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Abstract

In recent years, particle filters have solved several hard
perceptual problems in robotics. Early successes of
particle filters were limited to low-dimensional esti-
mation problems, such as the problem of robot lo-
calization in environments with known maps. More
recently, researchers have begun exploiting structural
properties of robotic domains that have led to success-
ful particle filter applications in spaces with as many
as 100,000 dimensions. The fact that every model—no
mater how detailed—fails to capture the full complex-
ity of even the most simple robotic environments has
lead to specific tricks and techniques essential for the
success of particle filters in robotic domains. This arti-
cle surveys some of these recent innovations, and pro-
vides pointers to in-depth articles on the use of particle
filters in robotics.

1 INTRODUCTION

One of the key developments in robotics has been the adop-
tion of probabilistic techniques. In the 1970s, the predomi-
nant paradigm in robotics was model-based. Most research
at that time focused on planning and control problems un-
der the assumption of fully modeled, deterministic robot
and robot environments. This changed radically in the mid-
1980s, when the paradigm shifted towards reactive tech-
niques. Approaches such as Brooks’s behavior-based ar-
chitecture generated control directly in response to sensor
measurements [4]. Rejections of models quickly became
typical for this approach. Reactive techniques were ar-
guable as limited as model-based ones, in that they replaced
the unrealistic assumption of perfect models by an equally
unrealistic one of perfect perception. Since the mid-1990s,
robotics has shifted its focused towards techniques that uti-
lize imperfect models and that incorporate imperfect sensor
data. An important paradigm since the mid-1990s—whose
origin can easily be traced back to the 1960s—is that of
probabilistic robotics. Probabilistic robotics integrates im-

perfect models and and imperfect sensors through proba-
bilistic laws, such as Bayes rule. Many recently fielded
state-of-the-art robotic systems employ probabilistic tech-
niques for perception [12, 46, 52]; some go even as far as
using probabilistic techniques at all levels of perception and
decision making [39].

This article focuses on particle filters and their role in
robotics. Particle filters [9, 30, 40] comprise a broad fam-
ily of sequential Monte Carlo algorithms for approximate
inference in partially observable Markov chains (see [9]
for an excellent overview on particle filters and applica-
tions). In robotics, early successes of particle filter imple-
mentations can be found in the area of robot localization,
in which a robot’s pose has to be recovered from sensor
data [51]. Particle filters were able to solve two important,
previously unsolved problems known as the global local-
ization [2] and the kidnapped robot [14] problems, in which
a robot has to recover its pose under global uncertainty.
These advances have led to a critical increase in the robust-
ness of mobile robots, and the localization problem with a
given map is now widely considered to be solved. More re-
cently, particle filters have been at the core of solutions to
much higher dimensional robot problems. Prominent ex-
amples include the simultaneous localization and mapping
problem [8, 27, 36, 45], which phrased as a state estima-
tion problem involves a variable number of dimensions. A
recent particle-filter algorithm known as FastSLAM [34]
has been demonstrated to solve problems with more than
100,000 dimensions in real-time. Similar techniques have
been developed for robustly tracking other moving entities,
such as people in the proximity of a robot [35, 44].

However, the application of particle filters to robotics prob-
lems is not without caveats. A range of problems arise
from the fact that no matter how detailed the probabilistic
model—it will still be wrong, and in particular make false
independence assumptions. In robotics, all models lack im-
portant state variables that systematically affect sensor and
actuator noise. Probabilistic inference if further compli-
cated by the fact that robot systems must make decisions
in real-time. This prohibits, for example, the use of vanilla
(exponential-time) particle filters in many perceptual prob-
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Figure 1: Monte Carlo localization, a particle filter algorithm
for state-of-the-art mobile robot localization. (a) Global uncer-
tainty, (b) approximately bimodal uncertainty after navigating in
the (symmetric) corridor, and (c) unimodal uncertainty after en-
tering a uniquely-looking office.

lems.

This article surveys some of the recent developments, and
points out some of the opportunities and pitfalls specific to
robotic problem domains.

2 PARTICLE FILTERS

Particle filters are approximate techniques for calculat-
ing posteriors in partially observable controllable Markov
chains with discrete time. Suppose the state of the Markov
chain at time

�
is given by ��� . Furthermore, the state ���

depends on the previous state � ����� according to the prob-
abilistic law 	�
�� �������� � ������� , where ��� is the control as-

Figure 2: Particle filters have been used successfully for on-board
localization of soccer-playing Aibo robots with as few as 50 par-
ticles [26].

serted in the time interval 
 �����������
. The state in the Markov

chain is not observable. Instead, one can measure ��� , which
is a stochastic projection of the true state � � generated via
the probabilistic law 	�
�� �� � ��� . Furthermore, the initial
state ��� is distributed according to some distribution 	�
 �!� � .
In robotics, 	�
 � ��"���#� � ���$��� is usually referred to as ac-
tuation or motion model, and 	�
�� �% � ��� as measurement
model. They as usually highly geometric and generalize
classical robotics notions such as kinematics and dynamics
by adding non-deterministic noise.

The classical problem in partially observable Markov
chains is to recover a posterior distribution over the state� � at any time

�
, from all available sensor measurements� �'& �(� ��)()�)�� �*� and controls � �+& � � �()�)(),��� � . A solution

to this problem is given by Bayes filters [20], which com-
pute this posterior recursively:

	�
�� �- � � ��� � � & .�/�0�1�2 )43 	�
5� �6 � ���
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	�
�� �� ����� � �������
	�
 �������  � ����� �8� ���$� �:9 �����$� (1)

under the initial condition 	�
�� �; � � �8� � � & 	�
 � �*� . If states,
controls, and measurements are all discrete, the Markov
chain is equivalent to hidden Markov models (HMM) [41]
and (1) can be implemented exactly. Representing the pos-
terior takes space exponential in the number of state fea-
tures, though more efficient approximations exist that can
exploit conditional independences that might exist in the
model of the Markov chain [3].

In robotics, particle filters are usually applied in continu-
ous state spaces. For continuous state spaces, closed form
solutions for calculating (1) are only known for highly spe-
cialized cases. If 	�
���� � is Gaussian and 	�
 ��� <� � � ������� �
and 	�
�� �= � ��� are linear in its arguments with added in-
dependent Gaussian noise, (1) is equivalent to the Kalman
filter [23, 32]. Kalman filters require >?
 9A@*� time for 9 -
dimensional state spaces, although in many robotics prob-
lems the locality of sensor data allows for >?
 9CBD� imple-
mentations. A common approximation in non-linear non-
Gaussian systems is to linearize the actuation and measure-
ments models. If the linearization is obtained via a first-
order Taylor series expansion, the result is known as ex-
tended Kalman filter, or EKF [32]. Unscented filters [21]
obtain often a better linear model through (non-random)
sampling. However, all these techniques are confined to
cases where the Gaussian-linear assumption is a suitable
approximation.



Particle filters address the more general case of (nearly) un-
constrained Markov chains. The basic idea is to approxi-
mate the posterior of a set of sample states

� ��� ������ , or par-
ticles. Here each ��� ���� is a concrete state sample of index 	 ,
where is ranges from

�
to 
 , the size of the particle fil-

ter. The most basic version of particle filters is given by the
following algorithm.

� Initialization: At time
� &� , draw 
 particles accord-

ing to 	�
�� � � . Call this set of particles � � .

� Recursion: At time
��� � , generate a particle � � ���� for

each particle ��� ���������� � ����� by drawing from the actua-

tion model 	�
���� �� � � � � �������� � . Call the resulting set ��?� .
Subsequently, draw 
 particles from �� � , so that each
� � ���� � ��?� is drawn (with replacement) with a probabil-
ity proportional to 	�
5�*�  � � ���� � . Call the resulting set of
particles � � .

In the limit as 
 � � , this recursive procedure leads
to particle sets � � that converge uniformly to the desired
posterior 	�
����  � � �8� � � , under some mild assumptions on
the nature of the Markov chain.

Particle filters are attractive to roboticists for more than
one reason. First and foremost, they can be applied to al-
most any probabilistic robot model that can be formulated
as a Markov chain. Furthermore, particle filters are any-
time [6, 53], that is, they do not require a fixed computa-
tion time; instead, their accuracy increases with the avail-
able computational resources. This makes them attractive
to roboticists, who often face hard real-time constraints
that have to be met using hard-to-control computer hard-
ware. Finally, they are relatively easy to implement. The
implementer does not have to linearize non-linear models,
and worry about closed-form solutions of the conditional	�
�� �= ����� � ���$�,� , as would be the case in Kalman filters,
for example. The main criticism of particle filter has been
that in general, populating a 9 -dimensional space requires
exponentially many particles in 9 . Most successful applica-
tions have therefore been confined to low-dimensional state
spaces. The utilization of structure (e.g., conditional inde-
pendences), present in many robotics problems, has only
recently led to applications in higher dimensional spaces.

3 PARTICLE FILTERS IN LOW
DIMENSIONAL SPACES

In robotics, the ‘classical’ successful example of particle
filters is mobile robot localization. Mobile robot local-
ization addresses the problem of estimation of a mobile
robot’s pose relative to a given map from sensor measure-
ments and controls. The pose is typically specified by a
two-dimensional Cartesian coordinate and the robot’s rota-
tional heading direction. The problem is known as posi-
tion tracking if the error can be guaranteed to be small at

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000 2500 3000 3500 4000

D
is

ta
nc

e 
[c

m
]

Time [sec]

Standard MCL
Mixture MCL

Figure 3: MCL with the standard proposal distribution (dashed
curve) compared to MCL with a hybrid mixture distribution (solid
line) [51]. Shown here is the error for a 4,000-second episode of
camera-based MCL of a museum tour-guide robot operating in
Smithsonian museum [50].

all times [2]. More general is the the global localization
problem, which is the problem of localizing a robot under
global uncertainty. The most difficult variant of the local-
ization, however, is the kidnapped robot problem [14], in
which a well-localized robot is tele-ported to some other
location without being told. This problem was reported,
for example, in the context of the Robocup soccer compe-
tition [25], in which judges picked up robots at random oc-
casions and placed them somewhere else [26]. Other local-
ization problems involve multiple robots that can observe
each other [15].

Figure 1 illustrates particle filters in the context of global
localization of a robot in a known environment. Shown
there is a progression of three situations, in which a number
of particles approximate the posterior (1) at different stages
of robot operation. Each particle is a sample of a three-
dimensional pose variable, comprising the robot’s Carte-
sian coordinates and its orientation relative to the map. The
progression of snapshots in Figure 1 illustrate the develop-
ment of the particle filter approximation over time, from
global uncertainty to a well-localized robot.

In the context of localization, particle filters are commonly
known as Monte Carlo localization (MCL) [7, 51]. MCL’s
original development was motivated by the condensation
algorithm [19], a particle filter that enjoyed great popu-
larity in computer vision applications. In most variants
of the mobile localization problem, particle filters have
been consistently found to outperform alternative tech-
niques, including parametric probabilistic techniques such
as the Kalman filter and more traditional techniques (see
e.g., [18, 51]). MCL has been implemented with as few
as 50 samples [26] on robots with extremely limited pro-
cessing and highly inaccurate actuation, such as the soccer-
playing AIBO robotic shown in Figure 2.

Recent research has led to a range of adaptations of the ba-
sic particle filter. Generating particles using the next state
probability 	�
 � �?����8� � ���$��� alone has been recognized as



insufficient under a range of conditions, such as in the kid-
napped robot problem [26] or in situations where the sensor
accuracy is high in comparison to the control accuracy [51].
Common extensions involve hybrid sampling techniques,
in which a subset of all samples is generated according to
measurement model. Figure 3 shows a comparison of plain
MCL versus an extended version using such a hybrid sam-
pling scheme, obtained for data collected by a deployed
mobile tour-guide robot. Other extensions regard the exis-
tence of unmodeled environmental state—which is a given
in real-world robotics. A common approach inflates the
uncertainty in the Markov chain model artificially, to ac-
commodate systematic noise [16]. The same problem has
also given rise to the development of probabilistic filters
for pre-processing sensor data [16]. An example of the lat-
ter includes filters for range sensors that remove measure-
ments corrupted by people [5]. MCL has also been made
temporally more persistent by clustering particles and us-
ing different resampling rates for different clusters—a tech-
nique that empirically increases the robustness to errors in
the map used for localization [33]. Stratified sampling tech-
niques have been exploited to increase the variance of the
resampling step [9]. Extensions to multi-robot localization
problems are reported in [15].

4 PARTICLE FILTERS IN HIGH
DIMENSIONAL SPACES

An often criticized limitation of plain particle filters is their
poor performance in higher dimensional spaces. This is
because the number of particles needed to populate a state
space scales exponentially with the dimension of the state
space, not unlike the scaling limitations of vanilla HMMs.
However, many problems in robotics possess structure that
can be exploited to develop more efficient particle filters.

One such problem is the simultaneous localization and
mapping problem, or SLAM [8, 27, 36, 45]; see [48] for an
overview. SLAM addresses the problem of building a map
of the environment with a moving robot. The SLAM prob-
lem is challenging because errors in the robot’s localization
induce systematic errors in the localization of environmen-
tal features in the map. The absence of an initial map in the
SLAM problem makes it impossible to localize the robot
during mapping using algorithms like MCL. Furthermore,
the robot faces a challenging data association problem of
determining whether two environment features, observed
at different point in time, correspond to the same physical
feature in the environment. To make matters worse, the
space of all maps often comprises hundreds of thousand of
dimensions. In the beginning of mapping the size of the
state space is usually unknown, so SLAM algorithms have
to estimate the dimensionality of the problem as well. On
top of all this, most applications of SLAM require real-time
processing.

Until recently, the predominant approach for SLAM that
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Figure 4: The SLAM problem as a ‘dynamic Bayes network:’
The robot moves from pose ��� through a sequence of controls,�����	��
����������� . As it moves, it observes nearby features. At time�����

, it observes feature � � out of two features, ��� � � � 
�� . The
measurement is denoted � � (range and bearing). At time

�����
,

it observes the other feature, � 
 , and at time
��� �

, it observes � �
again. The SLAM problem is concerned with estimating the loca-
tions of the features and the robot’s path from the controls � and
the measurements � . The gray shading illustrates a conditional
independence relation exploited by the FastSLAM algorithm.

meets most of the requirements above—with the exception
of a sound solution of the data association problem—was
based on extended Kalman filters, or EKFs [8, 36, 45].
As noted above, EKFs implement Equation (1) using lin-
earized actuation and measurement models, with indepen-
dent Gaussian noise. In their implementation, they cru-
cially exploit that the environment is static. The result-
ing estimation problem is then described as a problem of
jointly estimating a time-variant robot pose � � and the time-
invariant location of ! features, denoted "A� through "$# :

	�
 ��� � " � �()�)(),� "$#  � � �8� � �
& .�/�0�1�2 )43 	�
5� �6 � ���
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	�
�� �� ����� � �������

	�
 � �����D� " �D�()�)()�� " #  � ���$� ��� ����� �:9 � ����� (2)

Notice that this integration involves only the robot pose �!� ,
and not the variables "C� )�)() "$# . For the linear-Gaussian
model in EKFs, this integral is tractable [8, 45]. The EKF
solution to the SLAM problem, however, suffers three key
limitations:

1. First, the complexity of each update step is in >?
%! B*� ,
even in the absence of a data association problem. This
limitation poses important scaling limitations. EKF
algorithms can rarely manage more than a thousand
features in realistic time. This limitation has spurred
a flurry of research on hierarchical map representa-
tions, where maps are decomposed recursively into local
submaps [17, 28]. Most of these approaches are still in>?
%! BD� but with a constant factor that is orders of mag-
nitude smaller than that of the monolithic EKF solution.

2. Second, EKFs cannot incorporate negative information,
which is, they cannot use the fact that a robot failed
to see a feature even when expected. The reason for
this inability is that negative measurements give rise to



(a)

(b)

Figure 5: FastSLAM with real-world data: Shown here is a map of an outdoor environment (Victoria Park in Sydney), along with GPS
information displayed here only for evaluating the accuracy of the resulting map. The resulting map error is extremely small, comparable
in magnitude to the EKF solution. These results were obtained Juan Nieto, Eduardo Nebot, and Jose Guivant from the Australian Center
of Field Robotics in Sydney, and are reprinted here with permission.

non-Gaussian posteriors, which cannot be represented by
EKFs.

3. Third, EKFs provide no sound solution to the data asso-
ciation problem. It is common practice to use a maxi-
mum likelihood estimator for data association [8], using
thresholding to detect (and reject) outliers. New environ-
mental features are first placed on a provisional list, to
reduce the odds of mistaking random noise for new, pre-
viously unseen features in the environment. However, as
generally acknowledged in the literature [8], false data
associations often lead to catastrophic failures.

The first and second of these limitations, and possibly the
third, have recently been overcome by particle filters. Re-
cent research [10, 34, 35, 37] has led to a family of so-
called Rao-Blackwellized particle filters that, in the con-
text of SLAM, lead to solutions that are significantly more
efficient than the EKF. These particle filters require time>?
 
 � /�� ! � instead of >?
%! BD� , where 
 is the number
of particles as above. Empirical evidence suggest that 

may be a constant in situations with bounded uncertainty—
which includes all SLAM problems that can be solved
via EKFs [34]. They can also incorporate negative infor-
mation, hence make better use of measurement data than
EKFs. Finally, highly preliminary experimental results
suggest that particle filters provide a better solution to the
data association problem than currently available with the
EKF—although at present, this claim is not yet backed up
by sufficient experimental evidence.

To understand particle filter solutions to the SLAM prob-
lem, it is helpful to analyze the structure of the SLAM
problem. Assume, for a moment, that there is no data

association problem, that is, the robot can uniquely iden-
tify individual features detected by its sensors. In this case,
the SLAM problem is characterized by an important inde-
pendence property [37], which is presently not exploited in
EKF solutions. In particular, knowledge of the path of the
robot renders the individual feature locations conditionally
independent:

	�
%" � �()�)�)�� "$#  � � � � � � & #�
��� � 	�
%" �  � � � � � � (3)

Figure 4 illustrates this independence, as explained in the
caption to this figure. This important conditional indepen-
dence property of the SLAM problem leads to the formu-
lation of a more efficient version of Equation (2), one that
estimates a posterior over robot paths � � (instead of poses��� ) along with the feature locations " � :

	�
 � � � " �D�()�)(),� " #  � � �8� � �& 	�
 � �  � � ��� � � 	�
 " � ��)()�)�� " #  � � � � � �
& 	�
 � �  � � ��� � �

#�
��� � 	�
%" �  � � � � � � (4)

A key property of particle filter is that each particle can be
interpreted as a posterior over entire paths, and not just the
present pose [9, 34]—a property that is not shared by EKFs.
Thus, it is natural to implement the posterior over paths	�
�� �  � � �8� � � in (4) by particle filters. The resulting fea-
ture estimators 	�
 " �  � � � � � � are conditioned on individual
particles representing path posteriors 	�
�� �  � � �8� � � . How-
ever, since feature posteriors are conditionally independent
given the path � � , as stated in (3), the joint posterior over
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Figure 6: Lazy version of FastSLAM with unknown data association and point estimators (no variance) for environmental features: The
top row (a) through (c) illustrates the result of mapping a cycle using conventional techniques. The bottom row (d) through (f) uses
particle filters for estimating robot poses, hence is able to recover from large localization error that frequently occur when traversing
cyclic environments. This real-time particle filter algorithm has proven to be highly robust in many environments.

the features can be decomposed into separate estimators for
each feature 	�
%" �  � � � � � � , for each � & � �()�)�)�� ! . The
resulting filter maintains 
 particles. Each particle con-
tains a concrete robot path � � , and a set of ! independent
estimates of the locations of individual features in the envi-
ronment.

In the FastSLAM algorithm [34], these feature posteriors	�
%" �  � � � � � � are implemented by EKFs, one for each fea-
ture. Each of these posteriors is of fixed dimension (e.g., 2
for landmarks in a plane). The resulting filter, thus, com-
bines particle filters and Kalman filters: Posteriors over
robot paths are represented by particle filters, very much
as in the MCL algorithm described in the previous sec-
tion. Each particle is then linked to ! Kalman filters, one
for each feature in the map. Each of those particle filters
corresponds to one feature, hence its dimension is inde-
pendent of ! . The resulting particle filter is called Rao-
Blackwellized filter since the posterior for certain dimen-
sions (the feature locations) are calculated exactly, whereas
others (the robot pose) are approximated using particle fil-
ters.

Updating this Rao-Blackwellized particle filter in the naive
way requires time >?
 ! 
 � , where 
 is the number of par-
ticles. Even the naive implementation avoids the quadratic
complexity of the EKF solution by virtue of the decom-
position in (3), which suggests that individual features can
be localized independently when conditioned on a concrete
robot path. The FastSLAM algorithm is even faster. Up-
dates exploit the fact that the robot may only observe a
finite number of features at any point in time. By repre-
senting feature estimates using tree structures as described

in [34], the FastSLAM problem can be implemented in>?
 
 � /�� ! � time. Initial empirical evidence in [34] sug-
gest that under bounded robot pose uncertainty, this ap-
proach scales well even with constantly many particles

 . This finding suggests that particle filters can (approxi-
mately) solve the SLAM problem in >?
 � /�� ! � time.

The use of particle filters opens the door to an improved so-
lution to the data association problem. FastSLAM makes
it possible to sample over data associations—rather than
simply assuming that the most likely associations is cor-
rect. Thus, FastSLAM implements a full Bayesian solution
to the SLAM problem with unknown data association—
something that has previously only been achieved us-
ing a recently developed mixture of Gaussian representa-
tion [11, 31]. FastSLAM can also incorporate negative in-
formation, that is, not seeing a feature that the robot expects
to see. This is achieved by modifying the importance fac-
tors of individual particles accordingly.

As reported in [34], the Rao-Blackwellized particle fil-
ter algorithm delivers stat-of-the-art performance in large-
scale SLAM problems, involving up to 100,000 dimen-
sions. Figure 5 shows a typical result of FastSLAM ob-
tained for an outdoor navigation problem. In this experi-
ment, an autonomous land vehicle is used to map the loca-
tion of trees in a public park. � This specific experiment
involves several dozen circular features (stems of trees),
which are detected using a laser range finder mounted on
an outdoor vehicle. As the figure illustrates, the location
�
These results were obtained Juan Nieto, Eduardo Nebot, and

Jose Guivant from the Australian Center of Field Robotics in Syd-
ney, and are reprinted here with permission.
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Figure 7: Particle filter-based people tracker: This algorithm uses maps to simultaneously localize a moving robot and an unknown
number of nearby people. This sequence shows the evolution of the conditional particle filter from global uncertainty to successful
localization and tracking of the robot.

of the trees and the vehicle is determined with high ac-
curacy, which is comparable to the computationally much
more cumbersome EKF solution. A second result is shown
in Figure 6. This algorithm [49]—which was originally
not stated as a version of FastSLAM—can be viewed as a
lazy FastSLAM implementation where each particle uses
maximum likelihood data association, and where feature
locations are calculated in a lazy way, that is, for the most
likely particle only. It also does not consider feature uncer-
tainty in mapping, and instead memorizes the most likely
feature location only. However, just like FastSLAM it uses
particle filters to estimate posteriors over robot paths, and it
uses those to find the most consistent map. This approach
has been applied extensively to the problem of mapping in-
door environments from laser range scans, where maps are
collections of raw point features. It is presently one of the
most robust real-time algorithms in existence for the indoor
mapping problem with range finders.

In a similar vein, particle filters have also been used
for tracking moving features, not just static ones. Here
again, the underlying state spaces are high-dimensional,
and particle filters have generated state-of-the-art results.
In robotics, a prime example of tracking moving objects
is the problem of tracking people [35, 44]. This prob-
lem is of great significance to the emerging field of ser-
vice robotics [13, 43]. Service robots are robots designed
to provide services to individual persons and hence have to
be aware of where they are. The two dominant approaches
that track people based on range measurements are both
based on particle filters. The work by Schulz et al. [44] ex-
ploits a factored particle filter, where features are extracted
from range measurements and associated with independent
particle filters using maximum likelihood. The work by
Montemerlo et al. [35] uses maps to detect people, in that
it relies on differences between a previously acquired map
of the environment and actual range scans, to identify and
localize people. The map-based people tracking problem
is similar in nature to the SLAM problem, since it involves
the simultaneous localization of robots and people. The

approach in [35] uses particle filters similar to FastSLAM,
specifically exploiting the conditional independence prop-
erty (3) that also applies to the people localization problem.
Figure 7 depicts results using this particle filter-based peo-
ple tracker under global initial uncertainty. The approach is
able to simultaneously localize a robot under global uncer-
tainty in real-time, and at the same time estimate the num-
ber and locations of nearby people. A similar approach for
tracking the status of doors in mapped environments has
been proposed in [1].

5 DISCUSSION

This article has described some of the recent successes of
particle filters in the field of robotics. Traditionally, par-
ticle filters were mostly applied to low-dimensional robot
localization problems-, where researchers have developed
a rich repertoire of techniques to cope with the specifics of
concrete robot environments. Recently, advanced variants
of particle filters have provided new solutions to challeng-
ing higher-dimensional problems, such as the problem of
robot mapping and people tracking. These approaches use
hybrid representations that exploit structure in the underly-
ing problems, expressed by conditional independences. In
several of such structured robotics domains, particle filters
are now among the most efficient and scalable solutions in
existence.

Despite this progress, there exist plenty opportunities for
future research. The most important opportunity con-
cerns robot control: All the examples above address only
the robot perception problem, but in robotics, the key
problem is one of control: robots ought to do the right
thing, no matter how their perception is organized. At
present, relatively little is known about robot control un-
der uncertainty. Recent developments in the field of par-
tially observable Markov decision processes mostly ad-
dress low-dimensional discrete spaces [22], and to the au-
thor’s knowledge only a single algorithm exist that has ap-



plied continuous-space particle filters to such control prob-
lems [47]. This approach, however, is still too inefficient
to be of relevance to robotics. Other discrete-state approx-
imations have been developed [29, 42], yet they have only
solved isolated navigation problems in mobile robotics.

More generally, recent research in AI has led to a great
number of efficient algorithm for probabilistic inference in
high-dimensional spaces with structure, beginning with the
seminal work by Pearl [38]. Such techniques offer promis-
ing new solutions to hard robotics problems. The remain-
ing challenge is to further develop them, and adapt them
to the specific requirements characteristic of robotics do-
mains.
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