ngal-

What assumptions do the Bugl, Bug2, and Tangent Bug algorithms
make on robot localization, both in position and orientation?

Prove the completeness of the Tangent Bug algorithm.

Adapt the Tangent Bug algorithm so that it has a limited field of view
sensor, i.e., it does not have a 360 degree field of view range sensor.

Write out Dy G for boundary following in the planar case.

Let Gi(z) = D(x) + 1 and let Ga(x) = D(z) + 2. Why are their
Jacobians the same?

Let G(z,y) = 3> +y — 2. Write out a y as a function of z in an
interval about the origin for the curve defined by G(x,y) = 0.



Chapter 3

Configuration Space

e Page 56, in the paragraph

As an example, consider the one-
dimensional manifold St={x=(v1,20) €R?|
22 +22=1}. For any point € S we can define a neighborhood that
is diffeomorphic to R. For example, consider the upper portion of the
circle, Uy = {x € S'|xy > 0}. The chart ¢; : Uy — (0,1) is given
by ¢1(z) = x1, and thus x; can be used to define a local coordinate
system for the upper semicircle. In the other direction, the upper
portion of the circle can be parameterized by z € (0,1) C R, with
qSl_l(z) = (z,(1— z)%), which maps the open unit interval to the upper
semicircle. But S! is not globally diffeomorphic to R'; we cannot find
a single chart whose domain includes all of S*.

— All of the (0,1)’s should be (—1,1).

— The (bl_l(z) =(z,(1- z)%) should read qﬁl_l(z) =(z,(1- 22)%)

e Page 57, the

¢ (2) (2,1 —2%)
¢7'(2) = (2,2°—1)
¢3'(z) = (1-2%2)
¢;'(2) = (-1,2).
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should read

o7(2) = (2.(1-2%)2)
671(2) = (5 (>~ 1))
637'(2) = ((1-2%)2,2)
67'(2) = ((2-1)2,2).

e Page 58, the 1 — 22 should read (1 — 22)%

e Page 71, in the Jacobian matrix, element (2,3) lower right-hand cor-
ner, the element should not be 3—[];, but instead it should be %, SO
the Jacobian at the end of the chapter (before the problems) which

currently reads

J(g) = =2 = .
(@) dq Ob2 02 o3 0 1 7ricosqgz—rosings

01 O 09 .
_a‘b_[f?_thl g 8_11;]_[1 0 —7“181nq?,—7‘gcosq3}
dq1  Oq2  Oq2

should read

941 9¢1  Ody
J( ) = % _ | 9¢1 0Ogq2 Ogs3
D=9 7| 002 002 962

[1 0 —T‘lsiDQ3—7‘2COSQ3:|
dq1 g2 gz

71 COS 3 — T'9 Sin g3

o
—



Chapter 4

Potential Functions

e On Pg 78, the Hessian matrix has the indices in the lower left corner

incorrect. The 8 should read aq aq , so the matrix
92U 92U
dq3 "2 9q19gn
92U U
9q19qn 9q2

should read

92U 92U

g7 T 0q10qn

o’u . 92U
9gndq1 0q2

e On page 103 eq. 4.26(there are two equations) are wrong. The u’s
should be upper case and the double summation notation should be
consistent.

u(q) = Z Uattj + Z Urepij
J ]
= > T @Vuanii (@) + YD ] (@) Vurepiy  (41)
(]

J
should read

29
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g Uattj + g g Urepij

J v g

E JJT(Q)VUattj(Q) + E E JJT(Q)VUrepij (42)
J i g



Chapter 5

Roadmaps

e Chap 5, pg 145, an z should be replaced by a ¢, so
Qx = {z € Qm(q) = A}

should read
A ={q€ QIm(q) = A}

31
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Chapter 6

Cell Decompositions

Bugs coming soon!
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CHAPTER 6. CELL DECOMPOSITIONS



Chapter 7

Sampling-Based Algorithms

Bugs coming soon!
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Chapter 8

Kalman Filtering

e Apparently, there is an AppendixJ with no space but I cannot find it
again

e Page 276, 7 lines from the bottom, the line H(k + )T K (y(k + 1) —
H(k+ 1)z(k + 1|k)). should be replaced with H(k+ 1)T K (y(k+ 1) —
H(k+ 1)z(k + 1]k)).

There was missing hat on the x(k + 1|k).
e Page 277, the Az = Kv below eq. 8.7 should read Az = HT Kv
e Page 285, eq. 8.30 has an extra right parenthesis

e Page 286, second line of eq. 8.34 = Gz(k) + w(k) should be replaced
with 2 Hz(k) + w(k)

e Page 287, fig 8.5 - bold circle is an ellipse but looks like a circle because
the axes were scaled incorrectly.

e Page 291, the phrase
the process model for this robot nonlinear, i.e.,

is missing “is”.

e Page 297, eq. 8.48 y(k); should be replaced with y; (k).
e on page 293, ninth line from the top ij = V,-jSi; 1V£ should be replaced

with Xij2 = V%S&lyij.

37
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CHAPTER 8. KALMAN FILTERING



Chapter 9

Bayesian Methods

e on page 308, in the first sentence of Section 9.1.1, P(z | u(0 : k —
1),y(1 : k)) should have an z(k) not an x so should read

P(x(k) |u(0:k—1),y(1:k))

e on page 319, eq. 9.18

' ‘ a:fn +d cos(ﬁ?’; +d)
' =a'+ |y. + d' sin(6} + )

0 + o +
should be replaced with
' ~ [d cos(0; + o)
' =2"+ | dsin( + o)
O/ +,8/

e on page 325, the h;; below eq. (9.23) should real h; ;.
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CHAPTER 9. BAYESIAN METHODS



Chapter 10

Robot Dynamics

e page 362, section 10.4.1 Planar Rotation, sentence 3. There is a re-
peated “to.”

41
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CHAPTER 10. ROBOT DYNAMICS



Chapter 11

Trajectory Planning

Bugs coming soon!
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CHAPTER 11.

TRAJECTORY PLANNING



Chapter 12

Nonholonomic and
Underactuated Systems

Bugs coming soon!

45
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Appendix A

Mathematical Notation

No bugs to report, yet!
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APPENDIX A. MATHEMATICAL NOTATION



Appendix B

Basic Set Definitions

No bugs to report, yet!
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APPENDIX B. BASIC SET DEFINITIONS



Appendix C

Topology and Metric Spaces

No bugs to report, yet!
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APPENDIX C. TOPOLOGY AND METRIC SPACES



Appendix D

Mathematical Notation

No bugs to report, yet!
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APPENDIX D. MATHEMATICAL NOTATION



Appendix E

Representations of
Orientation

No bugs to report, yet!
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APPENDIX E. REPRESENTATIONS OF ORIENTATION



Appendix F

Polyhedra Robots in
Polyhedra Worlds

No bugs to report, yet!
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Appendix G

Analysis of Algorithms and
Complexity Classes

No bugs to report, yet!
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I believe that there were so many mistakes in the graph search appendix,
that we just rewrote the whole thing. This files needs to replace the MIT
Press official file.



Appendix H

Graph Representation and
Basic Search

H.1 Graphs

Thus far, we have been operating on grids without taking full advantage of
the neighboring relationships among the cells. A grid, as well as other maps,
can be represented by a graph which encodes these neighboring relationships.
A graph is a collection of nodes and edges, i.e., G = (V, E). Sometimes,
another term for a node is werter, and this chapter uses the two terms
interchangeably. We use G for graph, V for vertex (or node), and E for
edge. Typically in motion planning, a node represents a salient location
and an edge connects two nodes that correspond to locations that have
an important relationship. This relationship could be that the nodes are
mutually accessible from each other, two nodes are within line of sight of
each other, two cells are next to each other in a grid, etc. This relationship
does not have to be mutual: if the robot can traverse from nodes V; to Vs,
but not from V5 to Vi, we say that the edge Ei5 connecting Vi and V5 is
directed. Such a collection of nodes and edges is called a directed graph.
If the robot can travel from V7 to V5 and vica versa, then we connect V
and V5 with two directed edges F19 and FEoqp. If for each vertex V; that is
connected to Vj, both E;; and Ej; exist, then instead of connecting V; and
V; with two directed edges, we connect them with a single undirected edge.
Such a graph is called an undirected graph. Sometimes, edges are annotated
with a non-negative numerical value reflective of the costs of traversing this
edge. Such values are called weights.

A path or walk in a graph is a sequence of nodes {V;} such that for

61
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FiGURE H.1. A graph is a collection of nodes and edges.
Edges are either directed (left) or undirected (right).

Root
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FIGURE H.2. A treeis a type of directed acyclic graph with
a special node called the root. A cycle in a graph is a path
through the graph that starts and ends at the same node.

v
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adjacent nodes V; and V1, E; ;41 exists (and thus connects V; and V;1).
A graph is connected if for all nodes V; and V; in the graph, there exists
a path connecting V; and V;. A cycle is a path of n vertices such that
first and last nodes are the same, i.e., Vi =V}, (figure H.2). Note that the
“direction” of the cycle is ambiguous for undirected graphs, which in many
situations is sufficient. For example, a graph embedded in the plane can have
an undirected cycle which could be both clockwise and counterclockwise,
whereas a directed cycle can have one orientation.

A tree is a connected directed graph without any cycles (figure H.2).
The tree has a special node called the root, which is the only node that
possesses no incoming arc. Using a parent-child analogy, a parent node has
nodes below it called children; the root is a parent node but cannot be a
child node. A node with no children is called a leaf. The removal of any
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FiGURE H.3. depth-first search vs. breadth-first search.
The numbers on each node reflect the order in which nodes
are expanded in the search.

non-leaf node breaks the connectivity of the graph.

Typically, one searches a tree for a node with some desired properties
such as the goal location for the robot. A depth-first search starts at the
root, chooses a child, then that node’s child, and so on until finding either
the desired node or a leaf. If the search encounters a leaf, the search then
backs up a level and then searches through an unvisited child until finding
the desired node or a leaf, repeating this process until the desired node is
found or all nodes are visited in the graph (figure H.3).

Breadth-first search is the opposite; the search starts at the root and
then visits all of the children of the root first. Next, the search then visits
all of the grandchildren, and so forth. The belief here is that the target node
is near the root, so this search would require less time (figure H.3).

A grid induces a graph where each node corresponds to a cell and an edge
connects nodes of cells that neighbor each other. Four-point connectivity
will only have edges to the north, south, east, and west, whereas eight-point
connectivity will have edges to all cells surrounding the current cell. See
figure H.4.

As can be seen, the graph that represents the grid is not a tree. However,
the breadth-first and depth-first search techniques still apply. Let the link
length be the number of edges in a path of a graph. Sometimes, this is
referred to as edge depth. Link length differs from path length in that
the weights of the edges are ignored; only the number of edges count. For
a general graph, breadth-first search considers each of the nodes that are
the same link length from the start node before going onto child nodes.
In contrast, depth-first search considers a child first and then continues
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FiGURE H.4. Four-point connectivity assumes only four
neighbors, whereas eight-point connectivity has eight.

Push here Pop here Push and pop here

Queue Stack

FiGure H.5. Queue vs. stack.

through the children successively considering nodes of increasing link length
away from the start node until it reaches a childless or already visited node
(i.e., a cycle). In other words, termination of one iteration of the depth-first
search occurs when a node has no unvisited children.

The wave-front planner (chapter 7?7, section ?7) is a breadth-first search.
Breadth-first search, in general, is implemented with a list where the children
of the current node are placed into the list in a first-in, first-out FIFO
(manner). This construction is commonly called a queue and forces all
nodes of the same linklength from the start to be visited first (figure H.5).
The breadth-first search starts with placing the start node in the queue.
This node is then ezpanded by it being popped off (i.e., removed from the
front) the queue and all of its children being placed onto it. This procedure
is then repeated until the goal node is found or until there are no more nodes
to expand, at which time the queue is empty. Here, we expand all nodes
of the same level (i.e., link length for the start) first before expanding more
deeply into the graph.

Figure H.6 displays the resulting path of breadth-first search. Note that
all paths produced by breadth-first search in a grid with eight-point connec-
tivity are optimal with respect to the the “eight-point connectivity metric.”
Figure H.7 displays the link lengths for all shortest paths between each cell
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FIGURE H.6. White cells denote the path that was deter-
mined with breadth-first search.

FicUure H.7. A plot of link length values from the start
(upper - left corner) node where colored cells correspond
to link length (where the lighter the cell the greater the
link length in the graph) and black cells correspond to
obstacles.

and the start cell in the free space in Figure H.6. A path can then be deter-
mined using this information via a gradient descent of link length from the
goal cell to the start through the graph as similarly done with the wavefront
algorithm.

Depth-first search contrasts breadth-first search in that nodes are placed
in a list in a last-in, first-out LIFO (manner). This construction is commonly
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FiGure H.8. White cells denote the path that was deter-
mined with depth-first search.

called a stack and forces nodes that are of greater and greater link length
from the start node to be visited first. Now the expansion procedure sounds
the same but is a little bit different; here, we pop the stack and push all of
its children onto the stack, except popping and pushing occur on the same
side of the list (figure H.5). Again, this procedure is repeated until the goal
node is found or there are no more nodes to expand. Here, we expand nodes
in a path as deep as possible before going onto a different path.

Figure H.8 displays the resulting path of depth-first search. In this ex-
ample, depth-first search did not return an optimal path but it afforded a
more efficient search in that the goal was found more quickly than breadth-
first search. Figure H.9 is similar to figure H.7, except the link lengths here
do not correspond to the shortest path to the start; instead, the link lengths
correspond to the paths derived by the depth-first search. Again, we can
use a depth-first search algorithm to fill up such a map and then determine
a path via gradient descent from the goal cell to the start.

Another common search is called a greedy search which expands nodes
that are closest to the goal. Here, the data structure is called a priority
queue in that nodes are placed into a sorted list based on a priority value.
This priority value is a heuristic that measures distance to the goal node.
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M

FIGURE H.9. A plot of linklength values from the start (up-
per - left corner) node where colored cells correspond to
link lengths of paths defined by the depth-first search. The
lighter the cell the greater the linklengths in the graph;
black cells correspond to obstacles.

H.2 A* Algorithm

Breadth-first search produces the shortest path to the start node in terms of
link lengths. Since the wave-front planner is a breadth-first search, a four-
point connectivity wave-front algorithm produces the shortest path with
respect to the Manhattan distance function. This is because it implicitly
has an underlying graph where each node corresponds to a cell and neigh-
boring cells have an edge length of one. However, shortest-path length is not
the only metric we may want to optimize. We can tune our graph search
to find optimal paths with respect to other metrics such as energy, time,
traversability, safety, etc., as well as combinations of them.

When speaking of graph search, there is another opportunity for opti-
mization: minimize the number of nodes that have to be visited to locate the
goal node subject to our path-optimality criteria. To distinguish between
these forms of optimality, let us reserve the term optimality to measure the
path and efficiency to measure the search, i.e., the number of nodes visited
to determine the path. There is no reason to expect depth-first and breadth-
first search to be efficient, even though breadth-first search can produce an
optimal path.

Depth-first and breadth-first search in a sense are uninformed, in that the
search just moves through the graph without any preference for or influence
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on where the goal node is located. For example, if the coordinates of the
goal node are known, then a graph search can use this information to help
decide which nodes in the graph to visit (i.e., expand) to locate the goal
node.

Alas, although we may have some information about the goal node,
the best we can do is define a heuristic which hypothesizes an expected,
but not necessarily actual, cost to the goal node. For example, a graph
search may choose as its next node to explore one that has the shortest
Euclidean distance to the goal because such a node has highest possibility,
based on local information, of getting closest to the goal. However, there is
no guarantee that this node will lead to the (globally) shortest path in the
graph to the goal. This is just a good guess. However, these good guesses
are based on the best information available to the search.

The A* algorithm searches a graph efficiently, with respect to a cho-
sen heuristic. If the heuristic is “good,” then the search is efficient; if the
heuristic is “bad,” although a path will be found, its search will take more
time than probably required and possibly return a suboptimal path. A*
will produce an optimal path if its heuristic is optimistic. An optimistic, or
admissible, heuristic always returns a value less than or equal to the cost of
the shortest path from the current node to the goal node within the graph.
For example, if a graph represented a grid, an optimistic heuristic could be
the Euclidean distance to the goal because the L? distance is always less
than or equal to the L' distance in the plane (figure H.10).

First, we will explain the A* search via example and then formally in-
troduce the algorithm. See figure H.11 for a sample graph. The A* search
has a priority queue which contains a list of nodes sorted by priority. This
priority is determined by the sum of the distance from the start node to the
current node and the heuristic at the current node.

The first node to be put into the priority queue is naturally the start
node. Next, we expand the start node by popping the start node and putting
all adjacent nodes to the start node into the priority queue sorted by their
corresponding priorities. Since node B has the highest priority, it is ex-
panded next, i.e., it is popped from the queue and its neighbors are added
(figure H.12). Note that only unvisited nodes are added to the priority
queue, i.e., do not re-add the start node.

Now, we expand node H because it has the highest priority. It is popped
off of the queue and all of its neighbors are added. However, H has no
neighbors, so nothing is added to the queue. Since no new nodes are added,
no more action or expansion will be associated with node H (figure H.12).
Next, we pop off the node with highest priority, i.e., node A, and expand it,
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Ficure H.10. The heuristic between two nodes is the Eu-
clidean distance, which is less than the actual path length
in the grid, making this heuristic optimistic.

adding all of its adjacent neighbors to the priority queue (figure H.12).

Next, node E is expanded which gives us a path to the goal of cost 5.
Note that this cost is the real cost, i.e., the sum of the edge costs to the goal.
At this point, there are nodes in the priority queue which have a priority
value greater than the cost to the goal. Since these priority values are lower
bounds on path cost to the goal, all paths through these nodes will have a
higher cost than the cost of the path already found. Therefore, these nodes
can be discarded (figure H.12).

The explicit path through the graph is represented by a series of back
pointers. A back pointer represents the immediate history of the expansion
process. So, the back pointers from nodes A, B, and C all point to the
start. Likewise, the back pointers to D, E, and F point to A. Finally, the
back pointer of goal points to E. Therefore, the path defined with the back
pointers is start, A, E, and goal. The arrows in figure H.12 point in the
reverse direction of the back pointers.

Even though a path to the goal has been determined, A* is not finished
because there could be a better path. A* knows this is possible because
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GOAL

Ficure H.11. Sample graph where each node is labeled by
a letter and has an associated heuristic value which is
contained inside the node icon. Edge costs are represented
by numbers adjacent to the edges and the start and goal
nodes are labeled. We label the start node with a zero to
emphasize that it has the highest priority at first.

the priority queue still contains nodes whose values are smaller than that
of the goal state. The priority queue at this point just contains node C
and is then expanded adding nodes J, K, and L to the priority queue. We
can immediately remove J and L because their priority values are greater
than or equal the cost of the shortest path found thus far. Node K is then
expanded finding the goal with a path cost shorter than the previously found
path through node E. This path becomes the current best path. Since at
this point the priority queue does not possess any elements whose values
are smaller than that of the goal node, this path results in the best path
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FI1GURE H.12. (Left) Priority queue after the start is ex-
panded. (Middle) Priority queue after the second node,
B, is expanded. (Right) Three iterations of the prior-
ity queue are displayed. Each arrow points from the ex-
panded node to the nodes that were added in each step.
Since node H had no unvisited adjacent cells, its arrow
points to nothing. The middle queue corresponds to two
actions. Node E points to the goal which provides the
first candidate path to the goal. Note that nodes D, I, F,
and G are shaded out because they were discarded.

[ No expansion
E (3} [ GOAL(%)

Cld) = K (4) B GOAL(4)
D(5 L{5)
S J(5)

2

(3)
(3}
F(7)
G(7)

FIGURE H.13. Four displayed iterations of the priority
queue with arrows representing the history of individual
expansions. Here, the path to the goal is start, C, K, goal.

(figure H.13).

H.2.1 Basic Notation and Assumptions

Now, we can more formally define the A* algorithm. The input for A* is the
graph itself. These nodes can naturally be embedded into the robot’s free
space and thus can have coordinates. Edges correspond to adjacent nodes
and have values corresponding to the cost required to traverse between the
adjacent nodes. The output of the A* algorithm is a back-pointer path,
which is a sequence of nodes starting from the goal and going back to the
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start.

We will use two additional data structures, an open set O and a closed
set C. The open set O is the priority queue and the closed set C' contains
all processed nodes. Other notation includes

e Star(n) represents the set of nodes which are adjacent to n.

e c(n1,nz) is the length of edge connecting n; and na.

g(n) is the total length of a backpointer path from n to gsiare.

h(n) is the heuristic cost function, which returns the estimated cost of
shortest path from n to ggea-

f(n) = g(n) + h(n) is the estimated cost of shortest path from gsyart
t0 Ggoar Via m.

The algorithm can be found in algorithm 4.

Algorithm 4 A* Algorithm
Input: A graph
Output: A path between start and goal nodes

1: repeat

2:  Pick npest from O such that f(npest) < f(n),Vn € O.
3:  Remove nyes from O and add to C.

4: If npest = dgoal; EXIT.

5. Expand npeg: for all x € Star(npes:) that are not in C.
6: if x ¢ O then

7 add z to O.

8:  else if g(npest) + c(Npest, ©) < g(x) then

9: update z’s backpointer to point to npes

10:  end if
11: until O is empty

The A* algorithm searches for a path from the start to the goal. In such
a case, the g function is sometimes called the cost-to-come or cost-from-start
function. If the search were to occur in reverse, from goal to start, then the
g function is called the cost-to-go function which measures the path cost
to the goal. Likewise, the heuristic then becomes an estimated cost of the
shortest path from the current node to the start. The objective function f
is still the sum of g and h.
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H.2.2 Discussion: Completeness, Efficiency, and Optimality

Here is an informal proof of completeness for A*. A* generates a search tree,
which by definition, has no cycles. Furthermore, there are a finite number of
acyclic paths in the tree, assuming a bounded world. Since A* uses a tree,
it only considers acyclic paths. Since the number of acyclic paths is finite,
the most work that can be done, searching all acyclic paths, is also finite.
Therefore A* will always terminate, ensuring completeness.

This is not to say A* will always search all acyclic paths since it can
terminate as soon as it explores all paths with greater cost than the minimum
goal cost found. Thanks to the priority queue, A* explores paths likely to
reach the goal quickly first. By doing so, it is efficient. If A* does search
every acyclic path and does not find the goal, the algorithm still terminates
and simply returns that a path does not exist. Of course, this also makes
sense if every possible path is searched.

Now, there is no guarantee that the first path to the goal found is the
cheapest/best path. So, in the quest for optimality (once again, with respect
to the defined metric), all branches must be explored to the extent that a
branch’s terminating node cost (sum of edge costs) is greater than the lowest
goal cost. Effectively, all paths with overall cost lower than the goal must
be explored to guarantee that an even shorter one does not exist. Therefore,
A* is also optimal (with respect to the chosen metric).

H.2.3 Greedy-Search and Dijkstra’s Algorithm

There are variations or special cases of A*. When f(n) = h(n), then the
search becomes a greedy search because the search is only considering what
it “believes” is the best path to the goal from the current node. When
f(n) = g(n), the planner is not using any heuristic information but rather
growing a path that is shortest from the start until it encounters the goal.
This is a classic search called Dijkstra’s algorithm. Figure H.14 contains a
graph which demonstrates Dijkstra’s Algorithm. In this example, we also
show backpointers being updated (which can also occur with A*). The
following lists the open and closed sets for the Dijkstra search.

1. O={S}
2. 0={1,2,4,5}; C ={S} (1,2,4,5 all point back to S)

3. O =1{1,4,5}; C ={S,2} (there are no adjacent nodes not in C)
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FiGURE H.14. Dijkstra Graph Search Example

4. O = {1,5,3};C = {S5,2,4} (1,2,4 point to S; 5 points to 4; C' =
{S,2,4,1}

5. 0 ={3,G};C ={S5,2,4,1} (goal points to 5 which points to 4 which
points to .5)

H.2.4 Example of A* on a Grid

Figure H.15 contains an example of a grid world with a start and goal
identified accordingly. We will assume that the free space uses eight-point
connectivity, and thus cell (3,2) is adjacent to cell (4, 3), i.e., the robot can
travel from (3,2) to (4,3). Each of the cells also has its heuristic distance to
the goal where we use a modified metric which is not the Manhattan or the
Euclidean distance. Instead, between free space cells, a vertical or horizontal
step has length 1 and a diagonal has length 1.4 (our approximation of v/2).
The cost of traveling from a free space cell to an obstacle cell is made to
be arbitrarily high; we chose 10000. So one cell step from a free space to
an obstacle cell along a vertical or horizontal direction costs 10000 and one
cell step along a diagonal direction costs 10000.4. Here, we are assuming
that our graph connects all cells in the grid, not just the free space, and
the prohibitively high cost of moving into an obstacle will prevent the robot
from collision (figure H.16).

Note that this metric, in the free space, does not induce a true Euclidean
metric because two cells sideways and one cell up is 2.4, not v/5. However,
this metric is quite representative of path length within the grid. This
heuristic is optimistic because the actual cost to current cell to the goal will
always be greater than or equal to the heuristic. Thus far, in figure H.15
the back pointers and priorities have not been set.

The start cell is put on the priority queue with a priority equal to its
heuristic. See figure H.17. Next, the start node is expanded and the pri-
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b=0 | b=g | b=0 | b=0 |b=0 | b=0 | b=0
h=72 h=62 h=52 h=42 | h=38 h=34 h=3

3| f= f= f= f= f= f= f=
b=0 | b=0 | b=0 | b=0 |b=0 | b=0 | b=0
h=76 h=6.6 h=5.6 h=52 | h=48 h=44 h=4

2| f= f= f= f= f= f= f=
b=0 | b=0 | b=0 | b=0_|b=0 | b=0 | b=0
h=8.0 h=7.0 h=6.6 h=6.2 h=58 h=54 h=5

1] f= f= f= f= f= f= f=
b= |9t | b=0 | b=0 | b=0 | b=0 | b=

r/c| 1 2 3 4 5 6 7

FIGURE H.15. Heuristic values are set, but backpointers
and priorities are not.

x9 x2 x3 c(x1x2)=1
/' c(x1,x9)=1.4
x8 x4 ¢(x1,x8)=10000,if x8 is in
obstacle,x1 is a freecell
X7/ X6 €(x1,x9)=10000.4, if x9 is in
obstacle, x1 is a freecell

Ficure H.16. Eight-point connectivity and possible cost
values.

ority values for each of the start’s neighbors are determined. They are
all put on the priority queue sorted in ascending order by priority. See fig-
ure H.18(left). Cell (3,2) is expanded next, as depicted in figure H.18(right).
Here, cells (4,1), (4,2), (4,3), (3,3), and (2,3) are added onto the priority
queue because our graph representation of the grid includes both free space
and obstacle cells. However, cells (4,2), (3,3), and (2, 3) correspond to ob-
stacles and thus have a high cost. If a path exists in the free space or the
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longest path in the free space has a traversal cost less than our arbitrarily
high number chosen for obstacles (figure H.16), then these cells will never
be expanded. Therefore, in the figures below, we did not display them on
the priority queue.

Eventually, the goal cell is reached (figure H.19 (left)). Since the pri-
ority value of the goal is less than the priorities of all other cells in the
priority queue, the resulting path is optimal and A* terminates. A* traces
the backpointers to find the optimal path from start to goal (figure H.19

(right)).

H.2.5 Nonoptimistic Example

Figure H.20 contains an example of a graph whose heuristic values are
nonoptimistic and thus force A* to produce a nonoptimal path. A* puts
node S on the priority queue and then expands it. Next, A* expands node
A because its priority value is 7. The goal node is then reached with pri-
ority value 8, which is still less than node B’s priority value of 13. At this
point, node B will be eliminated from the priority queue because its value
is greater than the goal’s priority value. However, the optimal path passes
through B, not A. Here, the heuristic is not optimistic because from B to
G, h = 10 when the actual edge length was 2.

H.3 D* Algorithm

So far we have only considered static environments where only the robot
experiences motion. However, we can see that many worlds have moving
obstacles, which could be other robots themselves. We term such environ-
ments dynamic. We can address dynamic environments by initially invoking
the A* algorithm to determine a path from start to goal, follow that path
until an unexpected change occurs (see (4, 3) in figure H.21(left)) and then
reinvoke the A* algorithm to determine a new path. This, however, can be-
come quite inefficient if many cells are changing from obstacle to free space
and vice versa. The D* algorithm was devised to “locally repair” the graph
allowing for an efficient updated searching in dynamic environments, hence
the term D* [376].

The D* algorithm (algorithm 5) uses the notation found in table H.1.
Just like A*, D* has a data structure called the open list O. However, D*
may process states after they are removed from the open list, so ¢(X) is
used to classify states as NEW, OPEN, and CLOSED to mean X has
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h=6 | h=5 | h=4 | h=3 | h=2 | h=1 | h=0
f= f= f= f= f= f= f=
b= b=() | b=0 b=() b=() b=() b=()
h=64 | h=54 | h=44 | h=34 | h=24 | h=14 | h=1
f= f= f= f= f= f= f=
b= b=) b= b=() b=() b=() b=()
h=68 | h=58 | h=48 | h=38 | h=28 | h=24 | h=2
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h=8.0 h=66 | h=62 | h=58 | h=54 | h=5
f= f= f= f= f= =
b=() b=() b=() | b=0 b=() b=() ]]

FIGURE H.17. Start node is put on priority queue, displayed
in upper right.

h=6 h=5 h=4 h=3 h=2 h=1 h=0 :23 ZZ h=6 h=5 h=4 h=3 h=2 h=1 h=0 ::3 ZZ
f= f= f= f= f= f= f= 31 |76 f= f= f= f= f= f= f= 31 |76
b= | b=() | b=0 | b=0 | b=0 | b=0 | b= | [2]eo b= | b=() | b=0 | b=0 | b=0 | b=0 | b= | [a]eo
h=54 h=24 h=14 h=1 State | f h=64 h=54 h=44 h=34 | h=24 h=14 h=1 w1y |90
f= f= f= f= f= f= f= f= f= f= e | 1
b=) | b=) | b= b=) | b= |b=) |b=0 |b=0 | b=0 | b=
h=28 h=24 h=2 h=6.8 h=58 h=48 h=38 | h=28 h=24 h=2
f= f= f= f= f= f= f= = f= f=
b=) | b=0 | b= b= b=) | b=
h=38 h=34 h=3 h=34 h=3
f= f= = f= f=
b=) | b=0 | b= b=) | b=
h=48 | h=44 h=4 h=44 h=4
f= f= f= f= f=
b=) | b=0 | b= b=0 | b0 [t
=5.8 h=54 h=5 1 h=54 h=5 § E |11
£= |- e= | £= e= | ] ]
b=g | b=0 | b=0 [P [T]] b= | b0 [FEH ]

FIGURE H.18. (Left) The start node is expanded, the prior-
ity queue is updated, and the backpointers are set, which
are represented by the right bottom icon. b = (4, j) points
to cell (7,7). (Right) Cell (3,2) was expanded. Note that
cells (3,3), (2,3), and (4,2) are not displayed in the pri-
ority queue because they correspond to obstacles.

never been in O, X is currently in 0, and X was in O but currently is not,
respectively.

The function h(X) measures path cost from the goal to X; this is some-
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FIGURE H.19. (Left) The goal state is expanded. (Right)

Resulting path.

FiGURE H.20. A nonoptimistic heuristic leads to a non-
optimal path with A*.

times called cost-to-go. Ultimately, the D* planner uses h to determine the
path in the graph; when sequencing through the path to the goal, the values
of h decrease. Note that some notation may get confusing here because A*
uses h as the heuristic function whereas D* uses h as the cost-to-go function.

The D* algorithm uses the k£ values to determine the priority of the
nodes in the open list. The k value for a particular node X is the smallest
h value for that node since it was most recently inserted onto the open list.
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State Functions

State X | Stored cost from Y to X c(X,)Y)
Current State X, | Cost from Y to X based on sensors | 7(X,Y)
Neighbor State | X,, | Cost from X to goal h(X)
Start S | Minimum cost from X to goal k(X)
Goal G | Tag t(X)
List of all States | L | Parent state (predecessor) of X b(X)
Open List @)

TABLE H.1. Common notation used in D*

This means if X were inserted into the open list, if its h value changes, then
the k value is the smallest of the h values while X remains in the open list.
However, once X is removed from the open list, if it is re-inserted, k(X)
starts off with the new h value.

The significance of k(X)) is that it distinguishes raise states, those where
E(X) > h(X) from lower states, those where k(X) = h(X). It is possible
for obstacle nodes to be placed on the open list, but they will have high
k values meaning they will probably never be processed. After the initial
search, the k-values are identical to the h values.

We once again consider a directed graph where a node corresponds to a
robot state and an edge connects the nodes of adjacent states. Note that
two states may not physically lie side-by-side, so an edge really corresponds
to two nodes for which a robot can traverse from one state X to another
state Y for some edge cost ¢(Y, X). It is possible that ¢(X,Y") # ¢(Y, X).

After some initialization, D* performs a modified Dijkstra’s search us-
ing INIT — PLAN (algorithm 6), which calls PROCESS — STATE (al-
gorithm 14) to expand nodes. The initial search starts by placing the goal
node onto the open list and ends when the start node is labeled as closed.
Once the search is complete, the robot begins to follow the optimal path
to the goal. This happens in PREPARE — REPAIR (algorithm 7) and
REPAIR—REPLAN (algorithm 8). Effectively, PREPARE — REPAIR
looks for changes in the environment that affects the costs among nodes
within sensor range and if such a changes exist, REPAIR — REPLAN
locally repairs the graph by readjusting the backpointers, so a new opti-
mal path can be found. If no change exists, REPAIR — REPLAN simply
directs the robot along the current optimal path.

The actual repairing of the backpointers and directed motion of the
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Algorithm 5 D* Algorithm
Input: List of all states L
Output: The goal state, if it is reachable, and the list of states L are
updated so that the backpointer list describes a path from the start to
the goal. If the goal state is not reachable, return NULL.
for each X € L do
t(X) = NEW
end for
h(G)=0
INSERT(0,G,h(G))
X. =S5
P =INIT — PLAN(O, L, X.,G) (algorithm 6)
if P = NULL then
Return (NULL)
end if
: while X, # G do

—_ =
= o

122 PREPARE — REPAIR(O, L, X.) (algorithm 7)

131 P =REPAIR — REPLAN(O, L, X,,G) (algorithm 8)

14: if P = NULL then

15: Return (NULL)

16:  end if

17. X, = the second element of P {Move to the next state in P}.
18: end while

19: Return (X.)

Algorithm 6 INIT — PLAN(O, L, X.,G)
Input: Open list O, List of all states L, Current Position X., Goal G
Output: A list of states to goal as described by back pointers in the
list of states L; Open List O is modified
repeat

kmin = PROCESS — STATE(O, L)
until (kp, = —1) or (t(X.) = CLOSED)
P=GET — BACKPOINTER — LIST(L, X.,G) (algorithm 9)
Return (P)

robot occurs in REPAIR — REPLAN. Notice that INIT — PLAN and
REPAIR — REPLAN look quite similar except the “until” terminating
condition is different. This is because INIT — PLAN only accesses one
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part of PROCESS — STATE since t(X) = NEW whereas REPAIR —
REPLAN uses all parts of PROCESS — STATE. The repairing process
terminates when k value of any node in the open list is greater than or equal
to h(X.). In other words, the process terminates when the minimum path
cost from any node in the open list to the goal is greater than or equal to
the the path cost from the current robot position X. to the goal. This is
the terminating condition in REPAIR — REPLAN which is different from
the terminating condition in INIT — PLAN.

There is one piece of terminology which should be made clear at this
point. In actuality, D* is not considering actual path costs but rather the
perceived path costs which are derived from the robot’s current understand-
ing of the graph being searched. If the edges of the graph are incorrect, say
due to a change in the environment, then the D* algorithm does not use the
updated information until the robot discovers a change in the environment,
i.e., until the robot discovers a change in an edge cost. The D* literature
hence uses the term estimated path cost to reflect this, but such terminology
could be confusing because a heuristic also estimates path cost and there
are many other ways to estimate path cost. Therefore, this description of
D* avoids the use of this term but the reader should be aware of it when
reading the literature. Later on, the focused D* algorithm was developed to
include a heuristic function for guiding, or focusing, the repairing process.
Typically for D*, g is used as the heuristic function switching the g and h
notation convention from A*. Often, when people speak of D*, they really
mean focused D*, but this section focuses, no pun intended, on the original
D* algorithm.

At this point instead of directly explaining the details of PROCESS —
STATE, we give an example of the entire D* algorithm. Consider the grid
environment in figure H.21(left) which is identical to the one in figure H.15,
except cell (4,3) is a gate which can either be a free-space cell or an obstacle
cell. Assume it starts as a free-space cell. Finally, a node in the search graph
corresponds to a cell, regardless if it is obstacle or free space, and since this
graph is directed, a pair of nodes corresponding to adjacent cells have two
directed edges.

To achieve the initial Dijkstra-like search from the goal back to the start,
the goal node is first placed on the open list (figure H.21(right)) with A = 0.
It is then expanded (figure H.22(left)), adding (6,6), (6,5), and (7,5) onto
the queue (algorithm 14, lines 17-19). D* increments the k and h values
according to the metric described in figure H.16. Unless stated otherwise,
when a node is expanded, it is automatically put on the closed list, so the
goal is expanded and then put on the closed list.
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Algorithm 7 PREPARE — REPAIR(O, L, X.)
Input: Open list O, List of all states L, Current Position X,
Output: Open List O is modified

1: for each state X € L within sensor range of X, and X, do

2:  for each neighbor Y of X do

3: if 7(Y,X) # ¢(Y, X) then

4: MODIFY — COST(0,Y, X,r(Y, X))
5: end if

6: end for

7. for each neighbor Y of X do

8: if 7(X,Y) # ¢(X,Y) then

9: MODIFY — COST(0,X,Y,r(X,Y))
10: end if

11:  end for

12: end for

Algorithm 8 REPAIR — REPLAN(O, L, X.,G)
Input: Open list O, List of all states L, Current Position X., Goal G
Output: A list of states to goal as described by back pointers in the
list of states L; Open List O is modified

1: repeat

2. kyin = PROCESS — STATE(O, L)

3: until (kpin > h(X,)) or (kpin = —1)

4 P=GET — BACKPOINTER — LIST(L,X.,G)
5. Return (P)

Next, node (6,6) is expanded adding nodes (5,6) and (5,5) onto the
open list (figure H.22(right)). The node (7,5) is then expanded adding
nodes (6,4) and (7,4) into the open list. (figure H.23(left)). More nodes are
expanded until we arrive at node (4,6) (figure H.23(right)). When (4,6) is
expanded, nodes (3,6) and (3,5), which are obstacle nodes, are placed onto
the open list, but with high k& and h values figure H.23(right). Since the h
values of the expanded obstacle nodes are high, they will most likely never
be expanded, which makes sense because they are obstacle nodes.

The Dijkstra-like search is complete when the start node (2,1) is ex-
panded (figure H.24(left)). Note that some cells may not have been consid-
ered by the D* algorithm. The optimal path from start to goal (assuming
that the gate cell (4,3) is not an obstacle) is found by traversing the back-



H.3. D* ALGORITHM

FiGure H.21. (Left) A cell world similar to figure H.15,
except it has a gate, h values and k values. (Right) Put
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pointers starting from the start node to the goal node (figure H.24(right)).
The optimal path is (2,1) — (3,2) — (4,3) — (5,4) — (6,5) —
(7,6). Note that nodes (1,1), (1,2), (1,3), (2,3), (3,3), (3,4), (3,5), (3,6)
and (4,2) are still on the open list.

The robot then starts tracing the optimal path from the start node to the
goal node. In figure H.25(left), the robot moves from node (2,1) to (3,2).
When the robot tries to move from node (3,2) to (4,3), it finds that the
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"Open’ - on priority queue "Closed" & currently being expan ded ><“C‘”55d“ "Open’ - on priority queue "Closed" & currently being expan ded ><“C‘E'SE

Ficure H.23. (Left) Expand (7,5). (Right) Expand (4,6).

gate node (4, 3) is an obstacle (figure H.25(left)). In the initial search for an
optimal path, we had assumed that the gate node was a free space node, and
hence the current path is not feasible. At this stage, instead of re-planning
for an optimal path from the current node (3,2) to goal node, D* tries to
make local repairs to the graph until a new optimal path is found.

There is one subtlety about the sensor range which should be noted.
When we assume the robot has a sensor range of one cell, does this mean
that the robot can see all neighboring cells, the current cell, and the edge
costs among all such cells, or does this mean that it can see all such cells and
all of the edges costs associated with these cells. If the latter, then some
edges may be considered “out of sensor range” because such edge costs
are between a cell within sensor range and a cell outside of sensor range.
However, it is reasonable to expect such edge costs to change because the
cell within sensor range has changed. In this example, we assume that the
robot infers that the peripheral edge costs change as well. Either assumption
is fine, as long as the implementation is consistent.

To address the fact that (4, 3) is now an obstacle, D* increases by a large
number the transition cost to and from (4, 3) for all nodes adjacent to (4, 3).
Actually, in our example, we simply set the transition cost to a high number,
say 10,000. Next, all nodes affected by the increased transition costs (all
eight neighbors and (4,3)) are put on the open list (algorithm 7). Recall
that D* is repairing a directed graph, so MODIFY — COST is called 16
times, once for each neighbor and eight times on (4,3) but (4, 3) is put onto
the open list only once. See figure H.25 (right). Note that some neighbors
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of (4,3), and (4,3) itself have lower k values than most elements on the open
list already. Therefore, these nodes will be popped first.

The node (5,4) is now popped because its k value is the smallest. Since
its k and h are the same, consider each neighbor of (5,4). One such neighbor
is (4,3). The node (4,3) has a back pointer which points to (5,4) but
its original h value is no longer the sum of the h value of (5,4) and the
transition cost, which was just raised due to the obstacle (algorithm 14,
line 17). Therefore, (4,3) is put on the open list but with a high h value
(algorithm 14, line 19). Note that since (4, 3) is already on the open list, its
k value remains the same and hence the node (4, 3) is a raise state because
h > k. See figure H.26 (left). Next, (5,3) is popped but this will not affect
anything because none of the surrounding nodes are new, and the h values of
the surrounding nodes are correct. A similar non-action happens for (4,4).
See figure H.26 (right).

Now, the node (4,3) is popped off the open list and since k < h, the
objective is to try to decrease the h value (algorithm 14, line 7). This is akin
to finding a better path via (4, 3) to the goal, but this is not possible because
(4,3) is an obstacle. Looking more carefully at the algorithm, consider node
(5,3), which is a neighbor of (4,3) and has an h value which is less than
the k value of (4,3) but h value of (4,3) “equals” the sum of the h value of
(5,3) and the transition cost. This means that nothing is improved coming
from (4,3) to (5,3). This is also true for (5,4) and (4,4). See figure H.27
(left). Note that our notion of equality is not precise in that any two “large”
numbers are equal; so for example, 10000 = 10001.4.

So, we cannot find a path through any of the neighbors of (4, 3) to reduce
h. Therefore, the node (4, 3) is expanded next, which places all nodes whose
back pointers point to (4,3), which in this case is only (3,2), onto the open
list with a high h value (algorithm 14, line 17). Now, (3,2) is also a raise
state. Note that the k value of (3, 2) is set to the minimum of its old and new
h values (this setting happens in the insert function). Next, we pop (5,2)
but this will not affect anything because none of the surrounding nodes are
new, and the A values of the surrounding nodes are correct. See figure H.27
(left).

Now, node (3,2) is popped off the open list. Since k < h, D* looks for
a neighbor whose h value is less than the k value of (3,2) (algorithm 14,
line 9). If such a neighbor exists, then D* would redirect the backpointer
through this neighbor. However, no such neighbor exists.

Next, D* looks for neighboring nodes whose back pointers point to (3,2)
and have an “incorrect” h value, i.e., all neighboring nodes with h values
not equal to the h value of (3,2) plus its associated transition cost. Such
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nodes are also placed onto the open list with a high h value, making them
raise states (algorithm 14, line 24). These are (3,1), (2,1), and (2,2). Note
that the k values of these nodes are set to the minimum of the new A value
and the old A value.

Also, D* looks for neighboring nodes whose back pointer does not point
to (3,2), whose h value plus the transition cost is less than the h value of
(3,2), which is on the closed list, and whose h value is greater than the k
value of (3,2) (algorithm 14, line 29). The only such neighbor is (4,1). This
could potentially lead to a lower cost path. So, the neighbor (4, 1) is put on
the open list with its current h value because it could potentially reduce the
h value of (3,2). It is called a lower state because h = k. See figure H.27
(right).

Continuing with the lowest k& value node, the node (4, 1) is popped off
the open list and expanded. Since the h and k values of (4, 1) are the same,
D* considers the neighbors whose pack pointers do not point to (4, 1) to see
if passing through (4, 1) reduces any of the neighbors h values (algorithm 14,
line 17). This redirects the backpointers of (3,2) and (3,1) to pass through
(4,1); moreover, these nodes are then put onto the open list. However,
since (3,2) was “closed,” its new k value is the smaller of its old and new
h values, making it a lower state (since k = h). Similarly, since (3,1) was
“open” (already on the open list), its new k value is the smaller of its old k
value and its new h value. See figure H.28 (left).

Next, the node (3,1) is popped off the open list. Since its k value 6.6
is less than its h value 7.2, D* looks for a neighbor whose h value is less
than the k value of (3,1) (algorithm 14, line 9). The only such neighbor
is (4,1). This gives us hope that there is a lower cost path through (4,1).
However, since the sum of the transition cost to (4,1) and the h value of
(4,1) is greater than the h value of (3,1), no such improved path exist and
nothing happens. However, the node (3,1) can be used to form a reduced
cost path for its neighbors, so (3,1) is put back on the open list but with
a k value set to the minimum of its old h value and new A value. Thus, it
now also becomes a lower state. See figure H.28 (right).

The node (2,2) is then popped off the open list and expanded. This
increases the h values of the nodes that pass through (2,2) and puts them
back on the open list. When the nodes (1,1), (1,2) and (1,3) are put back
onto the open list, their k£ values are unaffected, hence their position in the
open list remains the same, but their h values are increased making them
raise states (algorithm 14, line 24). See figure H.29 (left). Next the node
(2,1) is popped off the queue and since k < h and it cannot reduce the cost
to any of its neighbors, so this has no effect. See figure H.29 (right).
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Now, the node (3,1) is popped off the open list and expanded. This has
the effect of redirecting the back pointers of (2,2) and (2,1) through (3,1)
and putting them back on the open list with a k value equal to the minimum
of the old and new h values (algorithm 14, line 17). Because k equals h,
they are now lower states. See figure H.30 (left). Now, kpn = h(X.) which
is the h-value of the current robot position, the terminating condition of
REPAIR — REPLAN (algorithm 8). Note that X, is still on the open list
and this should not be a concern because even if X, were popped off of the
open list, no improvement can be made because the current path cost h is
already optimal. Finally, the new path is determined via gradient descent
of the h values (figure H.30 (right)), and then the robot follows the path to
the goal (figure H.31).

Algorithm 9 GET — BACKPOINTER — LIST(L, S,G)
Input: A list of states L and two states (start and goal)
Output: A list of states from start to goal as described by the back-
pointers in the list of states L

if path exists then

Return (The list of states)
else

Return (NULL)
end if

Algorithm 10 INSERT (0, X, hyew)
Input: Open list, a state, and an h-value
Output: Open list is modified
if ¢(X) = NEW then
k(X) = hnew
else if t(X) = OPEN then
E(X) = min(k(X), hpew)
else if ¢{(X) = CLOSED then
E(X) = min(h(X), hpew)
end if
h(X) = hnew
t(X) =OPEN
Sort O based on increasing k values

—_
=
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Algorithm 11 MODIFY — COST(0,X,Y, cval)

Input: The open list, two states and a value
Output: A k-value and the open list gets updated

c(X,Y) = cval

if t¢(X) = CLOSED then
INSERT(0,X,h(X))

end if

Return GET — KMIN(O) (algorithm 13)

Algorithm 12 MIN — STATE(O)

Input: The open list O
Output: The state with minimum £ value in the list related values

if O =0 then

Return (—1)
else

Return (argminy cok(Y))
end if

Algorithm 13 GET — KMIN(O)

Input: The open list O
Output: Lowest k-value of all states in the open list

if O = () then
Return (—1)
else

Return (minyeo k(Y))
end if




H.3. D* ALGORITHM

89

h= h= = State k State k
2al £ | S 12| 76 1,2] 76
- - — (13| 80 (13| 80
N SA KA RENEEX anl 8o
£ owy| o | FEON (3,6)|10000 (3,6)[10000
= = = (3,5) [ 10000 (3,5) 10000
PRE| 2 (34) | 10000 (3,4) 10000
£ow | £ B .2) 10000 (4,2)[10000
h=80 = = =3 3,3) [ 10000
3| k=380 k2| ks | kx4 3 (3,3) | 10000 3 e
b=(2.2) o pEom | pLirm 25 2,3) | 10000 (2,3)[10000]
h=76 | W= =5, - =4 = -
2| k=786 | k k 6 k 8 k4 4 2
b=(2.2) | #=(3 4 £ (6. =7 £(7
h=80] h=70 =6, = = = =
1] k=80 | k=70[ k 6| k 2| Kk 8| k 4 5 1
b=(22) | b=(3,2) < (2 =(5, = (6] =(7 =(7, |- |-
1 2 3 4 5 6 7
“Open’ - on priority queue *Closed" & curently being expanded X“C‘Dsed“
Ficure H.24. (Left) Termination of initial search phase:
start cell is expanded. (Right) Tracing backpointers yields
the optimal path, or is it?
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FI1GURE H.25. (Left) The robot physically starts tracing
the optimal path. (Right) The robot cannot trace the
assumed optimal path: gate (4,3) prevents passed. All
nodes surrounding (4, 3) are put on the open list.
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Ficure H.26. (Left) Pop (5,4) off of the open list and ex-
pand; node (4, 3) becomes a raise state. (Right) Pop (5, 3)
off of open list but this has not effect.
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FiGURE H.27. (Left) Pop (4, 3) off of open list, and try to
find a better path through it; none exist. Eventually (3,2)
is put on the open list as a raise state. (Right) Pop (3,2)

off of open list.
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Ficure H.28. (Left) Pop (4,1) off of open list (Right) Pop
(3,1) off of open list.
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FiGURE H.29.

(Right) Pop (2,1) off of open list.

(Left) Pop (2,2) off the queue and expand it
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Ficure H.30.
(Right) Determine optimal path from the current location
to the goal by following gradient of h values.

(Left) Pop (3,1) off the queue and expand it.

h= 10000
1] k=80
b=(2.2)

1

FiGure H.31.

tion.

Robot moves to goal from its current loca-
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Algorithm 14 PROCESS — STATFE

Input: List of all states L and the list of all states that are open O
Output: A k., an updated list of all states, and an updated open list

e e e e
S S e

—_
ot

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

30:
31:
32:
33:

34

X =MIN — STATE(O) (algorithm 12)
if X = NULL then

Return (—1)
end if
koig = GET — KMIN (O) (algorithm 13)
DELETE(X)
if kyq < h(X) then

for each neighbor Y € L of X do

if t(Y) # NEW and h(Y) < kgq and h(X) > h(Y)+c(Y, X) then

b(X)=Y
R(X) = h(Y) + (Y, X);
end if
end for
. end if

- if kg = h(X) then

for each neighbor Y € L of X do
if (((Y)=NEW)or (b(Y) =X and h(Y) # h(X) + ¢(X,Y)) or
(b(Y) # X and h(Y) > h(X) + ¢(X,Y)) then

bY)=X
INSERT(0,Y,h(X) + c¢(X,Y)) (algorithm 10)
end if
end for

else
for each neighbor Y € L of X do
if (t((Y)=NEW)or (b(Y)=X and h(Y) # h(X)+¢(X,Y)) then
bY)=X
INSERT(0,Y,h(X) +c¢(X,Y))
else if b(Y) # X and h(Y) > h(X) 4+ ¢(X,Y) then
INSERT(O, X, h(X))
else if (b(Y) # X and h(X) > h(Y) + c¢(Y, X)) and (¢(Y) =
CLOSED) and (h(Y') > koiq) then
INSERT(0,Y,h(Y))
end if
end for
end if
Return GET — KMIN(O) (algorithm 13)
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H.4 D* Lite

The D* Lite algorithm is perhaps an easier-to-understand advancement over
the D* approach and is therefore more often used. One need not know the
details of D* to understand D* Lite, however we make some comparisons
here for the sake of explanation. Just like D*, D* Lite has the effect of locally
repairing the graph when a change occurs. However, D* Lite does not have
any back pointers to determine a path; instead each D* Lite node contains
additional values: an objective function g and a “look ahead” function rhs.
In general, g is a type of cost-to-goal function.

Nodes are called consistent if their g and rhs values are the same and
likewise are inconsistent if their g and rhs functions differ. If g > rhs, then
a node is over-consistent and if ¢ < rhs, the a node is under-consistent.
This notion of consistency is analogous to the raise and lower states of D*.
Finally, there is a heuristic function h, which has the same meaning as h
from A* and is therefore different from the h in D*.

The graph being search is assumed to be a directed graph where c(u, v) is
the cost to traverse a directed edge from the source node u to the destination
v (D* defined c¢(u,v) to be the cost from v to u). Hence, the Succ(u) and
the Pred(u) are the successors and predecessors, respectively, of the node
u. With these terms in-hand, the rhs function is defined as

rhs(u) = min (c(u,s’) + g(s")
s'eSucc(u)

There is an open list (again sometimes called a priority queue) U whose
key k is now a two-vector, as opposed to the real k values as before. This
key is
min(g(s),rhs(s)) + h(sstart, S)

k(s) = min(g(s),rhs(s))

Sometimes, the first and second components of the key are called the primary
key and secondary key, respectively. If the primary key of u is less than the
primary key of v, then k(u) < k(v). If the primary keys are equal, then the
secondary keys are used as a tie breaker.

The D* Lite algorithm (algorithm 15) takes as input a directed graph,
the edge costs (which can be modified), a start state and a goal state. In
general, after an initial search, D* Lite determines a path by performing
gradient descent on the sum of the edge costs and objective function g, i.e.,
chose the next node whose ¢ value in addition to the cost to get there is
smallest. This procedure terminates either when the robot reaches the goal
or detects a change in edge cost. At this point, the edge costs are repaired
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and the rhs and g values are updated to reflect these changes. Once all of the
changes are computed, D* Lite continues with gradient descent to follow the
optimal path. Ultimately, algorithm 15 does not output anything, per say,
but the search graph is updated so that the rhs and g values are assigned
appropriately.

Now, let us take a closer look at algorithm 15. Assume without loss
of generality that the start and goal nodes initially differ, so the objective
is to move from the start to the goal. First, algorithm 16 initializes the
open list to empty, sets all of the rhs and g values to infinity, assigns the
rhs value of the goal to zero, and places the goal on the open list. This
makes the goal inconsistent, specifically over-consistent. Therefore, when
ComputeShortestPath (algorithm 17) is called, the highest priority element,
i.e., the lowest key value, of the open list is the goal. Naturally, the goal’s
key value is less than the key value of the start. ComputeShortest Path then
makes the goal consistent by setting the g value equal to its rhs value and
for all nodes with outgoing edges that terminate at the goal, each node has
its rhs value updated. This process repeats until the start node is consistent
and the top key on the open list is not less than the key of the start node.
At this point, the loop terminates and an optimal path can be determined.

While the current and goal nodes are not the same, the robot moves
from the current node toward the goal. At each step, the planner directs
the robot to the successor node whose g value summed with cost to traverse
the edge to that successor node is minimal over all successor nodes, i.e.,
from w, chose the next node such that c(u,s’) + ¢g(s’) is minimized over all
s" € Suce(u).

In the process of following the optimal path to the goal, if there are any
changes in the graph, or more specifically if there are any changes in the
graph within sensor range of the robot, D* Lite first updates these edge
costs, updates the source nodes of the affected edges, updates the keys of
the appropriate nodes in the open list, and then calls ComputeShortest Path
again to make the appropriate nodes consistent. This last action has the
ultimate effect of locally repairing the optimal path by altering the g and
rhs values. This entire process continues until the current and goal states
are the same.

The ComputeShortest Path (algorithm 17) does nothing unless the start
node is inconsistent or the lowest priority node in the open list has a key value
less than the start’s key value. If this is the case, the lowest priority state u
is popped off the open list. If it is over-consistent, ComputeShortestPath
makes u consistent and updates all of the nodes with edges terminating
at u. If w is under-consistent, then ComputeShortest Path makes u over-



96 APPENDIX H. GRAPH REPRESENTATION AND BASIC SEARCH

Algorithm 15 D*Lite(S, Sstart, Sgoal)

Input: A graph of nodes S and two nodes (start and goal)
Output: A modified graph of nodes S with their & and rhs values
properly set.

e e e e e e e =

20:
21:

Scurrent = Sstart

Initialize() (algorithm 16)
ComputeShortestPath() (algorithm 17)
while s.yrrent ?é Sgoal do
if g(Scurrent) = 0o then
Break (No path exists)
end if
Scurrent = argmins’eSucc(scum-em) (C(Scurrent, 3/) + g(S/))
Move to Scurrent
Scan graph for any changed costs (within sensor limits)
if any edge cost changed then
for each directed edge (u,v) with changed cost do
Update edge cost c(u,v)
UpdateVertex(u)
end for
for each s € U do
Update(U, s, CalculateKey(s)
end for
ComputShortest Path()
end if
end while

Algorithm 16 Initialize()

Input: The start sgiart, Scurrent; 80al Sgoq1, Open list U and graph of
states S are global variables.

Output: A modified open list U and modified graph of states S with
updated rhs and ¢ values.

U=10
for each s € S do
rhs(s) = g(s) = o0
end for
rhs(Sgoar) = 0
Insert(U, sgoa, Calculate K ey(Sgoat))
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Algorithm 17 ComputeShortest Path()
Input: The start ssart, Scurrent; 80al Sgoar, open list U and graph of
states S are global variables.
Output: A modified open list U and modified graph of states S with
updated rhs and g values.
1: while (TopKey(U) < CalculateKey(Scurrent)) O (rhs(Scurrent) F#
g(scurrent)) dO

2:  u= Pop(U)

3. if g(u) > rhs(u) then

4: g(u) = rhs(u)

5: for each s € Pred(u) do
6: UpdateV ertex(s)

T: end for

8 else

9: g(u) = 0o

10: for each s € Pred(u)|J{u} do
11: UpdateV ertex(s)

12: end for

13:  end if

14: end while

consistent and updates u, as well as all nodes with edges terminating at
u. The nodes are updated in algorithm 18 and the keys are calculated in
algorithm 19.

Algorithm 18 UpdateVertex(u)
Input: A node u, and the start ssiart, Scurrent, £0al Sg0q1, and open list
U are global variables.
Output: A modified node u and a modified open list U.
if u # 5400 then
rhs(u) = mins’GSucc(u)(C(uv 3,) + 9(8/))
end if
if u € U then
Remove(U, u)
end if
if g(u) # rhs(u) then
Insert(U,u, CalculateKey(u))
end if
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Algorithm 19 CalculateKey(s)
Input: A node s.
Output: A key for s.

Return (min(g(s),rhs(s)) + h(Scurrent, $); min(g(s), rhs(s)))

Non-diagonal: 1.0
Free—Free L
Diagonal: 1.4 Legend
Free—Obstacle ’ Non-diagonal: « Free
Obstacle—Free Diagonal: «
. Obstacle
Non-diagonal: «©
Obstacle—Obstacle . On open list
Diagonal: <

Ficure H.32. Eight connected grids with pairwise directed
edges between neighboring cells.

Let’s consider the example where D* Lite searches a grid of cells. Each
node in the graph corresponds to a cell and each pair of neighboring nodes
u and v has a pair of directed edges: one from u to v and visa versa. The
cost to travel from one free cell to a neighboring free cell is 1 if it is an up,
down, left or right motion, and is 1.4 if it is a diagonal motion. The cost of
travel either from an obstacle cell or to an obstacle cell infinite, as depicted
in figure H.32.

Initially, all of the nodes’ rhs and g values are set to infinity, except for
the goal whose rhs value is set to zero and its g value is set to infinity. Since
the goal is now inconsistent, it is put on the open list. See figure H.33.

D* Lite then calls ComputeShortest Path which immediately pops the
goal off of the open list, and since it is over-consistent, makes it consistent
with rhs and g values of zero. Now, ComputeShortest Path expands the
popped node by calling UpdateV ertex on all of its predecessors. This com-
putes rhs values for the predecessors and puts them on the open list, but
only if they become inconsistent. Node (1,1) is a predecessor but not put
on the open list because it remained consistent. See figure H.34 where the
small arrows indicate which node is used to compute the rhs value, e.g., the
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g g o g g o g o g w g ® g ® g: o g ©
° ths:® | rths: 0 | rhs:o | rhs: @ | ths: @ *| ths:w | rhs: o | rhs:w | rhs:w | ths: o
rhs: o | rhs: @ | rhs: o | rhs: oo | rhs: @, | rhs: o
L gr @ g« | e
rhs: @ | rhs: @ rhs; o
4 g | g 3 &
g rhs: e | ths: @ 8| rhs: 0
3 4 0

F1GUre H.33. (Left) Goal rhs value set to zero and all other
rhs and g values to infinity (Right) Goal is put on open
list. Arrows are not back pointers but rather represent
gradient directions.

g« g« g« g« g« g« g« g« g« g
> ths: oo | ths: @ | rhs: o  rhs: oo | rhs: *| ths: oo | ths: o | rhs: e | rhs: o | rhs: oo
g: [oe] g: [on] g: (s 0] g: (o] g: (s 0] E g: [on] g: (s 0] g: (o] g: (s 0] g: [ss]

* ths:® | ths: o | rhs: o | rhs: o | ths: 4 E "| ths:o | rths: oo | rhs:w | rhs: o | rhs: @,
L g © g. © g © L g: ® g w gr o
rhs: o rhs: e | rhs: o rhs: 1 rhs: oo | rhs: o

t

3 &0 g ® g @ g ® 3 g:0$7g:00 g o g
8| rhs: 0 | rhs: o rhs: o | ths: @ 8| rhs: 0 | rhs: 1 rhs: © | ths: @

0 1 2 3 4 0 1 2 3 4

FIicure H.34. (Left) The goal is popped of the open list.
(Right) The goal is expanded and the resulting inconsis-
tent nodes are put the on open list.

rhs value of (0,1) is computed using the g value of (0,0) and the transition
cost from (1,0) to (0,0), i.e., 1 =0+ 1.

Continue in ComputeShortest Path by popping (0, 1), which is tied with
(1,0) for the minimum node in the open list. Here, UpdateVertex is called
on all of the predecessors of the popped node. When UpdateV ertex is called

START
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START

g« g« g« g« g« g« g« g @ g« g«
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g« g« g« g« g B g« g« g« g« g«
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=0 l 4,
gl g« g g1 g g @
Y rhs: 1 rhs: @ | rhs: o Y orhs 1 rhs: @ | rhs: @
t +
3 g:Ofﬁg:oo g w g: 3 g:Ofﬁg:oo g o g ®
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F1GURE H.35. (Left) Pop minimum node off of list but do
not expand any neighbors on open list. (Right) Pop mini-
mum node off of open list and put inconsistent neighboring
nodes on the open list.

on each predecessor node, the rhs value of each predecessor is updated by
examining the g-values of each of the predecessor’s successors in the graph.
Since, (0, 1) is over-consistent, it is made consistent and all predecessors of
(0,1) have their rhs values updated via UpdateVertex. Two of its prede-
cessors become inconsistent and are put on the open list. Again, the rhs
values of the predecessors (0,0) and (1,1) did not change, and as such, did
not become inconsistent and are not put on the open list. The rhs value of
(1,0) did not also did not change but was already inconsistent and on the
open list. See figure H.35. Now, (1,0) is expanded but no predecessors of
(1,0) are put on the open list because they remained consistent after calling
UpdateV ertex.

This Dijkstra-like search continues until the start node is effectively ex-
panded and made consistent. In figure H.36, (3,1) is popped and expanded,
and all of its predecessors, which become inconsistent, are put on the open
list. Note that the start was already on the open list. At this point, the start
has the lowest key value, so is popped off the open list and made consistent.
In this case, none of the predecessors of the start become inconsistent, so are
not put on the open list, although some were already on the open list. At
this point, since the start node is consistent and the top key on the open list
is not less than the key of the start node, an optimal path exists. This al-
lows the ComputeShortest Path loop to terminate. Finally, note that some
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F1GURE H.36. (Left) Pop minimum node off of open list
and put inconsistent neighboring nodes on the open list.
(Right) Pop start off of the open list, make it consistent,
but no nodes are put on the open list.

nodes remain on the open list and for examples with larger graphs, some
nodes may not have been considered at all.

The robot then follows the negated gradient of ¢ from the start to the
goal until the robot detects an obstacle at (2,2). See figure H.37. The
algorithm dictates that for all directed edges (u,v) with changed edge costs,
UpdateVertex(u) is called. Since the edges are directed and in this example
all neighboring cells u and v have two edges, one from u to v and visa versa,
(2,2) has 16 affected edges. See figure H.38.

Let’s consider the outgoing and incoming edges to (2,2) separately. For
each of the outgoing edges, UpdateVertexr is called on (2,2). First, the
outgoing edge to (2, 3) is called. Since the edge cost is now infinite, the rhs
value of (2,2) is raised to infinity making it inconsistent and hence (2,2) is
put on the open list. Now, when UpdateV ertex is called for the rest of the
outgoing edges of (2, 2), nothing happens because (2, 2) remains inconsistent.

Now, consider the incoming edges to (2,2). One of the predecessors of
the incoming edge to (2,2) is (3, 3), so UpdateVertex is called on (3,3). The
minimum possible rhs value of (3,3) is still 4.8, but this value is based on
the g value of (2,3), not (2,2). The node (3,3) is still consistent, so it is
not put on the open list. Another incoming edge to (2,2) comes from (3, 2),
so UpdateVertex is called on this node. Since the transition cost to (2,2)
increased, the minimum possible rhs value of (3,2) is now 5.2, computed
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Ficure H.37. (Left) Follow optimal path via gradient de-
scent of g. (Right) The robot discovers that (2,2) is an
obstacle.
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F1GURE H.38. (Left) Outgoing edges to (2,2). (Right) In-
coming edges to (2,2).

based on the g value of (2,3) where 5.2 = 3.8 4 1.4. See figure H.39.

Another incoming edge to (2,2) comes from (3,1). The minimum pos-
sible rhs value of (3,1) is now 5.4, computed based on the g value of (3,2).
Again, note that the rhs value of a node is always computed using the g,
not a rhs, values of its successors. The remaining five nodes — (1, 1), (1,2),
(1,3), (2,3) and (2,1) — remain consistent and hence are not put on the
open list. See figure H.40.
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FIGURE H.40. Incoming edges to (2,2) (Left) Node (3,

Note that the processing order of (3,2

1) is
considered. (Right) The remaining nodes are considered

) versus (3,1) does not matter

because when (3,2) is processed, its rhs-value, not its g-value, is updated.
Then, when (3,1) is updated, its rhs-value is updated and is based on the
g-value of (3,2), which has not changed, and not its rhs value. As such, we

will get the same effect whether we process (3,

2) before (3,1) or vice versa.

Now, D* Lite goes back to CompteShortestPath until a new optimal
path is found. Note that the current robot position is inconsistent and does
not have the smallest key value in the open list. This indicates an optimal

START
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F1GURE H.41. (Left) Node (2,2) is considered. (Right)
Node (3,2) is considered.

path, based on all available information, has not been determined. The node
with the minimum key is (2,2). It is under-consistent, so its g value is set
to infinity and UpdateVertex is called on all of its predecessors. This does
not make any of the predecessors inconsistent, so none are put on the open
list. See figure H.41.

Next, (3,2) is popped and it is under-consistent, so its g is set to infinity.
Next, its predecessors are updated: (4,2) becomes inconsistent, (3,1) is
updated but remains inconsistent, (4,1) remains inconsistent but its rhs
value does not change and is now computed from the g value of (3,1). Also,
(3,2) is updated, remains inconsistent and is put back on the open list. See
figure H.42.

Still in the ComputeShortestPath procedure, (3,1) is popped off the
open list and since it is under-consistent, its ¢ value is made infinite and its
predecessors are updated: (4, 1) is updated and remains inconsistent, while
(3,0) and (4,0) are updated but are now consistent since both ¢g and rhs
are infinite. See figure H.43.

Also, since (3,1) is under-consistent, ComputeShortest path calls
UpdateVertexr on (3,1), which results in putting (3,1) back on the open
list since it remains inconsistent. Now, (3,2) has the smallest key value, so
it is popped off of the open list and since it is over-consistent, its g value is
set to its rhs value. See figure H.44. When its predecessors are updated,
(3,1) is modified but still remains inconsistent, so it stays on the open list.
See figure H.45 (left).

START
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Ficure H.42. Expand (3,2) and update its predecessors
and it.
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FIiGUurRE H.43.
predecessor nodes of (3,1) are updated.

(Left) Node (3,1) is popped.

(Right) The

Once again, the node corresponding to the robots current position is
consistent and the top key on the open list is not less than the key of
Therefore, a new optimal path has been found and
ComputeShortest Path breaks out of its loop. Once again, the optimal
path is determined by following the gradient of g. See figure H.45.

current position.

START

START
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g48  g= g3 g34 | 238 | gd48 | g
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3 4 0 1 2 3 4
Ficure H.44. (Left) Node (3,1) remains on the open list
(Right) Node (3,2) is expanded.
23 234 | 238 | g:48 g1 @ g o
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2| &0 g1 g ® g: @ 2 g- o
8| rhs: 0 | ths: 1 rhs: © | rhs: o g rhs: @
0 1 2 3 4 4
Ficure H.45. (Left) Update the predecessors of (3,2)

(Right) A new optimal path has been found.

H.5 A Comment on Reverse Searching

The search starts at the goal, and works backward, for good reason. After
the initial search, the back pointers form a search tree which is rooted at the
goal. Bearing in mind that the robot detects changes in edge costs near its
current position, one could easily see that if the root of the search tree were
the start node, then the search tree would have be drastically recomputed.
With the goal node at the root of the tree, when an edge cost changes,

START

START
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only a subtree that contains the current robot position is repaired where
part of that subtree will be redirected to nodes in a neighboring subtree.
In fact, in general, the entire subtree is not repaired; the repairing process
terminates when an optimal path from the current robot position to the goal
is determined.

A change in the environment is just one reason why a robot may need
to replan its path. Another has to do with the stochastic nature of the
robot’s motion. For example, error in control or unforeseen slippage may
cause the robot to fall off its intended path. The benefit of performing the
reverse search is that for small perturbations, an optimal path to the goal for
nearby nodes was already computed during the initial Dijkstra-like search.
In fact, one can determine the best action for all nodes in the graph, not
just the ones along the shortest path.

A mapping from nodes to actions is called a universal plan, or policy.
Techniques for finding optimal policies are known as universal planners and
can be computationally more involved than the shortest path techniques
surveyed here. One simple way to attain a universal plan to a goal is to
run Dijkstra’s algorithm backward (as in D*): After completion, we know
for each node in the graph the length of an optimal path to the goal, along
with the appropriate action. Generalizations of this approach are commonly
used in stochastic domains, where the outcome of actions is modeled by a
probability distribution over nodes in the graph.
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Appendix I

Statistics Primer

e On Pg 548, the A should be a N. So
Pr(Ey N Ey) = Pr(E;) - Pr(Es?)
should read
Pr(Ey N Ey) = Pr(E;) - Pr(Es?)

e On pg 549, cumulative is misspelled, twice.
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Appendix J

Linear Systems and Control

e The dot over z(k+ 1) should not be there in eq (J.10). So the &(k+1)
should read z(k + 1).
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