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 The three key questions in Mobile Robotics
 Where am I ?
 Where am I going ?
 How do I get there ?

 To answer these questions the robot has to
 have a model of the environment (given or autonomously built)
 perceive and analyze the environment
 find its position/situation within the environment 
 plan and execute the movement

Introduction | Lecture Overview 6

Autonomous mobile robot | the key questions

?
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Autonomous mobile robot | the see-think-act cycle
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 Wheel types and its constraints
 Rolling constraint
 no-sliding constraint (lateral)

 Motion control

Introduction | Lecture Overview 8

Motion Control | kinematics and motion control
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Autonomous mobile robot | the see-think-act cycle
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 Laser scanner
 time of flight

 Camers
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Perception | sensing
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 Keypoint Features
 features that are reasonably invariant to

rotation, scaling, viewpoint, illumination 
 FAST, SURF, SIFT, BRISK, …

 Filtering / Edge Detection

Introduction | Lecture Overview 11

Perception | information extraction
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Image from [Rosten et al., PAMI 2010]

 Keypoint matching
 BRISK example
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Probabilistic 3D SLAM
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Autonomous mobile robot | the see-think-act cycle
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a) Continuous map with 
single hypothesis probability distribution ݌ሺݔሻ

b) Continuous map with 
multiple hypotheses probability distribution ݌ሺݔሻ

c) Discretized metric map (grid ݇) with 
probability distribution ݌ሺ݇ሻ

d) Discretized topological map (nodes ݊) with 
probability distribution ݌ሺ݊ሻ
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 SEE: The robot queries its sensors
→  finds itself next to a pillar 

 ACT: Robot moves one meter forward
 motion estimated by wheel encoders
 accumulation of uncertainty

 SEE: The robot queries its sensors 
again →  finds itself next to a pillar 

 Belief update (information fusion)
Introduction | Lecture Overview 13
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 Particle Filter to reduce 
computational complexity

Introduction | Lecture Overview 25

Grid-Based SLAM (Simultaneous Localization and Mapping) 

Courtesy of Sebastian Thrun
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Autonomous mobile robot | the see-think-act cycle
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Cognition | Where am I going ? How do I get there ?

Goal
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 Grid Map of the Smithsonian’s National Museum 
of American History in Washington DC.

 Markov Localization
 Grid: ~ 400 x 320 = 128’000 points

Introduction | Lecture Overview 24

Discretizes Map | Grid-Based Metric Approach

Courtesy S. Thrun, W. Burgard
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 Global path planning
 Graph search

 Local path planning
 Local collision avoidance

Introduction | Lecture Overview 16

Cognition | Where am I going ? How do I get there ?
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Autonomous mobile robot | the see-think-act cycle
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Autonomous Mobile Robots | Some recent examples
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 Up to 17° tilt angle
 Up to 3.5 m/s

Introduction | Lecture Overview 20

Rezero | Wheeled locomotion with single point contact

Wheel design adopted from Kumagai & Ochiai,
Tohoku Gakuin Universtity, Japan

rezero
the ultimate ballbot

http://www.rezero.ethz.ch/

https://youtu.be/ACohrH64YKs
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 Paraswift - the vortex wall 
climbing robot

 Fast spinning impeller 
underneath the robot 
produces a strong vortex

21

Wheeled locomotion in “3D” http://www.paraswift.ethz.ch/

Introduction | Lecture Overview

https://youtu.be/KRYT2kYbgo4
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2 Locomotion Concepts: Principles Found in Nature 
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3 Locomotion Concepts
 Nature came up with a multitude of locomotion concepts
 Adaptation to environmental characteristics
 Adaptation to the perceived environment (e.g. size)

 Concepts found in nature 
 Difficult to imitate technically
 Do not employ wheels
 Sometimes imitate wheels (bipedal walking)

Most technical systems today use wheels or caterpillars
 Legged locomotion is still mostly a research topic
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4 Biped Walking

 Biped walking mechanism 
 not too far from real rolling
 rolling of a polygon with side length equal to 

the length of the step
 the smaller the step gets, the more the 

polygon tends to a circle (wheel)

 But…
 rotating joint was not invented by nature
 Work against gravity is required
 More detailled analysis follows later in this 

presentation
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5 Walking or rolling?

 number of actuators
 structural complexity
 control expense
 energy efficient
 terrain (flat ground, soft ground, 

climbing..)
movement of the involved 

masses
 walking / running includes up 

and down movement of COG
 some extra losses
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6 Characterization of locomotion concept
 Locomotion  
 physical interaction between the vehicle and its environment. 

 Locomotion is concerned with interaction forces, and the mechanisms

and actuators that generate them. 

 The most important issues in locomotion are:

 stability

 number of contact points
 center of gravity
 static/dynamic stabilization
 inclination of terrain

 characteristics of contact 

 contact point or contact area
 angle of contact
 friction

 type of environment 

 structure
 medium (water, air, soft or hard 

ground)
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7 Mobile Robots with legs (walking machines)

 The fewer legs the more complicated becomes locomotion
 Stability with point contact- at least three legs are required for static stability
 Stability with surface contact – at least one leg is required

 During walking some (usually half) of the legs are lifted
 thus loosing stability?

 For static walking at least 4 (or 6) legs are required
 Animals usually move two legs at a time
 Humans require more than a year to stand and then walk on two legs.
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8 Number of Joints of Each Leg (DOF: degrees of freedom)

 A minimum of two DOF is required to move a leg forward
 a lift and a swing motion.
 Sliding-free motion in more than one direction not possible

 Three DOF for each leg in most cases (as pictured below)
 4th DOF for the ankle joint
 might improve walking and stability
 additional joint (DOF) increases the complexity of the design and especially of 

the locomotion control.
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9 The number of distinct event sequences (gaits)

 The gait is characterized as the distinct sequence of lift and release 

events of the individual legs
 it depends on the number of legs.
 the number of possible events N for a walking machine with k legs is: 

 For a biped walker (k=2) the number of possible events N is:

 For a robot with 6 legs (hexapod) N is already

 ! 12  kN

  6123! 3! 12  kN

800'916'39! 11 N
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16 The number of distinct event sequences for biped:

 With two legs (biped) one can have four different states

 1) Both legs down

 2) Right leg down, left leg up

 3) Right leg up, left leg down

 4) Both leg up 
 A distinct event sequence can be considered as a change from one state to another and back.
 So we have the following                                distinct event sequences (change of states) for a 

biped:
  6! 12  kN

1 -> 2 -> 1

1 -> 3 -> 1

1 -> 4 -> 1

2 -> 3 -> 2

2 -> 4 -> 2

3 -> 4 -> 3

Leg down

Leg up

turning

on right leg

hopping

with two legs

hopping

left leg

walking

running

hopping

right leg
turning

on left leg
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10 Most Obvious Gait with 6 Legs is Static
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11 Most Obvious Natural Gaits with 4 Legs are Dynamic

Changeover Walking Galloping

free fly
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 Dynamic walking

 The robot will fall if not continuously 
moving 
 Less than three legs can be in 

ground contact
 fast, efficient  demanding for 

actuation and control

 Statically stable

 Bodyweight supported by at least 
three legs
 Even if all joints „freeze‟ 

instantaneously, the robot will not 
fall
 safe  slow and inefficient

CoG
CoG

Dynamic Walking vs. Static Walking
2

12



© R. Siegwart, ETH Zurich - ASL

2 - Locomotion
2

19 Case Study: Passive Dynamic Walker
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 Forward falling combined with passive leg swing
 Storage of energy: potential  kinetic in combination with low friction

http://www.youtube.com/watch?v=qwEWki9H0Ao
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13 Most Simplistic Artificial Gait with 4 Legs is Static
 Titan VIII quadruped robot

C Arikawa, K. & Hirose, S., Tokyo Inst. of Technol.

http://www.youtube.com/watch?v=vcoR5mQvAEE
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14 Walking Robots with Four Legs (Quadruped)

 Artificial Dog Aibo from Sony, Japan

https://youtu.be/oGo0TwNXXuo
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15 Dynamic Walking Robots with Four Legs (Quadruped)

 Boston Dynamics Big Dog

C Boston Dynamics

http://www.youtube.com/watch?v=b2bExqhhWRI
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17 Case Study: Stiff 2 Legged Walking
 P2, P3  and Asimo from Honda, Japan
 P2

 Maximum Speed: 2 km/h
 Autonomy: 15 min
 Weight: 210 kg
 Height: 1.82 m
 Leg DOF: 2x6
 Arm DOF: 2x7

C Honda corp.

http://www.youtube.com/watch?v=7tjSki34JhI
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Humanoid Robot: ASIMO

 Honda’s ASIMO: 
Advanced Step in Innovative MObility

 Designed to help people 
in their everyday lives

One of the most advanced 
humanoid robots
 Compact, lightweight
 Sophisticated walk 

technology
 Human-friendly design

1 - Introduction
1

20

Video: Honda

https://www.youtube.com/watch?v=VTlV0Y5yAww
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Efficiency Comparison
2 - Locomotion

2

20

C  J. Braun, University of Edinburgh, UK

 Efficiency = cmt = |mech. energy| / (weight x dist. traveled)
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21 Towards Efficient Dynamic Walking: Optimizing Gaits
 Nature optimizes its gaits
 Storage of “elastic” energy
 To allow locomotion at varying 

frequencies and speeds, different gaits 
have to utilize these elements 
differently

 The energetically most economic 
gait is a function of desired 
speed.        
(Figure [Minetti et al. 2002])
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25 Mobile Robots with Wheels
Wheels are the most appropriate solution for most applications

 Three wheels are sufficient to guarantee stability

With more than three wheels an appropriate suspension is required

 Selection of wheels depends on the application
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26 The Four Basic Wheels Types

 a) Standard wheel: Two degrees of 
freedom; rotation around the 
(motorized) wheel axle and the 
contact point

 b) Castor wheel: Three degrees of 
freedom; rotation around the wheel 
axle, the contact point and the 
castor axle
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27 The Four Basic Wheels Types
 c) Swedish wheel: Three degrees of 

freedom; rotation around the 
(motorized) wheel axle, around the 
rollers and around the contact point

 d) Ball or spherical wheel: 
Suspension technically not solved
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28 Characteristics of Wheeled Robots and Vehicles
 Stability of a vehicle is be guaranteed with 3 wheels

 If center of gravity is within the triangle which is formed by the ground contact 
point of the wheels. 

 Stability is improved by 4 and more wheel
 however, this arrangements are hyper static and require a flexible suspension 

system.
 Bigger wheels allow to overcome higher obstacles
 but they require higher torque or reductions in the gear box.

Most arrangements are non-holonomic (see chapter 3)
has less controllable DOF than total DOF:  Car has  2 control DOF, 3 DOF overall
 
 

 Combining actuation and steering on one wheel makes the design 
complex and adds additional errors for odometry.
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29 Different Arrangements of Wheels I
 Two wheels

 Three wheels

Omnidirectional Drive Synchro Drive

COG below axle
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32 Different Arrangements of Wheels II
 Four wheels

 Six wheels
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31 Synchro Drive
 All wheels are actuated synchronously 

by one motor
 defines the speed of the vehicle

 All wheels steered synchronously by a 
second motor
 sets the heading of the vehicle

 The orientation in space of the robot 
frame will always remain the same
 It is therefore not possible to control the 

orientation of the robot frame.
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30 Case Study: Vacuum Cleaning Robots
 iRobot Roomba vs.
 Neato XV-11

Images courtesy http://www.botjunkie.com
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Case Study: Willow Garage„s PR2
 Four powered castor wheels with active steering
 Results in omni-drive-like behaviour
 Results in simplified high-level planning (see chapter 6)

2 - Locomotion
2

33
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http://www.youtube.com/results?search_query=willow+garage+pr2&aq=1
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34 CMU Uranus: Omnidirectional Drive with 4 Wheels

 Movement in the plane has 3 DOF
 thus only three wheels can be 

independently controlled
 It might be better to arrange three 

swedish wheels in a triangle
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35 Wheeled Rovers: Concepts for Object Climbing

Purely friction
based Change of center of 

gravity
(CoG)

Adapted 
suspension mechanism with 

passive or active joints
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36 The Personal Rover
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37 Climbing with Legs: EPFL Shrimp
 Passive locomotion concept 
 6 wheels

 two boogies on each side
 fixed wheel in the rear
 front wheel with spring suspension

 Dimensions
 length: 60 cm
 height: 20 cm

 Characteristics
 highly stable in rough terrain
 overcomes obstacles up to 

2 times its wheel diameter

http://www.youtube.com/user/aslteam
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38 Rover Concepts for Planetary Exploration
C
o
n
ce

p
t C

R
C

L R
ussia

C
o
n
ce

p
t 

E
R
C
L
 R

u
ssia

C
ra

b
 E

T
H

 ExoMars: ESA Mission  to Mars in 2013, 2015, 2018
 Six wheels
 Symmetric chassis
 No front fork  intstrument placement

http://www.youtube.com/user/aslteam
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40 Caterpillar
 The NANOKHOD II, 

 developed by von Hoerner & Sulger GmbH and Max Planck Institute, Mainz 
 will probably go to Mars
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Other Forms of „Locomotion“: Traditional and Emerging
 Flying

 Swimming

2 - Locomotion
2
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http://www.youtube.com/user/aslteam
http://www.youtube.com/watch?v=L61O2CmZCc4
http://www.youtube.com/watch?v=eO9oseiCTdk



