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SLAM - A short history of photogrammetry

Standard 60%
Stereo overlap

Surveying for Mapping---part 1, http://www.icsm.gov.au/mapping/surveying1.html
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SLAM - A short history of photogrammetry

R.Li,J. Hwangbo, Y. Chen, and K. Di. Rigorous photogrammetric processing of hirise stereo imagery for mars topographic mapping.
Geoscience and Remote Sensing, IEEE Transactions on, (99):1-15, 2008.
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SLAM - A short history of photogrammetry
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K.Di, F. Xu, J. Wang, S. Agarwal, E. Brodyagina, R. Li, and L. Matthies. Photogrammetric processing of rover imagery of the 2003 mars
exploration rover mission. ISPRS Journal of Photogrammetry and Remote Sensing, 63(2):181-201, 2008.
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What is the SLAM problem?

* The problem could described in the following
guestion:

“If we leave a robot in an unknown location in
an unknown environment can the robot make
a satisfactory map while simultaneously being
able to find its pose in that map?”

* The solution to this problem was the “Holy
Grail” of the field of mobile robotics.



The SLAM Problem (Difficulties)

* The bad news:

— Pretty difficult problem because it combines the
difficulties of both the localization and mapping
problem without the essential assumptions of the
known map or the known pose. Classic chicken or
egg problem. Data Association problem also key.

* The good news:

— The problem is considered solved but there are
still some issues on having more general SLAM
solutions and creating better maps.



Fig. 37.1 Graphical model of the SLAM problem. Arcs in-
dicate cansal relationships, and shaded nodes are directly
observable tothe robot. In SLAM, the robot seeks torecover
the unobservable variables



The SLAM Problem- Preliminaries(1)

X, : the state vector
describing the location and
orientation of the vehicle at
time k.

u, : the control vector
applied the time k-1.

m,: a vector describing the
location of the ith landmark.
The landmarks are
motionless.

z, . an observation taken
from the vehicle of the
location of the ith [andmark
at time k.

Robot

Landmark

Estimated

True
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The SLAM Problem- Preliminaries(2)

* Also the following sets are defined:
— Xo.k = X0, X, 5 X} Position estimates
— U, =1{uy, Uy, u.}  Motion update controls
— 2, =124, 2, , 2} Sensor measurements
—m={m,;, m,,~-, m} Landmark locations



Full SLAM Problem

 We need to compute for all times k the probabilistic
distribution of the joint posterior density of the
landmarks and the state:

P(x,, m|Z,.,, U,.., X,) Why do we need the x, element?

* |In order to compute that probability we need to
compute previously:

— P(z,]x,, m) (measurement model)
— P(x,|%_4, u,) (motion model)

* Online SLAM just calculates the most recent
state based upon the previous states



Probabilistic SLAM - Updates

 Time update (prediction):

P (X, M Zoge—1, U o) = | POt xie—1, i) X P(gm g, M| Zge—1, Upege—1, X0) A% g1

 Measurement update (correction):
P(zy|x, m)P(xy, m|Zg.k—1, Ugoker Xo)

o P(Zklzg:k—leO:k) .
* We can solve the localization problem with the assumption

that we know the map:
P(x|Zo.er U, m)

P(xkﬁ mlzﬂ:k—b UD:RJ x{]) =

* And the mapping problem with the assumption we know the
location:
P(leD:kJZD:RJ UD:R)



Structure of Probabilistic SLAM(1)

 The landmark locations estimates are highly
correlated. We may know with high accuracy
the relation between the landmarks even if
the absolute location is uncertain!

* The correlations are increased for every
observations. Also the estimates for the
relative location for every landmark are

improved monotonically as more observations
are made!



Structure of Probabilistic SLAM(2)




Structure of Probabilistic SLAM(3)

The observation made by the robot regarding the relative location
of the landmarks can be considered nearly independent, because
the relative location of the landmarks is independent from the
robot’s coordinate frame.

The observation made by the robot regarding the absolute location
of the landmarks is more uncertain because the absolute location
of each landmark is strongly related to the robots coordinate frame.

Because of the correlations of the landmarks we can update the
location of landmarks even we cannot observe. So the correlations
are increased for every observation we make.

Thus, the robot ‘s accuracy on building the relative map of the
environment increased for more observations.



Solutions to SLAM Problem

 The goal is to find an appropriate representation for
the observation and motion problem.

* Three different methods:
— Graph Slam
— EKF-SLAM: Using the Extended Kalman Filter.
— Using particle filters :
* Rao-Blackwellized particle filter (FastSLAM)



Graph-Based SLAM ??

SLAM = simultaneous localization and
mapping

graph = representation of a set of
objects where pairs of objects are
connected by links encoding relations
between the objects


allen
Typewritten Text


Graph-Based SLAM

= Nodes represent poses or locations

= Constraints connect the poses of the
robot while it is moving

= Constraints are inherently uncertain

V>~

P Robot pose Constraint



Graph-Based SLAM

= Observing previously seen areas
generates constraints between non-
successive poses

P Robot pose Constraint


allen
Typewritten Text


Idea of Graph-Based SLAM

= Use a graph to represent the problem

= Every node in the graph corresponds
to a pose of the robot during mapping

= Every edge between two nodes
corresponds to a spatial constraint
between them

= Graph-Based SLAM: Build the graph
and find a node configuration that
minimize the error introduced by the
constraints



Graph-SLAM and Least Squares

= The nodes represent the state

= Given a state, we can compute what
we expect to perceive

= We have real observations relating
the nodes with each other



Graph-SLAM and Least Squares

= The nodes represent the state

= Given a state, we can compute what
we expect to perceive

Find a configuration of the

nodes so that the real and

predicted observations are
as similar as possible

10
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Create an Edge If... (1)

= ..the robot moves from x; to x; 1
= Edge corresponds to odometry

O—0O
X \ Xi4+1

The edge represents the
odometry measurement

17



Create an Edge If... (2)

= ..the robot observes the same part of
the environment from x; and from x;

O O

xj

Measurement from x; Measurement from X
18



The Graph with Landmarks

= Nodes can represent:
= Robot poses
= Landmark locations

= Edges can represent:

= | andmark observations
= Odometry measurements

= The minimization
optimizes the landmark
locations and robot
poses

|

*
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Constraint
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UAV Example

Camo_dataAssoc

& X |cam1_dataAssoc

58



UAV Example

=2 dataAssoc.vcg* - RViz -8 x
File Panels Help
Cam0_dataAssoc & X |Cam]_dataAssoc & X

Cam?2_dataAssoc X




Graph Slam

* Treat constraints (motion and measurement) as “soft” elastic springs
* Want to minimize energy in the springs




Linear 1-D Graph Slam

e Solution: List all constraints in a linear system

e Absolute constraint: X(0) = Q - starting position

* Movement Constraints: X(t) = X(t-1) + Dx(t)

* Measurement Constraints: Use distance measure

to landmark:

Landmark L(k) = X(t) + N

* Each constraint can be an estimate based upon a
probability distribution



Linear 1-D Graph Slam

* For exact solution, we need 1 constraint per unknown
e Example: X(0) =-3; X(1) =X(0) + 5; X(2) = X(1) + 3

* Each constraintis a linear equation in the unknowns

e Solution:

100 X(0) -3

110 X(1) |= | 5 A*X=B

_0-11 X)) L3_ X=A1*B
1 0 O

X=[-3 2 5] At=1 10
1 1 1



Linear 1-D Graph Slam

* Now add landmark constraints, linking position with map:
e At X(0) see L(0) at distance 10; At X(1) see L(0) at distance

5; at X(2) see L(0) at distance 2

e Solution:
~ 1000
1-100
01-10
100-1

X(0)
X(1)
X(2)
L(0)

010-1
001-1-—

X=[-3257]

A*X=8B

Cannot Invert A !
X=A1l*pB Q




Linear 1-D Graph Slam

For overdetermined system, compute Pseudolnverse Matrix:
A*X=B
AT *A* X =A"*B; AT =transpose of A
X= (AT*A)1* AT * B; A'A guaranteed to be square
(AT*A)1* AT is Pseudolnverse

Solution: I _ _
1000 —/X(0) 3
1-100 ||X@1) |= |-5
01-10 |{x(2) -3
100-1 ||L(0) -10
010-1 5
001-1 | — 2

X=[-3 2 5_7]



Matlab Code: Least Squares

[1000;-1100;0-110;100 -1;010-1;001-1]
[-3; 5; 3; -10; -5; -2]

A
B

ATA = transpose(A)*A
ATB = transpose(A)*B
X= inv(ATA)*ATB;
disp('Solution:')
disp(X)

X(0) = -3; X(1) = 2; X(2)=5; L(0) = 7
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Location: -3 2 5

X(0) X(1) X(2)
Move 5

@ =» ¢

10

LO
7

Consistent Solution: I1f L0 s at 7, each loop is consistent



Matlab Code: Inconsistent Measurements?

A=
Include an inconsistent measurement, find BEST solution 1 000
11 0 0
0 -1 1 0
A=[1000;-1100;0-110;100 -1;,010-1;001-1] é ‘1) 8 1
B=[-3; 5; 3; -10; -5; -1] 00 1 -1
Inconsistent measurement Bfg
Was X(2) +2 =L(0) 5
Now (X2) +1 =L(0) _130
-5
ATA = transpose(A)*A -1
ATA =
ATB = transpose(A)*B 3 -1 0 -1
X= inv(ATA)*ATB; 131
. . 0 -1 2 -1
disp('Solution:') 1 -1 -1 3
. ATB =
disp(X) 18
-3
Least squares shifts the robot locations and landmark 116
Location to reduce the overall error. Notice the Solution:
locations and the landmark are adjusted! However X(0) ; s
Remains unchanged as it has an absolute constraint 5.5

(X(0) = fixed location) 6.875



-3 2.25
X(0) X(1)

Orig. Move 5

Orig. Move 3

Orig. 1 Orig.2

LO
6.875

Inconsistent Measurement Solution: Adjust Lo,
X(1), X(2) to minimize error in measurements and movement.
Now LO = X(2) + 1.375, closer to measured value = 1. Note
ALL relative values are shifted to reduce global error.



Adding Confidence Measures

 Linear Least Squares allows us to include a weighting of each linear constraint.

 If we know something about how confident a measure is, we can include that
in the computation

e  We weight each constraint by a diagonal matrix where the weights are
1/variance for each constraint.

* Highly confident constraints have low variance; 1/variance is large weight.
* Unconfident constraints have high variance; 1/variance is small weight.
Matrix Formulation for weighted Least Squares (A*X=B):

X=(AT*W*A)'1 * AT*W*B

Weights amplify/attenuate measurements based on measurements variance



Matlab Code: Confidence Weights

Include a weight on a measurement, scaled by 1/variance

% x0= -3, x1= x0+5; x2=x1+3; xo sees LO at 10; x1 sees LO at
5,x2seeslO0at1l

% we also have MUCH higher confidence (small variance) in
% X(2) measurement of LO

% use weight matrix vﬁﬁre diagonals are 1/sigma**2 —

% variance in each measttrement. Use variance of 0.2 (1/.2
=5)

A=[1000;-1100;0-110;100 -1,010-1;001-1]
B=[-3; 5; 3; -10; -5; -1]
W=[100000;010000;001000;000100;00001
0;000005]

ATWA = transpose(A)*W*A
ATWB = transpose(A)*W*B
X=inv(ATWA)*ATWB;
disp('Solution:')

disp(X)

Note: Notice that LO location from X(2) is now closer to the
Measured value of 1 due to confidence weights
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-3 2.25->2.7186 5.5->5.7143

X(0) X(1) X(2)

Orig. Move 5 Orig. Move 3

Orig. 1 Orig.2

LO
6.875->6.8214

Confidence Measures Solution: Adjust L0, X(1),
X(2) to minimize error in measurements and movement,
given GREATER confidence in measurement of LO from X(2).
Now LO = X(2) + 1.107, even closer to measured value = 1.
Note ALL relative values are shifted to reduce global error.



X(0) X(1) X(2)

Move 7

loop @

Solution:
X(0)= 5.0000
X(1)= 12.0000
X(2)= 14.0000
LO=  7.0000
LO 11 L1= 16.0000

If X(1) sees LO at 4
Example: Multiple landmarks: Can and X(2) sees L1 at 1

incorporate multiple landmarks — each Solution:
measurement is a constraint. Int his example, )= 5.0000
X(0)=5, X(1)=X(0)+7, X(2)=X(1)+2; X(0) sees LO  X(1)= 12.0000

X(2)= 14.3000
at 2, X(1) sees L1 at 4 and X(2) sees L1 at 2 o= 60000

L1= 15.6667
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SLAM: EKF Slam

= Solution 1: Gaussian Filtering (EKF, UKF)
= Track a Gaussian belief of the state/landmarks
= Assume all noise is Gaussian
= Follow the well-known “predict/correct” approach  [sesspecies vane % 7o 2m e = e e e
= Pros
= Runs online

= Well understood
= Works well for low-uncertainty problems

= Cons
= Works poorly for high-uncertainty problems
= Unimodal estimate
= States must be well approximated by a Gaussian

Goal: estimate p (Xo.x, m|u1.5,21.N)

Autonomous Mobile Robots
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SLAM | how to do SLAM: Gaussian Filter

= Use internal representations for
= the positions of landmarks (: map) 5
= the camera parameters

®0

=  Assumption:
Robot’s uncertainty at starting position is zero

~

Start: robot has zero uncertainty

Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Localization | SLAM: a worked example | 25
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SLAM | how to do SLAM: Gaussian Filter

"On every frame:
= Predict how the robot has moved

= Measure A\.
= Update the internal representations

First measurement of feature A

Autonomous Mobile Robots
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SLAM | how to do SLAM: Gaussian Filter

= The robot observes a feature which is mapped with

an uncertainty related to the measurement model 3 c
0] @
"On every frame: A
by
= Update the internal representations .

Autonomous Mobile Robots
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SLAM | how to do SLAM: Gaussian Filter

= As the robot moves, its pose uncertainty increases,
obeying the robot’'s motion model.

"On every frame: /
= Predict how the robot has moved RS

Robot moves forwards: uncertainty grows

Autonomous Mobile Robots
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SLAM | how to do SLAM: Gaussian Filter

= Robot observes two new features.

"On every frame:

-
________________

= Measure N @

- /

Robot makes first measurements of B & C

Autonomous Mobile Robots
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SLAM | how to do SLAM: Gaussian Filter

= Their position uncertainty results from the combination
of the measurement error with the robot pose

uncertainty. @
= map becomes correlated with the robot pose estimate.

"On every frame:

-
-

A @
= Update the internal representations )

Robot makes first measurements of B & C

Autonomous Mobile Robots
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SLAM | how to do SLAM: Gaussian Filter

= Robot moves again and its uncertainty increases
(motion model)

"On every frame: h
= Predict how the robot has moved
\ J

Robot moves again: uncertainty grows more

Autonomous Mobile Robots
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SLAM | how to do SLAM: Gaussian Filter

= Robot re-observes an old feature
= Loop closure detection

"On every frame:

= Measure

- /

Autonomous Mobile Robots
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SLAM | how to do SLAM: Gaussian Filter

= Robot updates its position: the resulting pose estimate
becomes correlated with the feature location

estimates. @
= Robot’s uncertainty shrinks and so does the

uncertainty in the rest of the map

-~ S~
~
SS
~

"On every frame:

= Update the internal representations )

Robot re-measures A: “loop closure”
uncertainty shrinks

Autonomous Mobile Robots
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SLAM: The three main solutions

= Solution 2: Particle Filtering

= Represent our belief by a series of samples -
= Follow the well-known “predict/correct” approach 3!
= Pros 1

= Noise densities can be from any distribution
= Works for multi-modal distribtuions
= Easy to implement

= Cons il
= Does not scale to high-dimensional problems 5k s . > 4 . -
= Requires many particles to have good convergence EKF

Goal: estimate p (Xo.x, m|U1.5,Z1.N)

Autonomous Mobile Robots
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SLAM | how to do SLAM: Particle Filter

= Use internal representations for
= the positions of landmarks (: map) 5
= the camera parameters

°O

=  Assumption:
Robot’s uncertainty at starting position is zero

~

Start: robot has zero uncertainty

Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Localization | SLAM: a worked example | 35
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SLAM | how to do SLAM: Particle Filter

"On every frame:
= Predict how the robot has moved

= Measure A\.
= Update the internal representations

First measurement of feature A

Autonomous Mobile Robots
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SLAM | how to do SLAM: Particle Filter

= The robot observes a feature which is mapped with

an uncertainty related to the measurement model 3 c
0] @
"On every frame: A
by
= Update the internal representations .

Autonomous Mobile Robots
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SLAM | how to do SLAM: Particle Filter

= As the robot moves, its pose uncertainty increases,
obeying the robot’'s motion model.

"On every frame: /
= Predict how the robot has moved RS

Robot moves forwards: uncertainty grows

Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Localization | SLAM: a worked example | 38
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SLAM | how to do SLAM: Particle Filter

= Robot observes two new features.

"On every frame:

-
________________

= Measure & @

- /

Robot makes first measurements of B & C

Autonomous Mobile Robots
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SLAM | how to do SLAM: Particle Filter

= Their position uncertainty is encoded for each particle individually

"On every frame:

-
________________

A @
= Update the internal representations )

Robot makes first measurements of B & C

Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Localization | SLAM: a worked example | 40
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SLAM | how to do SLAM: Particle Filter

= Robot moves again and its uncertainty increases
(motion model)

"On every frame: h
= Predict how the robot has moved
\ J

Robot moves again: uncertainty grows more

Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart Localization | SLAM: a worked example | 41
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SLAM | how to do SLAM: Particle Filter

= Robot moves again and its uncertainty increases
(motion model)

"On every frame: h
= Predict how the robot has moved
\ J

Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart
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SLAM | how to do SLAM: Particle Filter

= Robot re-observes an old feature
= Loop closure detection

NG

"On every frame:

= Measure

Autonomous Mobile Robots
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart

ASL

Autonomous Systems Lab

Localization | SLAM: a worked example
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SLAM | how to do SLAM: Particle Filter

= After the measurement, particles are resampled
according to the likelihood of the
measurements.

"On every frame:

= Update the internal representations )

Robot re-measures A: “loop closure”
uncertainty shrinks
Autonomous Mobile Robots
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SLAM Challenges | components for scalable SLAM

Robust local
motion estimation

Lc;hg tei;ni map
man,agemen; & IOC|zat|on
it \’“‘r‘
/':B y | ORS

| A

f i 2
W»-’,
:f!fi'

Mapping &
loop-closure
detection

Autonomous Mobile Robots . .
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart [Chli,2009, PhD thesis] Localization | Monocular SLAM and beyond | 47





