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a b s t r a c t

Recent developments in sensor technology have made it feasible to use mobile robots in several
fields, but robots still lack the ability to accurately sense the environment. A major challenge to the
widespread deployment of mobile robots is the ability to function autonomously, learning useful models
of environmental features, recognizing environmental changes, and adapting the learned models in
response to such changes. This article focuses on such learning and adaptation in the context of color
segmentation on mobile robots in the presence of illumination changes. The main contribution of this
article is a survey of vision algorithms that are potentially applicable to color-based mobile robot vision.
We therefore look at algorithms for color segmentation, color learning and illumination invariance
on mobile robot platforms, including approaches that tackle just the underlying vision problems.
Furthermore, we investigate how the inter-dependencies between these modules and high-level action
planning can be exploited to achieve autonomous learning and adaptation. The goal is to determine
the suitability of the state-of-the-art vision algorithms for mobile robot domains, and to identify the
challenges that still need to be addressed to enable mobile robots to learn and adapt models for color,
so as to operate autonomously in natural conditions.

Published by Elsevier B.V.
1. Introduction

Mobile robots are dependent on sensory information for their
operation, but they still lack the ability to accurately sense the
environmental input. Recent developments in sensor technology
have provided a range of high-fidelity sensors at moderate costs,
such as laser range finders, color cameras, and tactile sensors,
thereby making it feasible to use mobile robots in real-world
applications [1–3]. However, the sensors typically need extensive
manual calibration, which has to be repeated when environmental
conditions change. This sensitivity to environmental changes is
more pronounced in the case of color cameras — they require
extensive manual calibration and are sensitive to illumination
changes. Mobile robots however frequently have to operate in
environments with non-uniform illuminations. Therefore, even
though color is a rich source of information, mobile robot
applications have, until recently, relied primarily on non-visual
sensors [4]. Evenwhen a robot is equippedwith a camera, the focus
has largely been on using local edge-based gradients computed
from the intensity image [5]. Current sensory processing methods
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on robots therefore fail to exploit the information encoded in
color images and fail to eliminate the sensitivity to environmental
changes.
The need for autonomous operation is a major challenge to the

widespread use of mobile robots. In order to be suitable for real-
world applications, it is not sufficient for the robot to be equipped
with good sensors — it is important for the robot to exploit all the
available information. The robot should be able to autonomously
learn appropriate models for environmental features, to recognize
environmental changes, and adapt the learned models in response
to such changes. Mobile robots are typically characterized by
constrained computational resources, but they need to operate
in real-time in order to respond to the dynamic changes in their
environment. Autonomous learning and adaptation on mobile
robots is hence a challenging problem.
In this article the focus is on learning and adaptation in the

context of visual input from a color camera. We specifically
focus on: (a) color segmentation i.e. the process of clustering
image regions with similar color and/or mapping individual image
pixels to color labels such as red, yellow and purple, and on
(b) color constancy i.e. the ability to assign the same color labels
to objects under different illuminations. Mobile robot applications
that do use color information, typically have some form of color
segmentation as the first step, but this segmentation is sensitive to
illumination changes. Fig. 1 shows an example flowchart of visual
processing using color information.
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Fig. 1. Typical vision-based operation flowchart.
The first stage of visual processing is color segmentation, which
takes as input a color image in one of many color spaces (e.g. RGB
or YCbCr) depending on the camera being used and the application
domain. Color segmentation involves clustering contiguous image
regions into meaningful groups based on color, and/or mapping
image pixels to one of a predefined set of color labels. The
output of the segmentation module is hence either a list of
clustered image regions superimposed on the original image, or
an image of the same size as the original image with each pixel
labeled with the numerical index of the corresponding color label
(e.g. ‘‘1’’ for red, ‘‘2’’ for blue). This clustering and mapping is
typically computationally expensive, requires extensive human
supervision, and is sensitive to illumination changes.
The color-segmented image regions are the input to the

object recognition module, where the segmented regions are
used to find ‘‘objects’’ and other structures with well-defined
properties such as size, shape, and color. These known properties
of objects are used to determine heuristics and constraints that
help choose the segmented regions that bestmatch the constraints.
Object recognition using color or other features is an extensively
researched field [6–8] that is not the focus of this article. Object
recognition typically provides a list of detected objects and their
locations in the image.
The output of the object recognitionmodule serves as the input

to the next stage of visual processing, which could involve some
form of 3D scene understanding, or could serve as input to a
localization module on mobile robots. Objects and their relative
arrangements are used to determine additional information about
the 3D scene being observed. If a stereo camera is being used,
for instance, the depth information can be combined with the
information about the objects to reconstruct the 3D scene. On
mobile robots the known map of the world (object sizes and
locations in global coordinates) can be exploited to use the
computed distances and angles to the detected objects to localize
the robot i.e. find its pose (position and orientation) in global
coordinates. The robot can also perform simultaneous localization
and mapping (SLAM) [9] or determine the structure of the world
based on the motion (SFM) [10].
The reconstructed 3D scene and estimated robot pose can be

used by a high-level module to choose the sequence of actions to
perform in order to achieve a specific goal. For instance, if the robot
is to navigate to a certain location or retrieve a target object from
a specific location, the robot can use the available information to
plan its actions so as to maximize the likelihood of success and
minimize the use of the available resources.
In this article we are primarily interested in the problem

of color-based mobile robot operation, and we are specifically
focused on the task of robust color segmentation — the first
module in Fig. 1. Color segmentation is typically computationally
expensive and sensitive to illumination. In order to make color-
based mobile robot operation feasible, we need to enable real-
time autonomous segmentation of input images into meaningful
color labels, and enable adaptation to illumination changes in a
dynamically changing environment. We therefore survey a set
of representative algorithms that have been proposed to tackle
color segmentation, color learning, illumination invariance, and
the associated high-level action planning, on mobile robots. We
also look at approaches that just address the underlying vision
problems. The goal is to determine the suitability of the state-of-
the-art vision algorithms for mobile robot domains, and to identify
the challenges that still need to be addressed in order to enable
autonomous color-basedmobile robot operation. Furthermore, we
also identify key results that can be used to achieve autonomous
operation with other visual features, thereby moving towards
autonomous mobile robot operation under natural conditions.

2. Survey overview

The topics we aim to survey in this article – color segmenta-
tion, color learning and illumination invariance – continue to be
extensively researched in the computer vision community. How-
ever, many state-of-the-art vision algorithms are not applicable to
mobile robots for a variety of reasons. Algorithms for mobile robot
vision problems need a few essential characteristics:

• Real-time operation, since mobile robots typically need to
respond rapidly to changes in the surroundings.
• Deployment without extensive manual calibration (training)
or extensive prior information, since mobile robots frequently
need to be deployed in previously unseen environments.
• Adaptation to previously unknown environmental conditions
without human supervision, since the operating conditions in
mobile robot domains do not remain constant — for instance
the illumination changes.

In this survey we therefore use the above-mentioned criteria
to evaluate a set of vision algorithms regarding the extent to
which they could be applicable to color-based mobile robot vision.
Though only a subset of the algorithms are directly applicable to
mobile robot domains, even those that are currently unsuitable
for robot applications provide interesting research ideas and a
better understanding of the underlying problems. Fig. 2 presents
an overview of the survey — it lists the four distinct modules
that we discuss. Section 3 discusses some standard approaches
for color segmentation of static scenes, followed by methods
specific to mobile robots. Section 4 presents a brief description of
color spaces, and human perception and naming of colors. It also
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Fig. 2. Overview of the modules surveyed.
discusses algorithms for autonomous segmentation and learning
of models of color distributions. Section 5 discusses approaches
for illumination invariance, from the early studies to current
approaches on mobile robots. Section 6 presents an overview of
some planning approaches for autonomous control of sensing and
high-level behavior. The ‘‘Color Segmentation’’, ‘‘Color Learning’’
and ‘‘Illumination Invariance’’ modules in Fig. 2 all fall primarily
within the ‘‘Color Segmentation’’ box in Fig. 1, while ‘‘Action
Planning’’ refers to the box labeled ‘‘High-level behavior’’ — it
plans the actions that enable autonomous learning and adaptation.
Section 7 briefly discusses how these modules are interlinked,
and how the inter-dependencies can be exploited to create a real-
time color-based mobile robot vision system that autonomously
learns color models and adapts to illumination changes. Finally we
summarize and discuss directions of further research in Section 8.
There have been other surveys on the use of vision for tasks

such as robot control and navigation [11,12]. This survey aims to
provide a different perspective by identifying the vision challenges
on the path to autonomous mobile robot operation with color
visual input. Though the survey is mainly for vision researchers
interested in working on robot domains, it is also intended to be
useful for roboticists exploring vision as an information source,
while newcomers to both vision and robotics can get a flavor of
the existing approaches for vision-based mobile robot operation.

3. Static color segmentation

Color segmentation is typically the first step in a robot vision
system that uses a color camera. The goal here is to either cluster
image regions into similar groups and/or to create a mapping from
each possible pixel value to a discrete color label, i.e. to create a
color map:

ΠE : {m1,i,m2,j,m3,k} 7→ l |l∈[0,N−1], ∀i, j, k ∈ [0, 255] (1)

wherem1,m2,m3 are the values along the color channels (e.g. R, G,
B), E represents the dependence on illumination, and l refers to the
numerical indices of the color labels (e.g. blue = 1, orange = 2).
Color segmentation of individual images is a heavily researched
field in computer vision, with several good algorithms [13–15].We
first discuss a few of these approaches.
Themean-shift algorithm [13] is a very general non-parametric
technique for the analysis of complex multi-modal feature spaces
(e.g. texture) and the detection of arbitrarily shaped clusters
in such spaces. The feature space is modeled as an empirical
probability density function (pdf). Dense regions in the feature
space correspond to local maxima, i.e. the modes of the unknown
pdf, which are located at the zeros of the gradient of the
density function. Unlike the classical approaches for kernel
density estimation [16], the mean-shift procedure locates the
local maxima i.e. zeros without estimating the density function.
Iterative computation of the mean-shift vector that always points
in the direction of maximum increase in density, and translation of
the kernel in the direction of the mean-shift vector, is guaranteed
to converge to a local mode. Mean-shift vectors therefore define
a path to the desired modes. Once the modes are found, the
associated clusters can be separated based on the local structure of
the feature space. Though the technique performs well on several
vision tasks such as segmentation and tracking, its quadratic
computational complexity makes it expensive to perform on
mobile robots with computational constraints. Fig. 3 shows image
results obtained using mean-shift code [13].
An entirely different approach to image segmentation is the use

of ‘‘active contours’’ (curve evolution), where initial contours are
defined and deformed towards the object boundaries using partial
differential equations. The active contourmethods typically follow
one of two representation schemes: parametric active contours
(PAC) and geometric active contours (GAC). PAC use a parametric
representation for the curves while GAC use level sets. Level sets
and hence the GAC methods readily handle changes in topology
as the curve evolves, for example merging and splitting. Active
contour methods are typically classified into three groups: edge-
based [17], region-based [18,15] and hybrid [19], based onwhether
they primarily operate on image edges, regions or a combination
of both. Sumengen et al. [15] describe a region-based GAC method
that segments images into multiple regions. Their approach uses
edgeflow image segmentation, where a vector field is defined
on pixels in the image grid and the vector’s direction at each
pixel is towards the closest image discontinuity at a predefined
scale. An edge function based on this vector field is used to
segment precise region boundaries. Their method allows the user
to specify the similarity measure for region merging and splitting
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Fig. 3. Mean shift using [13]. (a) House [13], (b) Outdoor, (c) Robot soccer, (d)–(f) Segmented images.
based on different image characteristics such as color or texture.
The algorithm is reasonably robust to the initial curve estimates
and provides good segmentation results on a variety of images.
However, it involves an iterative computation for finding the final
contours and takes seconds of off-board processing per image.
These algorithms are hence unsuitable for real-time operation on
mobile robots with constrained resources.
Image segmentation can also be posed as a graph-partitioning

problem, and more specifically as a weighted undirected graph
G = (V , E), where each node vi ∈ V represents a pixel in the
image, and the edges E connect certain pairs of neighboring pixels.
Each edge is assigned aweight based on someproperty of the pixels
that it connects. In recent times, graph-basedmethods [20,14] have
proven to be powerful segmentation algorithms. One popular class
of graph-based segmentation methods find minimum cuts in the
graph, where a cut measures the degree of dissimilarity between
point sets by computing the weights of the graph edges that have
to be removed to separate the two sets (say A, B):

cut(A, B) =
∑

u∈A, v∈B

w(u, v) (2)

and the goal is to minimize this cost. Since the minimum cut
favors cutting small sets of isolated nodes in the graph [21], Shi
and Malik [14] proposed the idea of considering pixel clusters
instead of looking at pixels in isolation. Their normalized cut
is a robust global criterion that simultaneously maximizes the
similarity within a cluster and the dissimilarity between clusters.
Since the normalized cut for a graph with regular grids is NP-
complete, it is approximated and solved using principles drawn
from the generalized eigenvalue problem [14]. In addition to
providing good segmentation and object recognition, normalized
cuts have also been used for other computer vision tasks such as
motion tracking [22] and 3D view reconstruction [23]. However,
the graph-optimization process is time-consuming. Even with
the current linear approximations to the original quadratic-time
implementation it involves an iterative optimization phase that
takes seconds of off-board processing per image. Graph-based
algorithms are hence computationally expensive to perform in
real-time (20–30 Hz) on mobile robot platforms. Other recent
graph-based image segmentation techniques (e.g. Felzenswalb
and Huttenlocher [20]) provide improved measures for graph
partitioning but still have similar computational limitations,
even after incorporating simplifying assumptions that increase
Table 1
Standard segmentation methods — very few are suitable for mobile robot vision.

Algorithms Computational
complexity

Manual training,
prior information

Adaptation to
new situations

Non-parametric [13] High No No
Active contours
[17,19,15]

High Yes No

Graph partitioning
[20,23,14]

High No No

Color maps
[29,31,26]

Low Yes No

processing speed. Pantofaru and Hebert [24] compare the mean-
shift and graph-based image segmentation algorithms. Fig. 4
shows sample results obtained with the NCuts code [25].
Many mobile robot applications require real-time operation

(20–30 Hz) and a robust mapping from pixels to color labels
(the color map in Eq. (1)). In addition to being clustered, similar
image regions may hence need specific color labels and may need
to be tracked across several images even when environmental
conditions change. This color map is typically created through
an elaborate offline training phase — images are manually
labeled over a period of hours to obtain the initial training
samples [26]. Since the extensive labeling only labels 5%–10%
of the color space, the color map is produced by generalizing
from these training samples using machine learning techniques
such as neural networks [27], decision trees [28], axis-parallel
rectangle creation [29] and nearest neighbors [30]. Fig. 5 provides
segmentation results on some sample images captured on-board
a legged robot. The main disadvantage of the hand-labeled color
map is that this entire training process has to be repeatedwhen the
environmental conditions such as the illumination change. Even
methods that provide some robustness to illumination changes by
using a different color space [31] do not eliminate the need for
extensive manual calibration, or the sensitivity to illumination.
Table 1 uses the criteria mentioned in Section 2 to evaluate

the segmentation algorithms discussed above. The ‘‘adaptation’’
column represents the ability to detect environmental changes,
and to consistently hold the appropriate belief over various colored
regions when such changes occur — red regions for instance
should be clustered appropriately and labeled red even when the
illumination changes. In summary, classical approaches to color
segmentation are either computationally expensive to implement
on mobile robots and/or require extensive manual calibration that
is sensitive to environmental changes.



M. Sridharan, P. Stone / Robotics and Autonomous Systems 57 (2009) 629–644 633
Fig. 4. Normalized cuts using [25]. (a) House [13], (b) Outdoor, (c) Robot soccer, (d)–(f) Segmented images.
Fig. 5. Hand-labeled color map on legged robots [31]. (a)–(c) Original images, (d)–(f) Segmented output.
4. Color learning

An alternative to extensive manual color calibration is to
enable the robot to autonomously segment images using learned
models of color distributions. Attempts to learn color models or
make them independent to illumination changes have produced
reasonable success [32–34] but the methods either require the
spectral reflectances of valid objects to be pre-computed, or
require additional transformations. A mobile robot deployed in
real-world domains is frequently required to operate in new
environments where the surroundings, including objects, may
change dynamically. It is therefore not feasible to measure
the properties of the environment in advance. The additional
transformations between color spaces or for image transformation
compensation, operate at the level of pixels or small image regions.
Such transformations are expensive to perform on mobile robots
that require real-time operation.
One question that arises in color learning is the choice of color

spaces. Gevers and Smeulders [32] evaluate several color spaces
to determine their suitability for recognizing multicolored objects
invariant to significant changes in viewpoint, object geometry and
illumination. They present a theoretical and experimental analysis
of several color models. In addition to RGB, Intensity I, normalized
RGB (rgb), saturation S, and Hue H, they propose three models:

c1 = tan−1
R

max{G, B}
, c2 = tan−1

G
max{R, B}

,

c3 = tan−1
B

max{R,G}
(3)
l1 =
(R− G)2

(R− G)2 + (R− B)2 + (G− B)2
,

l2 =
(R− B)2

(R− G)2 + (R− B)2 + (G− B)2

l3 =
(G− B)2

(R− G)2 + (R− B)2 + (G− B)2

m1 =
Rx1Gx2

Rx2Gx1
, m2 =

Rx1Bx2

Rx2Bx1
, m3 =

Gx1Bx2

Gx2Bx1
.

Each of the three channels of c1c2c3 represents a ratio of
color channel values, while each component of l1l2l3 represents
normalized square color differences. The modelm1m2m3 has each
channel representing a ratio of color values of neighboring pixels
(x1, x2) — see [32] for details. Assuming dichromatic reflection
and white illumination, the authors show that rgb, saturation S,
Hue H, and the newly proposed models c1c2c3, l1l2l3 and m1m2m3
are all invariant to the viewing direction, object geometry and
illumination. Hue H and l1l2l3 are also invariant to highlights,
while m1m2m3 is independent of the illumination color and inter-
reflections under the narrow-band filter assumption. This analysis
serves as a reference on the choice of color space, based on the
requirements of the specific application.
In parallel to the computer and robot vision research of

color, human perception and representation of color have been
extensively studied over the last several decades. In his thesis,
Lammens [35] presents a nice analysis of the physiology of human
color perception and its representation in language. He analyzes
how humans perceive colors and represent them in language, and
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he proposes appropriate colormodels based on neurophysiological
data and psychophysical findings in color perception. More recent
work by Mojsilovic [36] provides a computational model for color
naming based on experiments where human subjects are asked
to name and distinguish between colored patches. She proposes
a color naming metric that measures distances between colors
analogous to the human perception of color. The metric, based
on distances and angular measurements in the LAB and HSL color
spaces [37], is used to determine the color decomposition of
images. Such results from the analysis of the human visual system
can be exploited by the robot vision researchers. For instance, in
their work on mobile robots, Sridharan and Stone [31] use the
LAB color space [38], that organizes colors similar to the human
visual system, in order to provide robustness tominor illumination
changes.
In an approach representative of computer vision methods

for robust color learning, Lauziere et al. [34] use the prior
knowledge of the spectral reflectances of the objects under
consideration for learning color models and recognizing objects
under varying illumination. The color camera sensitivity curves
are measured offline and used to recognize objects better
under daylight illumination conditions. However, in addition to
being computationally expensive, their method requires prior
measurement of the camera characteristics and the spectral
properties of the environment. Mobile robots are however
frequently required to operate in new environments.
On mobile robots, attempts to autonomously learn the color

map have rarely been successful. Cameron and Barnes [39] present
a technique based on scene geometry, where edges are detected
in the image and closed figures are constructed to find image
regions that correspond to certain known environmental features.
The color information extracted from these regions is used to build
the color classifiers, using the EarthMover’s distance (EMD) [40] as
the cluster similarity metric. Illumination changes are tracked by
associating the current classifiers with the previous ones based on
the symbolic color labels. The edge detection, formation of closed
figures, and clustering are computationally expensive (order of a
few seconds per image) even with off-board processing. However,
the technique introduces the promising idea of exploiting the
structure inherent in robot application domains to learn color
models.
Chernova et al. [41] propose another approach that exploits

the known structure of the application environment to learn
color models. The robot moves along a pre-specified sequence of
poses. At each pose, edges are detected and objects are found
using domain knowledge, and image regions within the detected
object were used as training samples to generate the color
map. The technique works within a controlled lab setting and
the appropriate motion sequence is manually specified. For true
autonomous behavior the robot should be able to autonomously
plan action sequences suitable for color learning and adaptation to
environmental changes.
Jungel [42] modeled colors using three layers of color maps —

the lowest layer represents a small subset of easily distinguishable
colors, while the higher layers represent a greater number of
colors with increasing precision levels. Colors in each level are
represented as cuboids relative to a reference color. In order to
increase the processing speed, very little computation is performed
to distinguish between colors whose distributions are similar or
overlap in the color space. Instead, domain-specific constraints
based on the known object properties such as colors and sizes are
used during object recognition to disambiguate between object
colors. The reference color is tracked with minor illumination
changes, and the distributions of other colors in the color space (the
cuboids) are displaced by the same amount as the reference color.
Though it is an innovative solution for real-time robot applications,
cuboids are not a good model for color distributions and different
color distributions do not change by the same amount with
illumination changes. As a result, the generated map is reported
to be not as accurate as the hand-labeled one.
The recent DARPA challenges (Grand Challenges 2005, 2006;

Learning Applied to Ground Robots 2004–2008; Urban Challenge
2007) have emphasized the need for using visual information
in real-world applications [43,44,3,45,46]. In order to navigate
autonomously outdoors, issues such as color segmentation and
illumination invariance had to be addressed. Mathematical models
such as Mixture of Gaussians (MoG) and histograms were used to
model color distributions. For instance, the MoG model for the a
priori probability density of pixel values (m) for a particular color
label (l) is given by:

p(m|l) =
k∑
i=1

p(i) · fi(m), fi(m) ∼ N (µi,6i) (4)

where there are k weighted components in the model (weight
= p(i)), each being a 3D Gaussian with a mean (µ) and a
covariance matrix (6). However, none of these techniques exploit
the domain knowledge significantly, and the modeling of colors
is limited to distinguishing between ‘‘safe’’ and ‘‘unsafe’’ road
regions. The visual input is used only to find obstacles or image
edges, while high-level decisions are predominantly based on
non-visual sensors such as laser and GPS. However, the colored
objects inmobile robot domains encode a lot of useful information.
The challenge is to find an appropriate representation for color
distributions that may overlap in the color space.
Sridharan and Stone [47,48] address the challenge of au-

tonomous real-time modeling of overlapping color distributions.
The known structure of the robot’s environment (positions, sizes
and color labels of objects) is exploited to plan an action sequence
suitable for learning the desired colors. Color distributions are
modeled using a hybridmodel of 3D Gaussians and 3D histograms:

if Gaussian (l) then p(m|l) ∼ N(µl,6l) (5)

else p(m|l) ≡
Histl(b1, b2, b3)∑

Histl
where N(µl,6l) is the 3D Gaussian for color l, while (b1, b2, b3) are
the histogram bin indices corresponding to the pixel values (m1,
m2, m3). The robot chooses the best representation for each color
distribution based on autonomously collected image statistics.
The learned color map provides segmentation and localization
accuracies comparable to that obtained from a manually-labeled
map. The learning scheme however takes ≤6 min of robot
time instead of hours of human effort. Overlapping colors
(e.g. red, pink, orange) are modeled efficiently but the sensitivity
to illumination still remains. Segmentation performance with
learned color maps is shown in Fig. 6. Table 2 evaluates the color
learning algorithms based on the criteria essential formobile robot
applications. Algorithms developed for color learning on mobile
robots eliminate the need for manual training and do not need
prior knowledge of color distributions, irrespective of whether
color is used as a primary or secondary input source. However,
when color is the main sensory input some robot applications
exploit domain knowledge to model colors whose distributions
may overlap in the color space (the ‘‘(Yes)’’ in the third row).
Such domain knowledge is much easier to provide than hand
labeling images ormeasuring properties of each new scene and the
objects in them. Furthermore, existing algorithms can be used to
learn most of this domain knowledge (e.g. SLAM algorithms [49]
for learning the objects’ locations). To summarize, standard color
modeling algorithms are computationally expensive, and even
when implemented successfully on mobile robots, they do not
address the problem of detecting and adapting to environmental
(illumination) changes.
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Fig. 6. Segmentation on mobile robots with learned color maps. (a)–(c) Original, (d)–(f) Segmented (Mixture of Gaussians), (g)–(i) Segmented (Hybrid model) [47]. Hybrid
model works in real-time and with overlapping colors.
Table 2
Color modeling methods — eliminate manual calibration but cannot adapt.

Algorithms Computational
complexity

Manual training,
prior information

Adaptation to
new situations

Color modeling
[32,34,36]

High Yes No

Robot apps: color
secondary [44,3]

Low No No

Robot apps: color
primary [39,41,42,48]

Low No (Yes) No

5. Illumination invariance

Irrespective of the method used for color segmentation or color
learning, one common problem is the sensitivity to illumination.
Mobile robot application environments are characterized by
illumination changes and it is essential for the robot to be able
to map the image pixels to the correct color labels, i.e. we need
color constancy. This section surveys somepopular color constancy
techniques proposed over the last few decades. The following
equation illustrates the factors that influence color perception
[50,51]:

mpj =
∫
E(λ)Sx(λ)Rj(λ) dλ (6)

where E(λ) is the illumination, Sx(λ) is the surface reflectance
at a 3D scene point x that projects to the image pixel p, while
Rj(λ) is the channel sensitivity of the imaging device’s jth sensor.
The sensor value of the jth sensor of the imaging device at pixel
p, mpj , is the integral of the product of these three terms over
the range of wavelengths of light. The robot needs to perceive
the same color (l) of the object under different illuminations.
Changing either the surface reflectance or the illumination can
modify the sensor values, assuming that the imaging device and
hence the channel sensitivities remain unchanged. Fig. 7 presents
an example of the effect of illumination change on a trained
color map. Most color constancy methods focus on static images,
are computationally expensive, and predominantly estimate the
current illumination E(λ) and surface reflectance S(λ) as a function
of a known illumination.
The Retinex theory [52] was one of the first attempts to

explain human color constancy. Based on the assumption that
white reflection inducesmaximal rgb camera responses (since light
incident on a white patch is spectrally unchanged after reflection),
Land suggested that measuring the maximum r, g, and b responses
can serve as an estimate of the scene illuminant color. When it was
determined that the maximum rgb in an image is not the correct
estimate for white, the technique was modified to be based on
global or local image color averages. The ‘‘Gray World’’ algorithm
by Buchsbaum [53] is also based on the same principle. However
the image average, either local or global, has been shown to
correlate poorly with the actual scene illuminant [54]. In addition,
this method excludes the possibility of distinguishing between
the actual changes in illumination and those as a result of a
change in the collection of surfaces in the environment. However,
the environmental objects change dynamically in a mobile robot
application domain.
Another classic approach to color constancy was proposed

by Maloney and Wandell [51]. They try to recover the surface
reflectance functions of objects in the scene with incomplete
knowledge of the spectral distribution of the illumination. They
provide amathematical analysis of color constancy anddecompose
both the illumination and the surface reflectance functions as a
weighted linear combination of a small set of basis functions:

Sx(λ) =
n∑
j=1

σ x
j Sj(λ), E(λ) =

m∑
i=1

εiEi(λ) (7)

leading to a relationship between sensor responses and surface
reflectances:

mp = Λεσ x (8)

whereΛε is a p (dimensions ofmp, the sensor vector at a pixel) by
nmatrix whose (k, j)th entry corresponds to E(λ)Sj(λ)Rk(λ). They
show that a unique solution is possible iff the number of sensory
channels, three in a color camera, is at least one more than the
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Fig. 7. Illumination sensitivity. (a)–(d) Color map trained under an illumination, (e)–(h) Ceases to work when illumination changes significantly.
number of basis functions that determine the surface reflectances.
Assuming that the illumination is constant over an image region,
they use the pixel values to estimate the illumination and the
surface reflectance. The paper also presents some interesting
conclusions about human color perception. However, neither
surface reflectances nor illuminations can be modeled well with
just two basis functions. In addition, the illumination does not have
to remain constant over large image regions.
Forsyth proposed the gamut mapping algorithm for color

constancy [55], which estimates the current illumination as a
function of a known illumination. Since surfaces can reflect
no more light than is cast on them, he concluded that the
illuminant color is constrained by the colors observed in the
image and can hence be estimated using image measurements
alone. The algorithm generates a set of mappings that transform
image colors (sensor values) under an unknown illuminant to the
gamut of colors observed under a standard (canonical) illuminant,
using 3D diagonal matrices. Then a single mapping is chosen
from the feasible set of mappings in order to estimate the
actual sensor values under the canonical illuminant. Though the
method requires advance knowledge of the possible illuminants
to generate the mappings, it emphasizes the point that image
statistics can provide a good estimate of the illumination.
Realizing that the scene illuminant intensity cannot be

recovered in Forsyth’s approach, Finlayson modified it to work
in the 2D chromaticity space [56]. He proved that the feasible
set calculated by his algorithm was the same as that calculated
by Forsyth’s original algorithm when projected into 2D [57]. He
then proposed the median selection method, which includes a
constraint on the possible color of the illuminant in the gamut
mapping algorithm. More recently he proposed a correlation
framework [50], where the range of colors that can occur under
each of a possible set of illuminants is computed in advance.
Correlating this range with the colors in a test image estimates the
likelihood that each of a possible set of illuminants is the scene
illuminant.
Instead of estimating the illumination intensity, Klinker

et al. [33] focus on the surface reflectance properties of objects in
the scene. They propose an approach for color image understand-
ing based on the Dichromatic Reflection Model (DRM). The color
of reflected light is described as a mixture of the light from the
surface reflection (highlights) and body reflection (actual object
color). DRM can be used to separate a color image into an image
based on just the highlights, and the original image with the high-
lights removed. They present a color image understanding system
that can describe the reflection processes occurring in the scene.
Their work requires prior knowledge of the possible illuminations
andproperties of objects in the scene,while robots are typically de-
ployed in environments where it is not feasible to measure these
properties in advance. However, their technique provides a better
understanding of how the illumination and surface reflectances in-
teract to produce the sensor responses i.e. the camera image.
In contrast to the classical approaches to color constancy, sev-

eral Bayesian approaches have also been proposed. Brainard and
Freeman [58] present a Bayesian decision-theoretic framework
which combines all available statistics such as gray world, sub-
space and physical realizability constraints. They model the rela-
tion among illuminations, surfaces and photosensor responses and
generate a priori distributions to describe the probability of exis-
tence of certain illuminations and surfaces. They present a local
mass loss function:

L(x̃, x) = − exp{−|K−1/2L (x̃− x)|2} (9)

where x̃ is the estimate of the parameter vector x, and |K−1/2L x|2 =
xTK−1x. ThematrixKL is chosenwith sufficiently small eigenvalues
so that the local mass loss function rewards approximately
correct estimates and assigns an almost equal penalty for grossly
incorrect estimates. The maximum local mass (MLM) estimator
is obtained by minimizing the expected loss for the local mass
loss function. The MLM estimator integrates local probabilities
and uses Bayes’ rule to compute the posterior distributions for
surfaces and illuminants for a given set of photosensor responses.
However, their approach assumes a priori knowledge of the
various illuminations and surfaces, which is not feasible to obtain
in many robot application domains.
Along similar lines, Tsin et al. [59] present a Bayesian MAP

(maximum a posteriori) approach to achieve color constancy for
outdoor object recognitionwith a static surveillance camera. Static
overhead high-definition color images are collected over several
days, and are used to learn statistical distributions for surface
reflectance and the illumination. Then a linear iterative updating
scheme is used to converge to the classification of the illumination
and hence the objects in the test images. Most mobile robots
operate in a dynamically changing world with motion induced
image distortion and a limited view of its surroundings. Though
collecting statistics as proposed by their approach may not be
feasible in most robot applications, defining the space of operation
based on the task is applicable to robot domains as well.
In contrast to the Bayesian methods, Rosenberg et al. [60]

develop models for sensor noise, canonical (i.e. ‘‘true’’) color and
illumination. The pixel values are considered to be proportional
to the sensor values under the canonical illuminant, and are
transformed to a log-space, normalized and discretized to obtain
a 2D color space that factors out the pixel intensities. Based
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on the assumption that the global scene illuminant parameters
are independent of the canonical color of an object, a single
distribution is maintained over the canonical colors and used
to compute the a priori likelihood of observing a particular
color measurement given a set of illumination parameters. Given
an input image under an unknown illumination within the
set of illuminations the system is trained for, the a posteriori
global scene illumination parameters are determined by an
exhaustive search over the space defined by the learned models,
using the KL-divergence measure. Experimental results show
that the performance is better than that obtained by using a
Maximum Likelihood Estimate approach. This approach assumes
a priori knowledge of the illuminations and sensor noise, and
involves a computationally expensive search process. Mobile
robots however frequently move into regions with previously
unknown illuminations and sensor noise.
In the domain of mobile robots, the problem of color constancy

has often been avoided by using non-visual sensors such as laser
range finders and sonar [4]. Even when visual input is considered,
the focus has been on recognizing just a few well-separated
colors [38,1] or to use intensity-based features [5]. Until recently,
there has been relatively little work on illumination invariance
with a moving camera in the presence of shadows and artifacts
caused by rapid motion in real-world domains. Furthermore, even
the few approaches that do function within the computational
constraints of mobile robots (e.g. [61,62,3]) do not autonomously
model illuminations and overlapping colors to smoothly detect and
adapt to a range of illuminations.
Lenser andVeloso [62,63] present a tree-based state description

and identification technique which they use for detecting illumi-
nation changes on Aibos (four-legged robots). They incorporate a
time series of average screen illuminance to distinguish between
illuminations, using the absolute value distance metric to deter-
mine the similarity between distributions. Prior work has shown
that average scene illuminant is not a good representation for illu-
mination [54]. In addition, their method does not run in real-time
on-board a robot. However, their work provides additional sup-
port to the hypothesis that temporal image statistics can be used to
model illuminations— the goal is to enablemobile robots to collect
these statistics autonomously.
Since both sensing and actuation on mobile robots involve

uncertainty, probabilistic (i.e. Bayesian) methods are becoming
popular for mobile robot tasks. For instance, Schulz and Fox [64]
estimate colors using a hierarchical Bayesian model with Gaussian
priors and a joint posterior on position and environmental
illumination. In their approach, the mean color vector obtained
from an image captured at a known location is treated as a
direct observation of the current illumination. The posterior over
illuminations at time k, denoted by θk is modeled as a Gaussian:
p(θk|ī1:k) = N (θk;µk,6k), where īk is the mean color vector and
the Gaussian parameters (mean, covariance) are estimated using a
standard Kalman filter update [65]. The joint posterior over robot
poses and illuminations is factorized:

p(θk, x1:k|z1:k, u1:k−1) = p(θk|x1:k, z1:k, u1:k−1) p(x1:k|z1:k, u1:k−1)

= p(θk|ī1:k)p(x1:k|z1:k, u1:k−1) (10)

where z1:k are input images up to time k and u1:k−1 are the robot
motion commands. This decomposition allows the use of Rao-
Blackwellised Particle Filters [65] such that illumination (θk) can
be determined based on the estimated robot pose. The method
however requires significant prior information to construct the
a priori Gaussian density functions for color distributions over
known illuminations — several images are hand labeled. The
results reported in the paper indicate that the algorithm requires
significant human supervision for experiments with just two
distinct illuminations and a small set of colors. The Bayesian
framework can however be exploited if the models for color
distributions and illuminations are learned autonomously.
Anzani et al. [61] describe another Bayesian approach for

illumination invariance on wheeled robots. They use a Mixture of
Gaussians (MoG) tomodel the distribution of each color Eq. (4). The
labeling of color classes and association with mixture components
is done by human supervision, and the Bayesian decision rule is
used during classification to determine the color label. In order to
adapt the model parameters and number of mixture components
to changing illuminations, the EM algorithm [16] is used. Their
algorithm has been tested only over a few intensity variations
in the lab and involves iterative computation for parameter
estimation. In addition to the computationally expensive iterative
process, color distributions are not alwayswell-modeledwithMoG
and it may be infeasible to obtain a large set of training samples in
robot domains — incremental learning may be necessary.
The recent DARPA challenges have resulted in several ap-

proaches to illumination invariance on real-world mobile robot
domains [43,44,3,45,46]. Though the visual information was only
used sparingly in these challenges, Thrun et al. [3] model colors as
MoG (Eq. (4) in Section 4) and add additional Gaussians or modify
the parameters of the existing Gaussians in response to illumina-
tion changes. As mentioned above, not all colors are modeled well
using MoG given limited training data. Furthermore, they were in-
terested only in distinguishing safe regions on the ground from the
unsafe regions and did not have to model colors whose distribu-
tions overlap in the color space.
In their work on color learning on legged robots, Sridharan

and Stone [47,66] enable the robot to model illuminations using
autonomously collected image statistics. While the robot is
building models for the color distributions (Eq. (5) in Section 4),
it also collects sample environmental images to create histograms
in the color space (normalized RGB). In addition, the robot
computes the distance between every pair of these histograms
to arrive at a distribution of distances between color histograms
under a given illumination. The histograms and the distribution
of distances characterize a particular illumination. Periodically,
the robot captures images and computes the corresponding
color space histogram. If the average distance between this
histogram and the stored histograms corresponding to the current
illumination is significantly different from the expected range of
distances under the current illumination, a significant change in
illumination is detected. The robot adapts to large illumination
changes by re-learning the appropriate portions of the color map.
Furthermore, the robot detects minor illumination changes by
monitoring the color segmentation performance over known scene
objects, and adapts by updating the color distributions in real-time
using Gaussian and histogram-merging techniques. The combined
strategy enables the robot to operate smoothly in a range of
illuminations [67]. Fig. 8 shows sample images as the robot tracks
illumination changes.
Table 3 evaluates the illumination invariance algorithms based

on the criteria in Section 2. Computer vision approaches are com-
putationally expensive and/or require extensive prior knowledge
of the possible illuminations and the scene objects. Algorithms im-
plemented formobile robots only tackle a small subset of the prob-
lem.Methods that can exploit domain knowledge to autonomously
detect and adapt color models to new illuminations are very
rare [67], and even these schemes require some domain knowl-
edge to be specified in advance (the ‘‘(Yes)’’ in the final row). As
in the case of color modeling, providing minimal domain knowl-
edge to enable adaptation to illumination changes is significantly
easier than measuring all the properties of the environment. Illu-
mination invariance is hence still an open problem, both onmobile
robots and in computer vision in general.
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Fig. 8. Tracking illumination changes on mobile robots. (a)–(b) Before and after illumination change (Object1), (c)–(d) Before and after illumination change (Object2),
(e)–(h) Without illumination adaptation, (i)–(l) with real-time adaptation.
Table 3
Illumination invariance methods — adaptation to new conditions is very rare.

Algorithms Computational
complexity

Manual training,
prior information

Adapt to new
situations

Classical methods
[55,52,51]

High Yes No

Bayesian/model-based
[58,60,59]

High Yes No

Robot apps: domain
knowledge not
used [61,62,64]

Low Yes No

Robot apps: domain
knowledge
exploited [67]

Low No (Yes) Yes

6. Action planning

Color segmentation is rarely, if ever, the end purpose of a
vision algorithm, especially when used on a mobile robot. Many
robot vision algorithms actively consider the purpose of object
recognition when considering how to spend computational or
action resources — sometimes it may be necessary to perform a
sequence of actions before a particular object comes within the
robot’s view and can be used tomodel the colors. In such situations,
it can be useful for a robot to plan its motion to facilitate color
learning.
We are interested in visual processingmanagement: given a set

of information-processing and sensing actions, choose an action
sequence that achieves the desired goal reliably, while using the
available resources optimally. For instance, if the goal is to learn
the color blue from a blue box, only the image regions known to
contain a box need to be examined. This problem can be addressed
by two different approaches: learning and planning.
In the learning approach the robot could use different action

sequences to perform each task repeatedly, using techniques such
as Reinforcement Learning [68] to score the action sequences and
choose the best sequence for each task. Learning through repeated
trials on a robot, though interesting, would however involve ex-
tensive manual effort that might be infeasible in many applica-
tions. The alternative is to jointly plan the sensing (where to look)
and information-processing (what to look for). Challenges to be ad-
dressed include: minimizing the amount of domain knowledge to
be manually encoded, conflict resolution when multiple feasible
actions exist, and planning under uncertaintywhen the action out-
comes are non-deterministic.
There exists a significant body of work in the computer vision

community on using a user-specified goal to plan a pipeline
of visual operators, including classical approaches for active
vision [69]. However, many of these algorithms use deterministic
models of the action outcomes: the pre-conditions and the effects
of the operators are propositions that are required to be true
a priori, or are made true by the application of the operator.
Unsatisfactory results are detected by execution monitoring using
hand-crafted rules, followed by re-planning the operator sequence
or modifying the operator parameters [70–72]. There has also
been somework on autonomous object detection and avoidance in
vehicles [73], and on interpretation of 3Dobjects’ structure [74] but
extensions tomore general vision tasks have proven to be difficult.
Probabilisticmethods have also been used for image interpreta-

tion. Darrell [75] used memory-based reinforcement learning and
Partially Observable Markov Decision Processes (POMDPs) [76] to
learn what foveation actions to execute, and when to execute the
terminal recognition action, in order to foveate salient body parts
in an active gesture recognition system. In the learning phase,
manual feedback is provided after the execution of the recogni-
tion action in order to assign a reward to the action sequence. The
learned recognition policies are transformed into a compact aug-
mented Finite StateMachine for online recognition. More recently,
Li et al. [77] posed image interpretation as a MDP. The reward
structure is determined offline by applying all possible sequences
of operators to human-labeled images. States are abstracted into a
set of image features, and dynamic programming is used to com-
pute value functions for regions in this abstracted feature space.
Online image interpretation involves feature extraction and the
choice of action that maximizes the value of the learned functions.
In robot domains the true state of the world is not known, action
outcomes are noisy, and action execution may change the state.
Furthermore, computing the utilities of actions by repeated trials
is often infeasible in robot domains.
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AI planning, in general, is a very well researched field [78].
Several modern AI planningmethods exploit the classical planning
machinery by relaxing the limiting constraints on prior knowledge
of the states and action outcomes [79,80]. Draper et al. [79]
proposed C-BURIDAN, a planning scheme that is similar to a
POMDP formulation since it models actions as probabilistic state
transitions between state beliefs to choose the best action to
perform. A symbolic STRIPS-like representation [81] is used for
reasoning about the action effects and symbolic sub-goals of
the desired goal. Action pre-conditions and effects are manually
specified, and a notion of action costs does not exist. The technique
cannot accumulate belief by repeated application of the same
action without a manual ordering of actions.
On the other hand, Petrick and Bacchus’s PKS planner [80]

describes actions in terms of their effect on the agent’s knowledge
rather than their effect on the world, using a first order language.
The model is hence non-deterministic in the sense that the true
state of the world may be determined uniquely by the actions
performed, but the agent’s knowledge of that state is not. For
example, dropping a fragile itemwill break it, but if the agent does
not know that the item is fragile, it will not know if it is broken,
and must use an observational action to determine its status. PKS
captures the initial state uncertainty and constructs conditional
plans based on the agent’s knowledge. In the context of visual
operators, PKS would plan to use the operators to examine each
salient image region, branching based on what is discovered.
More recently, Brenner and Nebel [82] proposed the Continual

Planning (CP) approach, which interleaves planning, plan execu-
tion and planmonitoring. It uses the PDDL syntax [83] and is based
on the FF planner [84]. Unlike classical planning approaches, an
agent in CP postpones reasoning about unknowable or uncertain
states until more information is available. The agent allows actions
to assert that the action pre-conditions will bemet when the agent
reaches that point in the execution of the plan, and re-planning is
triggered if those pre-conditions are not met during execution or
are met earlier. CP is therefore quite similar to PKS in represen-
tation, but works by re-planning rather than constructing condi-
tional plans. However, there is no representation of the uncertainty
in the observations and actions. In vision applications with noisy
observations, the optimal behavior may be to take several images
of a scene and accumulate the evidence obtained by running the vi-
sual operators more than once. This cannot be readily represented
in CP, C-BURIDAN or PKS,
A classical approach for planning high-level behaviors on robots

is to use a behavior-based architecture, for instance algorithms
that build on the subsumption architecture [85]. The underlying
principle is that the representation for information depends on
the intended use of the information. Complicated behaviors are
decomposed into layers of simple behaviors. A layer implements
a particular behavior goal and higher-level goals subsume those of
the lower layers. For instance the lowest layer could encode ‘‘avoid
obstacles’’ or ‘‘follow the wall’’, followed by a layer that encodes
‘‘explore the environment’’, which in turn is subsumed by the
overall goal: ‘‘create a map of the environment’’. The distributed
behavior promotes modularity, but there is very little cognitive
reasoning in the decision making, and there is no explicit state
or action representation — effects of actions are known only by
executing the actions. Such a systemwould be infeasible in complex
robot systems. Hence, most planning systems on robots use some
form of knowledge representation, and use reactive planning for
simple control tasks within a larger system.
Instead of manually encoding the action outcomes, Sridharan

and Stone [67,86] exploit the structure of the environment (known
positions, sizes and color labels of objects) to enable a legged
robot to autonomously learn probabilistic models for the motion
errors and the feasibility of learning color models at different
locations. The robot is then able to robustly plan action sequences
that simultaneously maximize color learning opportunities while
minimizing the possible localization errors [86]. The robot is
able to respond to unexpected changes by re-planning from its
current state, thereby providing support to the hypothesis that a
combination of learning and probabilistic planning is currently the
most appealing option for autonomous mobile robot operation.
Fig. 9 shows examples of planning a sequence of actions to learn
colors.
The probabilistic (i.e. decision-theoretic) scheme is currently a

popular alternative for planning a sequence of actions for practical
domains [87,2]. Here, the planning task is posed as an instance of
probabilistic sequential decision making, or more specifically as
a POMDP. POMDPs elegantly capture the incomplete knowledge
of the state by maintaining a probability distribution over the
true state (i.e. belief state). The non-deterministic action outcomes
are also modeled probabilistically. The POMDP model is solved
using techniques such as value-iteration [68], and the output policy
provides an action sequence that simultaneously maximizes the
reliability and minimizes the use of resources. However, practical
problems formulated as POMDPs soon become intractable because
the state space increases exponentially and the solutions are
exponential in the state-space dimensions [88,68]. In recent times,
the focus has therefore shifted to finding approximate solutions to
POMDPs [89,90] (see [91,92] for surveys), and imposing a structure
or hierarchy on the problem to make it more tractable [93,2,
94]. Pineau et al. [2] use a hierarchical POMDP for high-level
behavior control on a nursing assistant robot. Similar to the MAXQ
decomposition for MDPs [95] they impose an action hierarchy:
the top-level action is a collection of simpler actions represented
by smaller POMDPs. Complete solutions (policies) for the smaller
POMDPs are combined to provide the total policy. Invoking the
top-level policy recursively invokes policies in the hierarchy until
a primitive action is reached. POMDPs at all levels are defined
over the same state-action space and the relevant space for each
POMDP is abstracted using a dynamic belief network. Foka and
Trahanias [93] proposed a similar system for autonomous robot
navigation. A significant portion of the data for hierarchy and
model creation is however application-specific, and has to be
hand-coded. Furthermore, evenwith state-of-the-art approximate
POMDP solvers [90] there is an intractability inherent in POMDPs
for domains with large, complex state spaces.
Recent work by Sridharan et al. [96,97] presents a novel

hierarchical POMDP framework for a cognitive interaction scenario
where a human and a robot jointly converse about and interact
with objects on a tabletop. Given input images of the scene with
several salient regions-of-interest (ROIs), many visual operators
that can be applied on the images, and a query to answer, their
approach decomposes the overall planning problem into two
sub-problems: the problem of choosing which ROI to perform
processing on, and the problem of deciding how to process the
chosen ROI. One POMDP is defined at the higher level (HL)
where actions consist of choosing the ROI to process, and several
POMDPs are defined at the lower level (LL) with one POMDP
each for planning the visual operators to apply on a particular
ROI. Unlike other hierarchical POMDP approaches, autonomously
collected statistics are used to learn the query-specific models
at the HL and LL, which are then solved to obtain the overall
policy. However, as the state space becomes more complex,
a range of hierarchies in the state and action space may be
required, in addition to faster POMDP solvers. Still, probabilistic
(POMDP) planning methods provide the most promising results,
and significant attention is being devoted towards learning the
hierarchies autonomously [98].
Table 4 compares the action-planning schemes based on the

criteria required for vision-based mobile robot operation. Most
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Fig. 9. Action planning for color learning [86] on mobile robots. (a)–(d) Robot plans a sequence of poses (arrow represents the orientation) depending on environmental
configuration to learn colors — one color learned at each pose.
Table 4
Action-planning methods — Probabilistic autonomous schemes provide the more
promising results on mobile robots.

Algorithms Computational
complexity

Manual training,
prior information

Adapt to new
situations

Classical methods High Yes No
Reactive methods Moderate Very little No
Continual planning Low Yes No
Robot apps:
probabilistic,
extensive prior info
[87,2]

High Yes No

Robot apps:
probabilistic, limited
prior info [86,97]

Low Very little Yes

classical and non-probabilistic planning methods require prior
knowledge of states and action outcomes, which may not be
feasible to provide in robot applications. Even when extensive
manual encoding of information is not required (e.g. the reactive
approach [85] or continual planning [82]), the techniques either
require several expensive robot trials to build useful world
models or fail to capture the non-deterministic action outcomes.
Even a large subset of the probabilistic planning algorithms for
robot domains require a lot of prior information to be manually
encoded [87,2]. Very rarely do robot action-planning methods
learn a majority of the required state and action models without
human supervision [86,97] — even in such cases some domain
knowledge needs to be encoded, though it is significantly easier to
provide. To summarize, a combination of learning and probabilistic
planning is currently the most appealing direction of research for
real-world robot applications that require autonomous operation.

7. Bootstrapping learning and adaptation

Though color learning, illumination invariance and action plan-
ning have been discussed as separate modules, there exist inter-
dependencies that can be exploited to create a predominantly
autonomous real-time color-based robot vision system. As an ex-
ample, we describe our work that enables a mobile robot to au-
tonomously plan actions that facilitate color learning and smooth
adaptation to illumination change. Our experiments were run on
the Sony ERS-7 Aibos (four-legged robots) [99] and other wheeled
robot platforms [47].
One standard application domain for the Aibos is the RoboCup

initiative [100], where teams of four robots play a competitive
game of soccer on an indoor soccer field (4 m × 6 m) — the long-
term goal is to create a team of humanoid robots that can compete
against a human soccer team under natural conditions by the year
2050. The robot’s primary sensor is a color camera in the nose. It
has three degrees-of-freedom in each leg, and three more in its
Fig. 10. An image of the Aibo and robot soccer field.

head. The field has four color-coded markers spread around the
boundary, in addition to the goals. The robot detects thesemarkers
in the input images captured at 30Hz, and localizes itself in order to
coordinate its activities with its teammates and score goals against
the opponents. All processing for vision, localization, motion and
strategy is performed on-board using a 576 MHz processor. The
flow of information is similar to that described in Fig. 1 (Section 1),
though the architecture is ‘‘event-driven’’. Fig. 10 shows an image
of the Aibo and the soccer field.
When the robot is first deployed in the environment, it has

no prior knowledge of the color distributions or the possible
illuminations. It knows the positions, sizes and color labels of
certain objects in its environment (the structure), and it knows
its approximate starting pose. Existing approaches can be used
to learn a significant portion of this structure (e.g. SLAM [9]).
The robot uses the known structure to heuristically plan a
motion sequence and learn models for the color distributions
of interest [101], thereby obtaining the color map under the
current illumination. This learning takes ≈ 6 min of robot time
instead of hours of human effort. While learning color models, the
robot collects random images of the surroundings to model the
illumination: color space histograms and second order statistics
as described in Section 5. Furthermore, as the robot moves in
the environment during and after the color learning, it collects
statistics to learn a model for the motion errors and the feasibility
of learning colors at various locations (≈ 1 h of autonomous
learning).
For all subsequent changes in object configuration or illumina-

tion, our algorithm works as follows. Sudden or large illumination
changes, for instance turning on (or off) a few lamps in the room,
are detected by comparing the current image statistics with the
stored image statistics corresponding to the known illuminations.
Once a large illumination change is detected, the robot adapts by
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Table 5
Time taken to find-and-walk-to-object. The inclusion of Adaptmajor and Adaptminor
enables the robot to operate autonomously over a range of illuminations.

Illum+ Alg Time (s) Fail

Constant + NoAdapt 6.18± 0.24 0
Slow+ Adaptmajor 31.73± 13.88 9
Slow+ Adaptmajor,minor 6.24± 0.31 0
Sudden+ Adaptminor 45.11± 11.13 13
Sudden+ Adaptmajor,minor 9.72± 0.51 0
Sudden+ Slow+ Adaptmajor,minor 10.32± 0.83 0

using the learned motion error and color learning feasibility mod-
els to plan an action sequence that simultaneouslymaximizes color
learning opportunitieswhileminimizing localization errors: a new
colormap is learned.Minor illumination changes, for instance dim-
ming a few lamps in the room, are detected by tracking the changes
in the current color distribution models using Gaussian or his-
togram merging.
As an example of the experiments performed to evaluate

our algorithms, we describe the experiment that tested the
autonomous adaptation to illumination changes.Wemeasured the
time taken by the robot to find-and-walk-to-object: it started out
near the center of the field with the object placed near the penalty
box of the opponent’s goal. Table 5 tabulates the results under
six different conditions, averaged over three illumination sources,
with 15 trials for each test case. Adaptmajor and Adaptminor represent
the use of the algorithms that enable the robot to detect and adapt
to major and minor illumination changes respectively.
When the illumination does not change, the robot can find-

and-walk-to-object in 6.18 ± 0.24 s. When the illumination is
slowly changed as the robot performs the task, using justAdaptmajor
does not help — large variance in the second row. With Adaptminor
the results are as good as before (6.24 ± 0.31 s). Next, when
the illumination is suddenly changed as the robot starts walking
towards the seen object, using just Adaptminor does not help. The
robot totally fails to perform the task most of the time, as seen
by the large number of failures (fourth row, third column). With
the combined strategy, i.e. with both Adaptmajor and Adaptminor ,
the robot can perform the task efficiently, the additional time
being used to ensure that a change in illumination did occur
(9.72± 0.51 s). We infer that the improvement is primarily due to
Adaptmajor . In all these experiments,when the illumination changes
significantly, the robot is put in conditions similar to the ones for
which it has already learned color and illuminationmodels. Hence,
once amajor change is detected,Adaptmajor consists of transitioning
to the suitable models. Finally the robot is made to find-and-walk-
to-object while the illumination is changed significantly initially,
and after 3 s is changed slowly over the next 5 s. The robot is
able to do the task in 10.32 ± 0.83 s iff both Adaptmajor and
Adaptminor are used. We therefore conclude that a combination of
the schemes is essential to operate under a range of illumination
intensities (≈400 Lux to ≈1600 Lux) and color temperatures
(2300 K–4000 K) [67].
Our approach has a couple of key features. First, the robot boot-

straps based on the available information. During color learning
the robot initially has no knowledge of color distributions and
hence chooses to execute only actions that require minimal move-
ment. As the robot learns a few colors it is able to localize bet-
ter and hence plan and execute subsequent actions more robustly.
Second, the robot requires minimal human supervision. The ini-
tial specification of the structure and an action sequence suitable
for learning are a lot easier to provide than hand-labeling im-
ages. All subsequent detection and adaptation to change is au-
tonomous. Furthermore, the learning and adaptation algorithms
have been tested in un-engineered indoor corridors on multi-
ple robot platforms, while the action selection algorithm can be
used to learn features in addition to color. The results described
here are hence a step towards autonomous color-based mobile
robot operation — they show that the inter-dependencies between
color learning, segmentation, illumination invariance and action
planning can be exploited to create an autonomous, learning and
adapting mobile robot vision system. Additional videos and im-
ages can be viewed online: www.cs.utexas.edu/∼AustinVilla/?p=
research/illuminvar_colorlearn, www.cs.utexas.edu/∼AustinVilla/
?p=research/gen_color

8. Summary and future work

Mobile robots possess immense potential in terms of their ap-
plicability to a wide range of tasks [1–3] since high-fidelity sen-
sors such as color cameras are becoming available at moderate
costs. The sensors however typically require frequent and exten-
sive manual calibration in response to environmental changes. For
instance, though vision is a rich source of information, color cam-
eras require extensive manual calibration that is sensitive to illu-
mination changes. The major challenge to the widespread use of
mobile robots is hence the ability to learn, adapt and operate au-
tonomously. In this article we have looked at such learning and
adaptation in the context of color-based mobile robots operating
in dynamic environments. We have especially focused on survey-
ing a set of representative approaches for color segmentation, color
learning, illumination invariance and action planning.
A common observation in all the surveyed modules is that

many state-of-the-art computer vision and robot vision algorithms
fall short of satisfying the desired characteristics that would
facilitate autonomous color-based mobile robot operation: real-
time operation, deployment without extensive manual training
or prior information, and adaptation to previously unseen
environmental conditions. The assumptions that are made while
solving just the vision problems, predominantly cease to hold in
the case of physical agents that interact with the real-world —
this is true of several robot tasks in addition to those reviewed
in this article. Instead of just modifying existing computer vision
algorithms to make them work on mobile robots, robot vision
and autonomous mobile robot operation in general, need to be
tackled as a separate problem by clearly identifying the feasible
assumptions, limiting constraints, and the information available
to the robot. It is necessary to focus more on creating complete,
integrated systems that sense and interact with their surroundings,
rather than looking at just subsets of the problem in isolation.
The DARPA initiatives [43,44,46], the EU Cognitive Systems (CoSy)
project [102], and the RoboCup initiative [100] are all excellent
examples of tasks that aim to create such integrated systems. These
initiatives force the researchers to identify and tackle key problems
that would not arise in the absence of such practical challenges.
In the case of mobile robots operating in the dynamic

environments, the availability of high-quality visual sensors at
moderate costs presents an alluring alternative to range sensors
that offer relatively low-bandwidth information. There are several
challenges on the path of completely autonomous operation using
visual features such as color because of the inherent sensitivity of
visual information to environmental factors such as illumination.
However, there exist factors in robot application domains that can
be exploited to offset these challenges. Our work, for instance,
exploits the fact that many robot environments inherently have
a moderate amount of structure. The robot uses the structure to
learn models for color distributions, and to detect and adapt to
illumination changes. Current algorithms that learn models for
color distributions based on structure (known positions, shapes
and other characteristics of the objects) [39,41,42,48] require the
structure to be pre-specified. Existing algorithms can however be
used by the robot to learn a significant portion of this structure.
Algorithms for SLAM (Simultaneous Localization and Mapping)
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are able to use the visual input to simultaneously localize and
build a map of the robot’s surroundings [9]. In parallel, existing
computer vision methods can learn object properties (shape,
geometric arrangement etc.) from visual input [6]. One significant
step towards autonomous color-based mobile robot operation
would therefore be to enable the mobile robot to autonomously
learn the required structure and use it to learn models for other
environmental features such as color.
We observe from the survey that bootstrapping off of the

learned or manually-specified information leads to much more
autonomous and robust performance than tackling the individual
problems separately. As described in Section 7, it is possible for a
mobile robot to plan action sequences that facilitate the learning of
models for color distributions, and to use the learned color models
to monitor and modify the plan to learn models for other colors
robustly. In addition, the robot is able to use the learned models to
recognize and adapt to illumination changes, which in turn leads to
an appropriate modification of the learned models. Incorporating
such bootstrapping between planning, learning and adaptation is
therefore an appealing approach to achieve efficient and robust
solutions to a range of robot vision problems.
The sensitivity to illumination is a major challenge to the

use to color on mobile robots. As seen in Section 5, illumination
invariance (i.e. color constancy) has been a major research focus
for years, but the problem is still far from being solved. Instead
of making unrealistic assumptions, such as being able to measure
the properties of the operating environment and/or knowing all
possible illuminations ahead of time, robot vision algorithms that
have modeled the effects of illumination on color on-board the
robot [64,67] have led to robust performance under a range of
illuminations. It would be interesting to use the experimental
data obtained over years of vision research to model the effects
of illuminations on the color distributions in the form of a joint
color–illumination mathematical model whose parameters can
then be learned autonomously by the robot.
In this article we have primarily looked at color-based

mobile robot vision because it is a low-dimensional feature well
understood under static conditions, and is easier to analyze under
dynamic conditions. However, the lessons learned here are also
applicable to challenges faced when working with other visual
features and other sensory inputs (e.g. range sensors). Similar
algorithms that bootstrap and learn feature models in real-time
can be devised for other visual features such as texture or local
gradients [5]. An even more challenging problem is to fuse the
information from a set of sensors, each with a varying degree
of unreliability, which may have complementary properties. A
combination of a laser range finder and a color camera is an
example of such a complementary set of sensors. Such sensor
fusion requires a probabilistic representation of the performance of
the sensory sources,which can be learned by the robot. The learned
representations can then be used to learn how the information
from the sensors can be combined to obtain a single robust
representation of the current state of the world. In the DARPA
challenges [44,3] for instance, sensor fusion continues to be amajor
challenge.
When there are multiple sources of information, multiple

actions that can be performed by the robot, and multiple
information-processing operators that can be applied on the
visual input, it is useful for the robot to plan a sequence
of actions to achieve the desired goal reliably and optimally.
Optimal use of resources is important for robots that interact
with the real world through noisy sensors and actuators, because
they need to respond to dynamic changes. Classical planning
methods [78] require prior knowledge of the states and action
outcomes, and they do not model uncertainty effectively. Posing
this planning problem as a POMDP has yielded themost promising
results because POMDPs elegantly capture the features of mobile
robot domains: partially observable states and non-deterministic
actions. POMDPs also provide the capability to simultaneously
maximize reliability and minimize resource usage. The inherent
intractability of modeling practical problems as POMDPs has
been partially overcome by imposing a structure or hierarchy
on the problem [93,2,97] based on domain knowledge. Unlike
existing work on probabilistic planning, our work in the robot
soccer domain [86] and the human–robot interaction domain [97]
shows the feasibility of using autonomously learned models of
action outcomes to generate robust plans to achieve the desired
goal. In the future even the hierarchical decomposition may be
learned [98], and a range of state and action hierarchies [2]
may be used to formulate complex real-world problems as
POMDPs. Furthermore, a hybrid combination of deterministic and
probabilistic planning schemes may be used to analyze complex
human–robot interaction scenarios.
In the long term, enabling robots to operate in the real-world

would require autonomous operation at a much larger scale.
The robot would need capabilities such as spatial and semantic
reasoning [103], analysis of 3D geometric structure, and natural
language processing during human–robot interactions [104]. As
the focus shifts towards developing such ‘‘cognitive’’ abilities on a
mobile robot, including the ability to reason and bind information
across different sensingmodalities, it becomes necessary to design
architectures that enable autonomous learning and adaptation
in complex systems [102]. Ultimately, the goal is to enable
widespread mobile robot deployment in a range of applications,
with the robots operating autonomously and interacting with
humans under completely uncontrolled natural conditions.
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