Coordinate Frames and Transforms

1 Specifiying Position and Orientation

e We need to describe in a compact way the position of the robot. In 2 dimensions (planar mobile robot),
there are 3 degrees of freedom (DOF): X, Y position and 1 angular orientation parameter 6

e In 3 dimensions there are 6 DOF: X, Y, Z position and 3 angular orientation parameters specifying orien-
tation of the gripper in space. There are a number of ways to specify these angles which we will discuss
later.

e In 2-D, we can specify both position and orientation using a translation vector (2x1 vector) and a rotation
matrix (2x2) which encodes the orientation information.

2 2D Rotation Matrix

e Orthonormal matrix: columns are orthogonal basis vectors of unit length.
e Row vectors are also orthogonal unit vectors
e Determinant = 1 (Right handed system) -1(Left handed)

e Columns establish axes of new coordinate system with respect to previous frame

cosd —sind
ROT(0) = lsin@ cosf]

EXAMPLE:

ROT(90) = [(1] _01] ROT(45) = [; _771

Suppose we have 2 coordinate systems, A and B that differ by a rotation. If we have the coordinates of a point
in coordinate system B, B P, we can find the equivalent set of coordinates in coordinate system A by using the
rotation matrix to transform the point from one system to the other:

. . . 1.
The inverse rotation matrix (“Rp) " is just the transpose of the original rotation matrix:

(“Rp) " = (ARB)T = BRy

You can check this out by multiplying a 2D rotation matrix by its transpose which yields the identity matrix.

1

by I
A R R &
v T
b8 . .
hY -
‘N ,"’ : y
4 7 ; sin 6
5 R :
b ‘,"
. b
% e lq
| =TD —
OD': Ol :
= o
| |
cosf

Figure 2.2: Coordinate frame o;x1yq is oriented at an angle # with respect
to opTpYo.

02_02

2D Rotation Matrix

Y b
- X_b

—— P =(2,0)

ap =(1.4,1.4)
0= 45:
>
X_a
ap =aRb bp
aR = cosO -sin@ | _ 7 -7

b™ | sing coso| ~ | .7 .7

Going left to right, rotations are done in the new or local frame established by the previous rotations. As we
go right to left, the transformations are done in global coordianates.

3 Including Translations: Homogeneous Coordinates

e When we want to establish a relationship between two 2D coordinate systems (we refer to these as coordi-
nate frames), we need to represent this as a translation from one frame’s origin to the new frames origin,
followed by a rotation of the axes from the old frame to the new frame.

e Transforming a 2-D point with a 2x2 matrix allows for scaling, shearing and rotation, but not translation.

e However we can use a method known as homogeneous coordinates to embed both a translation and
rotation into one 3x3 matrix. You can think of this as embedding our 2D space in a 3D space.

e In 2D, By using a 3x3 matrix, we can add translation to the transformation. Since we need to apply 3x3
matrices to 3-D vectors, we add an arbitrary scaling factor (typically with value 1) to the 2-D coordinates
of a point to make it a 1x3 vector. You can think of the 2-D point as the projection into 2-D of an arbitrarily
scaled 3-D point.

e In 3D, by using a 4x4 matrix, we can add translation to the transformation. Since we need to apply 4x4
matrices to 4-D vectors, we add an arbitrary scaling factor (typically with value 1) to the 3-D coordinates
of a point. You can think of the 3-D point as the projection into 3-D of a 4-D point.

e Homogeneous coordinates allow us to embed a lower dimensional space in a higher dimensional space.
So a point in 2D space [P, Py}T can be represented by a 3D point [P, Py, 1" where the third coordinate
is an arbitrary scaling factor which we can also choose to be 1.

‘We can define a 3x3 transform from coordinate frame A to coordinate frame B as:

cos —sinf P,
ATB = sinf cos P,
0 0 1

Note that the first and second columns of the transform matrix specify the coordinates of the X and Y axes
of the new coordinate frame. The third column is the origin of the new coordinate frame with respect to the
previous frame. So in the transform above, the new X axis is pointing in direction (cos#, sinf)), and the new
origin is at location (P, P,).

Homogeneous transforms contain BOTH rotation and translation information. The upperleft 2x2 matrix is
the rotation matrix and the 2x1 third column vector is the translation. It is important to remember that trans-
lation is done first, then rotation when using a transform like this that embeds both rotation and translation.

Rot(90)Tr(5,0)

X_rok

Y_robotl
ﬁ

1

+

Rot(-90)Tr(5,0)

Rot(-90)Tr(3,0)

B P ——

world

Y_robot2

=) X_robot2

Y world
<
|
l :
O
o]
> @
3
O
@]
&
Y_robot
» X_robot ’
— X_world

robotl

Robot Coordinate Frames and Transforms:

robot2

robot2

T

robot3

world

T

robot3

Robot rotates 90, moves forward 5, rotates -90, moves forward 5, rotates -90, moves forward 3

o
o

(RN
OO -
&

o
=

oK

o o+
1

= W O

o

o K
o o*r
=N

Y robot
» X ro

:FI

Rot(90)Tr(5,0) Rot(-90)Tr(3,0)

1
1
i |
i H P_world(5,2)
= !
i v
Y world I 01
- ! world
: I-< b = '1 O
- robot
| 3 0 0
1 —
1 X
1 I
(@]
g
Y _robot
lp X robot >
—) X_worla

Robot Coordinate Frames and Transforms: local coordinates, left to right
Robot Rot(Z,90), Trans(X,5), Rot(Z,-90), Trans(X,5), Rot(Z,-90), Trans(X,3)

m N

$ Robot Coordinate Frames and Transforms: Global Coordinates right to left

Robot Rot(Z,90), Trans(X,5), Rot(Z,-90), Trans(X,5), Rot(Z,-90), Trans(X,3)

Y world

P_world(3,0)

Trans(X,3) T /
--------------------- > >

Y world t Robot Coordinate Frames and Transforms: Global Coordinates right to left
Robot Rot(Z,90), Trans(X,5), Rot(Z,-90), Trans(X,5), Rot(Z,-90), Trans(X,3)

P_world(3,0)

X_world

.

Rot(z,-90) .

P_world(0,-3) g

4 Robot Coordinate Frames and Transforms: Global Coordinates right to left

Y world
Robot Rot(Z,90), Trans(X,5), Rot(Z,-90), Trans(X,5), Rot(Z,-90), Trans(X,3)
>
X_world
P_world(0,-3) P_world(5, -3)
\ Trans(X,5) /
Iﬂ ---------------------- -> Iﬂ

\4

Y world

4 Robot Coordinate Frames and Transforms: Global Coordinates right to left
Robot Rot(Z,90), Trans(X,5), Rot(Z,-90), Trans(X,5), Rot(Z,-90), Trans(X,3)

P_world(-3,-5)

X_world

P_world(5, -3)

4 Robot Coordinate Frames and Transforms: Global Coordinates right to left

Y world
Robot Rot(Z,90), Trans(X,5), Rot(Z,-90), Trans(X,5), Rot(Z,-90), Trans(X,3)

X_world

P_world(-3,-5) /

]
\ Trans(X,5) P world(2, -5)

Y world

4 Robot Coordinate Frames and Transforms: Global Coordinates right to left
Robot Rot(Z,90), Trans(X,5), Rot(Z,-90), Trans(X,5), Rot(Z,-90), Trans(X,3)

-7 \ P_world(5,2)

& &
\4

\
\ > X_world
\ Rot(Z,90)

Trans(X,5) "

<«———— P _world(2, -5)

Rot(90)Tr(5,0)

X_rok

Y_robotl
ﬁ

1

+

Rot(-90)Tr(5,0)

Rot(-90)Tr(3,0)

B P ——

world

Y_robot2

=) X_robot2

Y world
<
|
l :
O
o]
> @
3
O
@]
&
Y_robot
» X_robot ’
— X_world

robotl

Robot Coordinate Frames and Transforms:

robot2

robot2

T

robot3

world

T

robot3

Robot rotates 90, moves forward 5, rotates -90, moves forward 5, rotates -90, moves forward 3

o
o

(RN
OO -
&

o
=

oK

o o+
1

= W O

o

o K
o o*r
=N

robot cos(90-servo) —sin(90-servo) 4

T = sin(90-servo) cos(90-servo) 0O
sonar 0 0 1
sonar
P =(3,0) cos(90-45) —sin(90-45) 4
= sin(90-45) cos(90-45) O
", 0 o 1
Servo=45° =y . 7 -7 4
4 & = 7 70
0 01
sonar_origin=(4,0)
If we find an obstacle in the robot robot sonar
sonar coordinate system, we can P = T P
find its coordinates in the >onar
robot system. 7-74 3
=17 70 0
0 01 | 1
_ robot_origin=(0,0)
6.1 |
= 2.1
1

Mapping sensor values to locations in space -

A 2Link Planar Revolute Manipulator

P= L]_COSG]_ + chOS(el + 62), L]_SI nel + Lzsin(el + 92)

ill|—2C(5'5(91 +6)

L,sin(8y)

Where is the endpoint of the 2 link Manipulator?
Can be found by basic trigonometry....or....

We can use a series of 2D rotations and translations:

1. Rotate Link 1 about Z-axis by theta 1 degrees
2. Translate distance L1 along rotated X-axis
3. Rotate Link 2 about Z-axis by theta_2 degrees
4. Translate distance L2 along rotated X-axis

allen
Typewritten Text

allen
Typewritten Text
Where is the endpoint of the 2 link Manipulator?
Can be found by basic trigonometry....or....
We can use a series of 2D rotations and translations:
1. Rotate Link 1 about Z-axis by theta_1 degrees
2. Translate distance L1 along rotated X-axis
3. Rotate Link 2 about Z-axis by theta_2 degrees
4. Translate distance L2 along rotated X-axis

ROT(Z9,) TRANS(X,Ly) ROT(Z8y) TRANS(X,L,)
OO goooooo oo ooooogoog

cosB; -sinf; 1 0 L, cosB, -sino, 1 0 L,
sinB;, cosH, 0O 1 O sinB, cosh, 0O 1 ol =
0 0 0 0 1 0 0 0 0 1

cosf; -sinb, cosf, -sinb, L, 0 |_2_

sinB, cosh,; sinB, cosh, Ollo 1 ol%

0 0 0 0 1110 0 1

cosf, cosB, —sind;sinB, —sinB,cosH, —sinB,cos0, L,cos0,/|1 0 L,
SinB, cosH, +sinB,cosH, —sinB,sinB, +cosH,cosB, L,sin6,|[0 1 0|~
0 0 1 0O 0 1

cosf, cosB, —sinB,sinB, —sinb,cosb, —sinB,cosH, L, (cosH,cosb, —sinB, sinB,) +L,cos,
sinB, cosB, +sinB,cosB, —sinB,sin6, +cosH,cosB, L, (sin6,cosB, +sinB,cosB,) +L,sin6, | =
0 0 1

cos(0,+86,) -sin(0,+86,) L,cos(6,+0,) +L,cosH,;
sin(6, +6,) cos(6, +6,) L,sin(6,+86,) +L,sinB,
0 0 1

Planar 2-Link Manipulator Inverse Kinematics
Y 4

V2 V2
= | XY= + Y=
P (5 1 5
|—/—| Use Law of Cosines:

\ 2_p24,p2-1,1 _ -
RE=PSHPS=_40 b 2= B2 13(180 92)

\ 2+\/§=2+2C®2;C‘@2:g;®2=i45°
\ To find 61.:

,> (a+6,= Atar 2(Py, Px)

0) 6 = Atan2(Py, Px)-a
a=Atare(L,S6,,L,+LCO,)
IF 92 =+45°, 91= +45°

IF 6?2 =-45, 6’1=+90°

18C-02 |-~

X

>

=
A

Given endpoint position P, find theta_1, theta 2

allen
Typewritten Text
Given endpoint position P, find theta_1, theta_2

allen
Typewritten Text

4 Extensions to 3D

Similar to what we did in 2D, we can also specify rotations and translations in 3D using homogeneous coordi-
nates. We can represent a point [x, %, 2] in 3D as a 4D homogenous vector|z, y, z, 1]

To specify rotation, we use a 3D rotation matrix. Since we can rotate about any of the three axes (X.,Y, or
Z) we can specify each canonical robtation matrix:

cos —sinf 0

ROT(Z,0) = | sinf cosf 0
0 0 1
1 0 0

ROT(X,0) = | 0 cos® —sind

0 sinf cosO

cos@ 0 sind
ROT(Y,0) = 0 1 0
—sinf 0 cosf

Finally we can add translation in the 4th colum of the transform matrix to define a transform from coordinate
system ¢ to ¢ + 1:

Ny Ox Qg Pz
Ny Oy Gy Py
Ny 0z Az P2

0 0 0 1

‘Tix1 =

The upper left 3x3 matrix is the rtoation and the last column is the translatio, and .n, 0, a are the unit vectors
of the i + 1 frame’s X, Y, Z axes relative to frame 7, and frame ¢ + 1’s origin is at [p, py,pZ]T relative to frame
i.

We can also define an inverse transform. To calculate the inverse of 4x4 homogeneous transform, we simply
take the transpose of the 3x3 rotation matirx, and use the negated dot products of the original translation against
each column of the original transform:

Ny Oy Qg Po
Ny Oy Ay Py

T —
Ny 0z A Pz
0O 0 0 1
Ng Ny Nz —D
-1 0z 0y 0, —P-0O

Z3
|
l y
I 3 4'X3
b |
| d
//15 |
- !
(X5 =
24
A) e 7/
Ya //
P Y X4 //
z
a P e 2
/ 7 X2
/ /
s //
s Y2
/
7 y z, X
' 4 X JVyl
o
Yo

Figure 1: Exercise: try to write transforms for frames 07, 975,375, and °Ty. Also prove that 07y =07y 173 27y

TRANSFORM GRAPHS/FRAME EQUATIONS

Example 2: A robot work station has been set up with a TV camera (see figure below). The camera
can see the origin of the base coordinate frame where a 6-jointed robot is attached. It can also see the
center of an object (assumed to be a cube)to be manipulated by the robot. If a local coordinate system
has been established at the center of the cube, this object as seen by the camera can be represented
by a homogenous transform matrix ““"7T,,;. The origin of the base coordinate system as seen by the
camera can also be expressed by a homogeneous transform matrix ““"7j..

01 0 1 1 0 0 -10
cam 10 0 10| g 0 -1 0 20
obj 00 -1 9 base 0 0 -1 10
00 0 1 00 0 1

Find the transform ***°T,,;, and the positon of the center of the cube with respect to the base
coordinate frame.

Figure 1: Robot work station

cam = camease baseTobj
(camease) -1 camTobj — baseTobj
1 0 0 10 01 0 1 0O 1 0 11
0 -1 0 20 1 0 0 10 _ -1 0 0 10 _ baseq
00 -1 10|00 -1 9 “lo o011 |~ ob
0o 0 0 1 00 0 1 0 00 1

The position of the center of the cube with respect to the base coordinate system is (11,10, 1),
which is the translation vector of the origin in the transform basen obj-

1

