
COMS 4733, Computational Aspects of Robotics, Fall 2019

Lab 2: Bug2 Path Planning. Due (electronically via courseworks): Monday, Oct. 7, 11:59 PM

The purpose of this lab is to implement the Bug 2 algorithm discussed in class. In this lab you will get

your turtlebot to move from a start position to a goal position along the m-line. If your turtlebot senses

an obstacle, then it invokes a contour following behavior until it reaches the m-line again, at which point

it proceeds towards the goal. This behavior (follow m-line, follow contour, re-acquire m-line) continues

as long as there are obstacles or until the goal position is reached.

In this lab we will be using the turtlebot_gazebo package. You can find this package and its installation

in the text Programming Robots with ROS: A Practical Introduction to the Robot Operating System:

(from section 7.1): sudo apt-get install ros-indigo-turtlebot-gazebo

Test your installation by running: roslaunch turtlebot_gazebo turtlebot_world.launch

We will change the world model from the standard world by specifying our own world with obstacles

that the turtlebot needs to traverse:

roslaunch turtlebot_gazebo turtlebot_world.launch world_file:=$PWD/bug2_0.world

NOTE: use an absolute address for the world _file parameter

You can download the bug world files to your own machine. Your Bug needs to successfully complete all

the worlds, and extra credit (+10 points) is given for completing bug2_extra.world.

Once you have loaded the bug2_0.world in Gazebo, you can then run your Bug2 program to move from

a starting position (which is (0,0,0) – at the origin and heading down the X-axis) to a goal position 10

meters down the X-axis: (10,0,0). You are required to use the nav_msgs/Odometry messages to update

your position of the robot (using odometry reference: section 7.8 of the book ROS By Example, A Do-It-

Yourself Guide to the Robot Operating System). Your turtlebot has a laser scanner (Kinect-like device)

that can be used to sense when obstacles are near. The use of the laser is explained in chapter 7

(Wander-bot) of the book Programming Robots with ROS: A Practical Introduction to the Robot

Operating System . A possible strategy you can implement for the Bug algorithm is this (feel free to use

other strategies):

1. Follow m-line (go forward) until obstacle encountered.
2. When obstacle encountered:

1. Store hit point
2. Turn left until the object is no longer detected to the right of the robot.
3. Follow the obstacle as below until m-line reached or hit point reached. If hit point reached,

conclude impossible.
1. Move forward a small distance
2. If object not detected on right, turn slightly right
3. If object close on right, turn left and move forward

3. Continue along m-line until obstacle encountered or goal reached
4. You may have to experiment with how far you translate and rotate each time before you re-check your

laser for an obstacle. Here are some example Bug2 videos.

https://github.com/StevenShiChina/books/blob/master/Programming.Robots.with.ROS.A.Practical.Introduction.to.the.Robot.Operating.System.pdf
http://www.cs.columbia.edu/~allen/F19/HMWK/Bug_worlds/
https://github.com/StevenShiChina/books/blob/master/ros%20by%20example%20vol%201%20indigo.pdf
https://github.com/StevenShiChina/books/blob/master/ros%20by%20example%20vol%201%20indigo.pdf
https://github.com/StevenShiChina/books/blob/master/Programming.Robots.with.ROS.A.Practical.Introduction.to.the.Robot.Operating.System.pdf
https://github.com/StevenShiChina/books/blob/master/Programming.Robots.with.ROS.A.Practical.Introduction.to.the.Robot.Operating.System.pdf
https://github.com/StevenShiChina/books/blob/master/Programming.Robots.with.ROS.A.Practical.Introduction.to.the.Robot.Operating.System.pdf
https://www.youtube.com/playlist?list=PLEzQo51XWkYq3Fg7Demo0AgRPNFKYy2ej

