
Computer Vision for Robotics

Thanks to Brad Nelson
For use of the slides

28

Image Processing Algorithm
Acquisition

Prefiltering

Recursive/
Adaptive
Filtering

Image
Segmentation

Geometric
Operations

Feature
Extraction

Image
Classification

Image
Evaluation

Special Purpose Image
Processing Hardware

General Purpose CPU

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

Image Intensities & Data reduction

Monochrome image  matrix of intensity values

 Typical sizes:

 320 x 240 (QVGA)

 640 x 480 (VGA)

 1280 x 720 (HD)

 Intensities sampled to 256 grey levels  8 bits

 Images capture a lot of information

Reduce the amount of input data:
preserving useful info & discarding redundant info

Lec. 6
2

Lecture 6 - Perception - Vision

Useful
cues

Heavy
Processing

allen
Typewritten Text
Color Images: 3 channels (e.g. RGB)
8 bits per channel = 24 bits total

3

Commonly Used Algorithms

• Statistical

Operations

• Segmentation and

Edge Detection

• Finding Shapes

• Frequency Domain

Techniques

• Spatial Operations

and

Transformations

• Morphological

Operations

• Pattern

Recognition

• Labeling

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

Spatial filters

 Sxy : neighborhood of pixels around the point (x,y) in an image I

 Spatial filtering operates on Sxy to generate a new value for the corresponding pixel at

output image J

 For example, an averaging filter is:

Lecture 6 - Perception - Vision
Lec. 6

8

)12)(12(

),(

),(
),(







NM

crI

yxJ
xyScr

)(IFJ 

Sxy
2M+1

2N+1

),(yx),(yx

Image I Filtered Image

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

Constructing Filter from a Continuous Fn

 Common practice for image smoothing: use a Gaussian

 Near-by pixels have a bigger influence on the averaged value rather than
more distant ones

Lecture 6 - Perception - Vision
Lec. 6

14

2

2

2

)(

2

1
)(










x

exG



 0

: controls the amount of smoothing99%

Normalize filter so that values always add up to 1

Figure 1: Gaussian filter. Left: 1-D Gaussian with mean=0 andσ = 1. Middle: 2-D Gaussian with
mean=0 andσ = 1. Right: 5x5 convolution mask for Gaussian smoothing with mean=0 andσ = 1

• Mean Averaging Filter: This filter just averages the pixel values in a neighborhood around a

pixel. Neighborhood sizes are variable, depending upon the spatial extent of the filter needed.

Common sizes are 3x3, 5x5, 7x7 etc. A 3x3 mean filter uses the following set of local weights:

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

• Gaussian Smoothing Filter: Another smoothing filter is the Gaussian filter, which uses a neigh-
borhood that approximates the fall-off of a Gaussian centered on the pixel of interest. This filter
has larger weights for the central pixels and nearest neighbors rather than the mean filter which
treats all pixels in the neighborhood with equal weights. See figure 1 above.

Figure 2: Median filter. Noisy pixel in center (150) is removed bymedian of its neighborhood.

• Median Filter: This filter is used to remove outlier noise values in a region. It is based upon
order statistics, and is a non-linear filter. In this filter, pixels in a neighborhood are sorted by
value, and themedian value of the pixel’s in the neighborhood is taken to be the filter’s response.
If the pixel being processed is an outlier, it will be replaced by the median value. This filter is
useful for “shot” or “salt-and-pepper” noise. See figure 2.

3

3.2 Enhancement

Often, most of the image values will be centered within a limited range of the full 256 gray levels of
an image.Contrast stretching performs a linear remapping from the gray level range(Ilow, Ihigh) to
(0, 255), effectively “stretching” the contrast in the image. See figure 3. Before the stretching can be
performed it is necessary to specify the upper and lower pixel value limits over which the image is to
be normalized. Often these limits will just be the minimum and maximum pixel values in the image.
For example for 8-bit graylevel images the lower and upper limits might be 0 and 255. Call the lower
and the upper limits a and b respectively.

The simplest sort of normalization then scans the image to find the lowest and highest pixel values
currently present in the image. Call these c and d. Then each pixel P is scaled using the following
function:Pout = (Pin − c)(b−a

d−c
) + a

Figure 3: Contrast stretching. Original image and histogram and stretched image and histogram.

Histogram equalization is used to change the response over the entire range of gray values. Of-
ten, it is used to create auniform histogram that has all gray values used at the same frequency. This
may or may not be useful: large homogeneous regions can get remapped into many gray levels, in-
troducing texture(see figure 4). If an image hasR rows andC columns, and there areN gray levels
z1, z2, z3, . . . , zn total (e.g. 256) then uniform histogram equalization requireseach gray value to occur
q = R×C

N
times. Using the original histogram, we defineHin[i] as the number of pixels in the original

image having gray levelzi. The first gray level thresholdt1 is found by advancingi in the input image
histogram untilq pixels are used. All input image pixels with gray level< t1 will be mapped to gray
level z1 in the output image:

t1−1
∑

i=1

Hin[i] ≤ q <
t1

∑

i=1

Hin[i]

This means thatt1 is the smallest gray level such that the original histogram contains no more
thatnq pixels with lower gray values. Thekth thresholdtk is defined by continuing the iteration:

tk−1
∑

i=1

Hin[i] ≤ k · q <
tk

∑

i=1

Hin[i]

4

Figure 4: Histogram Equalization. Original image and histogram and equalized image and histogram.
See http://www.dai.ed.ac.uk/HIPR2/histeq.htm.

3.3 Edge Detection

Find the gradients at each pixel in the image using a gradient operator. Common edge detection masks
look for a derivative of the image intensity values in a certain direction. Derivatives are found by
differencing the intensity values. The simplest edge detector masks are:

V ericalOrientedEdge :
[

−1 1
]

HorizontalOrientedEdge :

[

−1
1

]

Each edge detector esentially generates a gradient in theX andY directions,Gx, Gy. We can
calculate the gradient magnitude of the filter’s response as:

‖G‖ =
√

G2
x + G2

y or ‖|G‖| = |Gx| + |Gy|

and the edge’s orientation (direction) will beθ = atan2(Gy, Gx).

More sophisticated masks include the Sobel Operators:

V ertical :







−1 0 1
−2 0 2
−1 0 1





 Horizontal :







−1 −2 −1
0 0 0
1 2 1







5

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

Edge = intensity discontinuity in one direction

 Edges correspond to sharp changes of intensity

 Change is measured by 1st order derivative in 1D

 Big intensity change  magnitude of derivative is large

 Or 2nd order derivative is zero.

Lecture 6 - Perception - Vision
Lec. 6

29

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

Edge Detection

 Ultimate goal of edge detection: an idealized line drawing.

 Edge contours in the image correspond to important scene contours.

Lecture 6 - Perception - Vision
Lec. 6

28

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

What is USEFUL, What is REDUNDANT ?
Lec. 6

3

Lecture 6 - Perception - Vision

218 218 218 218 218 218 218 218 218 218 218
218 218 218 218 218 218 218 218 218 218 218
218 218 218 218 218 218 218 218 218 218 218
218 218 218 218 218 218 218 218 218 218 218
218 218 218 218 218 218 218 218 218 218 218
218 218 218 218 218 218 218 218 218 218 218
218 218 218 218 218 218 218 218 218 218 218
218 218 218 218 218 218 218 218 218 218 218
218 218 218 218 218 218 218 218 218 218 218
218 218 218 218 218 218 218 218 218 218 218
218 218 218 218 218 218 218 218 218 218 218

Image from http://www.flickr.com/photos/mukluk/241256203/

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

What is USEFUL, What is REDUNDANT ?
Lec. 6

4

Lecture 6 - Perception - Vision

208 208 208 208 208 208 208 208 208 208 208
208 208 208 208 208 208 208 208 208 208 208
208 208 208 208 208 208 208 208 208 208 208
208 208 208 208 208 208 208 208 208 208 208
208 208 208 208 208 208 208 208 208 208 208
208 207 208 208 208 208 208 208 208 208 208

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Image from http://www.flickr.com/photos/mukluk/241256203/

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

What is USEFUL, What is REDUNDANT ?
Lec. 6

5

Lecture 6 - Perception - Vision

229 229 229 229 229 229 229 229 229 229 229
229 229 229 229 229 229 229 229 229 229 229
229 229 229 229 229 229 229 229 229 229 229
229 229 229 229 229 229 229 229 229 229 229
229 229 229 229 229 230 229 229 229 229 229

5 17 31 7 1 0 229 229 229 229 229
0 0 1 0 0 0 229 229 229 229 229
0 0 0 0 0 0 229 229 229 229 229
0 0 0 0 1 4 229 229 229 229 229
0 0 0 0 0 11 229 229 229 229 229
0 0 0 0 0 5 229 229 229 229 229

Image from http://www.flickr.com/photos/mukluk/241256203/

10

Edge Detection

• Sobel

• Roberts

• Prewitt

• Laplacian of Gaussian (LOG)

-1 -2 -1
0 0 0
1 2 1

-1 -1 -1
0 0 0
1 1 1

-1 0 1
-2 0 2
-1 0 1

-1 0 1
-1 0 1
-1 0 1

0 1
-1 0

1 0
0 -1

x y

9

Edge Detection

• 1-D edge detection

f g f*g

edge operator intensity edge edge

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

Taking derivatives with Correlation

 Derivative of an image: quantifies how quickly intensities change
(along the direction of the derivative)

 Approximate a derivative operator:

Lecture 6 - Perception - Vision
Lec. 6

15

:F

2

)1()1(
)(




xIxI
xJ



× × ×

-1/2 0 1/2

:I)1(xI)1(xI)(xI

:J)(xJ

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

1D Edge detection

 Image intensity shows an obvious change

 Where is the edge?  image noise cannot be ignored

Lecture 6 - Perception - Vision
Lec. 6

30

)(xI

x

x

)(xI
dx

d

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

 Where is the edge?

Lecture 6 - Perception - Vision
Lec. 6

31

)(xI

)(xG

)()()(xGxIxs 

 )()(xs
dx

d
xs 

Solution: smooth first

At the extrema of)(xs

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

Derivative theorem of convolution

 .

 This saves us one operation:

Lecture 6 - Perception - Vision
Lec. 6

32

 )()()()()(xIxGxIxG
dx

d
xs 



)(xI

)()(xG
dx

d
xG  

)()()(xIxGxs 


Edges occur at maxima/minima of)(xs

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

Zero-crossings

 Locations of Maxima/minima in are equivalent to zero-
crossings in

Lecture 6 - Perception - Vision
Lec. 6

33

)(xI

)()(
2

2

xG
dx

d
xG  

)()()(xIxGxs 


)(xs 
)(xs

: Laplacian of Gaussian operator

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

2D Edge detection

 Find gradient of smoothed image in both directions

 Discard pixels with below a certain below a certain threshold

 Non-maximal suppression: identify local maxima of along
the directions

Lecture 6 - Perception - Vision
Lec. 6

34

 

 

  





































































IyGxG

IyGxG

I
y

G

I
x

G

y

IG
x

IG

IGS
)()(

)()(















)()(),(yGxGyxG  

Usually use a separable
filter such that:

S
S

S

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

2D Edge detection: Example

: original image (Lena image)

Lecture 6 - Perception - Vision
Lec. 6

35

I

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

Lecture 6 - Perception - Vision
Lec. 6

36 2D Edge detection: Example

: Edge strengthS

 IGS  

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

2D Edge detection: Example

Lecture 6 - Perception - Vision
Lec. 6

37

Thresholding S

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

2D Edge detection: Example

Thinning: non-maximal suppression

Lecture 6 - Perception - Vision
Lec. 6

38

23

Labeling

• Labeling parts and regions

14

Segmentation: Morphological Operations

• Erosion - Shrinking

• Dilation - Growing

Figure 5: Edge Detection on image. Edge color signifies edge magnitude (brighter == larger magni-
tude.

Middle Level Vision

Middle level vision tries to move beyond the pixel level to larger abstractions including shape and
geometry.

Region Labeling: Recursive Region Growing

Recursive region growing is a simple method. Starting from a binary image, it scans the image for
any foreground pixels (not black). For each foreground pixel, it labels that pixel with a unique la-
bel, “grows” the pixel by coloring any of its non-black 4-neighbors with this unique color label, and
pushing these pixels on a queue. The queue is then processed until empty. All 4-connected pixels in
the region will be labeled consistently. Recursive method can be slow however, and may need large
memory for recursive calls.

6

Recursive Region Grower

Do the following for every univisited SEED pixel…..

Input: Binary image – White(255) = foreground, Black(0) = background. Output: labeled regions

Choose a foreground SEED pixel (pixel whose value = White), I(c,r)

Enqueue(c,r), and mark (c,r) as Visited

Label = K # random color

While Queue !Empty do

(c,r) = Dequeue

Out_image(c,r) = K

if I(c-1,r) !Visited && I(c-1,r) == White # WEST neighbor pixel, hasn’t been Visited and is foreground pixel

enqueuer(c-1,r), mark (c-1,r) as Visited

if I(c+1,r) !Visited && I(c+1,r) == White # EAST neighbor pixel, hasn’t been Visited and is foreground pixel

enqueuer(c+1,r), mark (c+1,r) as Visited

if I(c,r-1) !Visited && I(c,r-1) == White # NORTH neighbor pixel, hasn’t been Visited and is foreground pixel

enqueuer(c,r-1), mark (c,r-1) as Visited

if I(c,r+1) !Visited && I(c,r+1) == White # SOUTH neighbor pixel, hasn’t been Visited and is foreground pixel

enqueuer(c,r+1), mark (c,r+1) as Visited

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Queue

2,2

Queue

2,3

Queue

2,4

Queue

3,4
2,5

Queue

2,5
3,5

Queue

3,5
2,6

Queue

2,6

Queue

1,6

Queue

1,7

Queue

empty

Recursive Region Grower - Seed Pixel is (2,2)

4.2 Region Labeling: Blob Coloring

This algorithm uses 2 passes. The first pass labels each pixel and the second pass merges the labels
into a consistent labeling.

Let the initial color,k = initcolor, and choose a colorincrement to change the color each time
a new blob is found. Scan the image from left to right and top to bottom. Assign colors to each
non-zero pixel in pass 1. In pass2, we merge the regions whose colors are equivalent. To maintain the
equivalence table between merged colors, we can use a standard disjoint set Union-Find data structure.

If I(xC) = 0 then continue
else begin

ifI(xU) = 1 andI(xL) = 0
then color(xC): = color (xU)

ifI(xL) = 1 andI(xU) = 0
then color(xC): = color (xL)

ifI(xL) = 1 andI(xU) = 1
then begin /* two colors are equivalent. */

color (xC): = color (xL)
color (xL) is equivalent to color(xU)
end

ifI(xL) = 0 andI(xU) = 0 /* new color */
then color(xC): = k; k: = k + color increment

end

X

X

X
L C

U

Figure 6: Image topology ofxu, xc, xl for region growing

7

Figure 7: Blob coloring. Left: original binary image. Middle: blob color assignment after first pass.
Right: Blob color assignment after merging colors.

Below are 3 ascii images, showing the original test pattern in figure 6, the first pass results, and
the final image after region labels are merged. The initial color=80 and the color increment is 50.

0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 1 0
0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0
0 1 0 1 1 1 0 1 0
0 1 0 0 0 0 0 1 0
0 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0
0 80 0 0 130 130 130 130 0
0 80 0 0 0 0 0 130 0
0 80 0 180 0 230 0 130 0
0 80 0 180 0 230 0 130 0
0 80 0 180 180 180 0 130 0
0 80 0 0 0 0 0 130 0
0 80 80 80 80 80 80 80 0

0 0 0 0 0 0 0 0 0
0 130 0 0 130 130 130 130 0
0 130 0 0 0 0 0 130 0
0 130 0 230 0 230 0 130 0
0 130 0 230 0 230 0 130 0
0 130 0 230 230 230 0 130 0
0 130 0 0 0 0 0 130 0
0 130 130 130 130 130 130 130 0

5 Simple Shape Matching

• Template Matching: Simple matching of masks (templates) that contain object’s image structure

• Object is represented as a region of pixels. Region is compared against all other positions in the
image.

• Measure is absolute value of difference between template pixels and image pixels - zero means
exact match. Find minimum response for template operator and this is best match

• Problems: Translation, Rotation, Scaling, Lighting changes between image and template

• Translation is handled by applying template everywhere in image

• Rotation handled by using a set of templates oriented every few degrees. Increases cost

8

21

Object Classification

• Object measures

– area
– perimeter
– length
– width
– shape analysis

• rectangularity
• circularity

25

Pattern Recognition

• Optical Character Recognition

P

Figure 7: Blob coloring. Left: original binary image. Middle: blob color assignment after first pass.
Right: Blob color assignment after merging colors.

Below are 3 ascii images, showing the original test pattern in figure 6, the first pass results, and
the final image after region labels are merged. The initial color=80 and the color increment is 50.

0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 1 0
0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0
0 1 0 1 1 1 0 1 0
0 1 0 0 0 0 0 1 0
0 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0
0 80 0 0 130 130 130 130 0
0 80 0 0 0 0 0 130 0
0 80 0 180 0 230 0 130 0
0 80 0 180 0 230 0 130 0
0 80 0 180 180 180 0 130 0
0 80 0 0 0 0 0 130 0
0 80 80 80 80 80 80 80 0

0 0 0 0 0 0 0 0 0
0 130 0 0 130 130 130 130 0
0 130 0 0 0 0 0 130 0
0 130 0 230 0 230 0 130 0
0 130 0 230 0 230 0 130 0
0 130 0 230 230 230 0 130 0
0 130 0 0 0 0 0 130 0
0 130 130 130 130 130 130 130 0

Simple Shape Matching

• Template Matching: Simple matching of masks (templates) that contain object’s image structure

• Object is represented as a region of pixels. Region is compared against all other positions in the
image.

• Measure is absolute value of difference between template pixels and image pixels - zero means
exact match. Find minimum response for template operator and this is best match

• Problems: Translation, Rotation, Scaling, Lighting changes between image and template

• Translation is handled by applying template everywhere in image

• Rotation handled by using a set of templates oriented every few degrees. Increases cost

8

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

Matching using Correlation

 Find locations in an image that are similar to a template

 Filter = template  test it against all image locations

 Similarity measure: Sum of Squared Differences (SSD)

Lecture 6 - Perception - Vision
Lec. 6

16

:J 26 37 21 50 54 1 50 65 59 16 42 17:J

        













Ni

Ni

Ni

Ni

N

Ni

Ni

Ni

ixIiFixIiFixIiF)()(2)()()()(
222

3 2 4 1 3 8 4 0 3 8 7 7:I

3 8 3

• Scaling is more difficult. Can scale templates but not easily. Not clear how many scales to use.

• Lighting changes can be alleviated by using normalized correlation. Use correlation operator
and scale template responses by average intensities of image and template.

• Method of Moments: Use statistical properties of object to match.

Continuous : Mij =
∫ ∫

xi yj f(x, y)dxdy ; Discrete : Mij =
∑ ∑

xi yj f(x, y)

• If we assumef(x, y) is a mass function that calculates object mass at each point of the object
x, y, then these are the moments of inertia from physics.

• If we further assumef(x, y) is binary valued (1= object present in image, 0= no object atx, y)
then we can use these moments as shape descriptors

• M00 is simply the area of the object in the image. Counts the pixels that contain the object.

• We can calculate thecentroid of the object. This is equivalent to the point where an object of
uniform mass balances. The mass is equally distributed in all directions.

Xc =
M10

M00
. Yc =

M01

M00

• By translating the object coordinates byXc, Yc, we can move the object to a known coordinate
system. These arecentral moments. Creates translational invariance in moment computation.

• Rotational Invariance can be achieved by finding princiapl axis of object. This is the axis of the
moment of least inertia. We can always align an object’s principal axis withX Y or Z axis.

• Scaling invariance is posible usingnormalized moments which scales by an area measure.

• Higher order moments can be used as unique shape descriptors for an object. Problem: simple
scalar measures like this are not robust.

5.1 Finding the Principal Axis

Assume a point set centered on the origin:(x − xc, y − yc), where the centroid of the points is(xc, yc). To find
the principal axis we want to find the rotation angle that will align the axis of minimum intertia with the X axis:

We rotate the points by−θ to align the dataset with thex axis:

ROT (Z,−θ)

[

cosθ sinθ

−sinθ cosθ

]

; ⇒

[

cosθ sinθ

−sinθ cosθ

] [

x

y

]

=

[

xcosθ − ysinθ

−xsinθ + ycosθ

]

9

x

y

x

y

x

y

θ

Figure 8: Left: Principal Axis of a 2D object whose centriod is at the origin. Right: rotated object so
principal axis is aligned with X axis.

So we can calculate the moments of order 2 for a rotated point set by:
∑ ∑

(−xsinθ + ycosθ)2

These are the moments of order 2 about the X axis for the rotated point set. The term(−xsinθ + ycosθ) is
the vertical distance from the X axis (i.e. the Y coordinate value) of the transformed point set.

Now, find the value ofθ that minimizes that measure. We do this by differentiating with respect toθ, and
setting the resulting measure equal to zero:

∑ ∑

2(−xsinθ + ycosθ)(−xcosθ − ysinθ) = 0

2
∑ ∑

(x2sinθcosθ + xysin2θ − xycos2θ − y2sinθcosθ) = 0

2sinθcosθ
∑ ∑

x2 + 2(sin2θ − cos2θ)
∑ ∑

xy − 2cosθsinθ
∑ ∑

y2 = 0

Using the definition of discrete momentsMij :

2sinθcosθM20 + 2(sin2θ − cos2θ)M11 − 2cosθsinθM02 = 0

whereMij refers toCentral Moments, moments where the centroid is translated to the origin.

Sincesin2θ = 2sinθcosθ andcos2θ = cos2θ − sin2θ, we can substitute to get:

sin2θM20 − 2cos2θM11 − sin2θM02 = 0

and
sin2θ

cos2θ
=

2M11

M20 − M02

The principal angle is:2θ = atan2(2M11,M20 − M02)

10

5.2 Example: Moments

Figure 9: Left: Image used in example below. Right: Idea of Principal angle computation: rotate blob
by −β so its coincident with X axis

From the image above, we have a region R denoted by values = 1. We can calculate the discrete moments
for the region as:

Mij =
∑ ∑

xi yj f(x, y)

and m00 = 9, m01 = 45, m10 = 36, m11 = 192, m02 = 255, m20 = 150.

We can createcentral moments by finding the centroid and translating the region so that the origin is the
centroid,(xc, yc) :

Area = m00 = 9 ; xc =
m10

m00
= 4 ; yc =

m01

m00
= 5

Finally, the principal angle for the image on the left is computed asβ = atan2(2M11 ,M20−M02

2 :

β =
atan2(24,−24)

2
=

135

2
= 67.5◦

11

Color Tracking

A Quick Overview

● Color Representations
● Choosing a Color to Track
● How to Find the Target

RGB vs HSV

● RGB is very sensitive to brightness
● HSV (Hue, Saturation, Value) is less

sensitive
● Color Space Visualizer: http://colorizer.org/

http://colorizer.org/

HSV Color Space
● Hue: expressed as a number from 0 to 179 when using OpenCV image operations

● Saturation: How "pure" the color is. The closer to 0, the more grey the color looks. Range 0-255

● Value: (or Brightness) works in conjunction with saturation and describes the brightness or intensity

of the color from 0 to 255.

● Color conversion: cv2.cvtColor(input_image, flag)

Where flag determines the type of conversion.
For BGR→Gray, flag is cv2.COLOR_BGR2GRAY
For BGR→HSV, flag is cv2.COLOR_BGR2HSV
Note:
For HSV, Hue range is [0,179], Saturation range is [0,255] and
Value range is [0,255]. You will have to experiment to find the right
settings for your lab.

Convert to HSV, Find HSV values
import cv2
import numpy as np

cap = cv2.VideoCapture(0)
while (1):

Take each frame
_, frame = cap.read()

Convert BGR to HSV
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

--
#print out the HSV values for color green

green = np.uint8([[[0,255,0]]])
hsv_green = cv2.cvtColor(green,cv2.COLOR_BGR2HSV)
print hsv_green
[[[60 255 255]]]

Use Morphology to “clean up” image

erode:
The value of the output pixel is the minimum value of all the pixels in the input
pixel's neighborhood
dilate:
The value of the output pixel is the
maximum value of all the pixels in the
input pixel's neighborhood

Tutorial: https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html

Connected-Component Labeling

(a.k.a. Blob Extraction)

Finding the Target-Pseudocode

def get_target(hsv_image):

#get pixels within threshold of target patch
masked_image = mask_image(hsv_image, h_thresh, s_thresh, v_thresh)

#morphologically erode and dilate the image
eroded_image = erosion_filter(masked_image)
cleaned_image = dilate_filter(erodeed_image)

#find the largest connected component (largest blob)
big_blob = get_largest_blob(cleaned_image)

Compute centroid and area of big_blob to move the robot forward, back, left,, right

centroid = get_centroid(big_blob)
area = get_area(big_blob)

return centroid, area

Example

● www.cs.columbia.edu/~allen/F19/NOTES/tracker_with_video_output_clean.py
● www.cs.columbia.edu/~allen/F19/NOTES/green_tracker_output.avi (video)

http://www.cs.columbia.edu/~allen/F18/NOTES/tracker_with_video_output_clean.py
http://www.cs.columbia.edu/~allen/F19/NOTES/tracker_with_video_output_clean.py
http://www.cs.columbia.edu/~allen/F19/NOTES/green_tracker_output.avi

	Untitled

