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Surveying for Mapping---part 1, http://www.icsm.gov.au/mapping/surveying1.html!
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Fig. 14. HiRISE orthophoto draped on corresponding DEM with vertical
exaggeration of two times.

the image. Using the row number, the EO parameters can be
calculated from (4).

Subsequently, its image coordinates (x, y) in the left image
can be calculated. Because the DEM is a full coverage of the
stereo pair, given known ground coordinates of the point, the
ID of the CCD that covers the point can be found. Furthermore,
the specific offset of the CCD in the x direction (Xoffset

CCD-ID) is
known from the calibration data. The difference ∆x between
the image coordinate x and the CCD offset should be zero
or within a tolerance or otherwise indicate that the current
image line is not correct. In the latter case, a line up and a
line down from the current line that is one search step away
will be tested. The search moves in the direction in which ∆x
becomes smaller, until it is within the tolerance. The grayscale
at the image point of (x, y) using the final EO parameters is
assigned to the image point of the orthophoto corresponding to
the known ground point (X, Y, Z). This process repeats itself
for all the orthophoto points.

A 1-m-resolution orthophoto (3500 by 4050 pixels) was
generated. Fig. 14 shows the orthophoto draped onto the
corresponding DEM with a vertical exaggeration factor of
two. To take full advantage of the high resolution of HiRISE
imagery, a 0.25-m-resolution orthophoto was also generated.
The DEM was resampled from a 1-m grid to a 0.25-m grid for
data processing.

To check the quality of our DEM, we performed a cross-
comparison with USGS topographic products generated from
the same HiRISE stereo images, which were also used for
supporting the MER mission. For topographic mapping with
HiRISE images, USGS used both the USGS ISIS system and
the commercial photogrammetric software SOCET SET [14].
USGS products cover a longer area and are referenced to
the MOLA data. The topographic height is referenced to the
MOLA areoid. For comparison, a spatial registration between
the two DEMs is performed by a 2-D similarity transformation
using ten evenly distributed control points that are manually
selected on the orthophotos (Fig. 15).

After this horizontal registration, a vertical registration was
conducted using the same ten control points. The OSU DEM
was transformed by a shift and a rotation. Differences at each
grid point between the two DEMs were then calculated and
are shown in Fig. 16. It shows that most areas have elevation
differences of much less than 1 m. The standard deviation of
elevation differences is 0.4 m. In Fig. 16, there are vertical

Fig. 15. Control points for registration of our orthophoto with the USGS
orthophoto.

Fig. 16. Differences in elevation between the OSU DEM and USGS DEM.

edges at the places where the HiRISE CCDs cross each other.
The discontinuities are 1–2 m. These inconsistencies caused
by such CCD boundaries are handled by the tie points in the
overlapping areas from adjacent image strips in the OSU BA
system. A new improved method of treating jitter used by the
USGS in processing the Spirit site imagery is described by
Kirk et al. [14]. There are two red “spots” indicating obvious
differences between the two DEMs where these are shadows in-
side the craters cast by the rims. Due to the change of sun angle
between the two stereo images, image correlation in this case is
either low or not reliable. Furthermore, our automatic matching
software accepts only highly correlated points. The individual
ways of handling this special case by the two institutions may
cause the differences. However, overall, the two DEMs showed
a high level of consistency.

Introduction 16 

SLAM – A short history of photogrammetry 
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K. Di, F. Xu, J. Wang, S. Agarwal, E. Brodyagina, R. Li, and L. Matthies. Photogrammetric processing of rover imagery of the 2003 mars 
exploration rover mission. ISPRS Journal of Photogrammetry and Remote Sensing, 63(2):181–201, 2008.!

Fig. 6. Spirit rover traverse (Sol 154 to Sol 670) in the Husband Hill area where the rover experienced a great deal of slippage. Blue line is the traverse as computed from telemetry data and red line is
the traverse as corrected by the bundle adjustment method. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Targeted Observations) image at the Gusev site on Sol 16
and a ROTO (Roll-Only Targeted Observation) image at
the Meridiani site on Sol 8 (Malin, 2004). Each lander can
be seen from the corresponding high-resolution images.
Through each lander's position, which is also its origin of
the LSL, the LSL can be linked to the Mars body-fixed
reference system that is used for orbital image mapping
(Kirk et al., 2003; Shan et al., 2005; Li et al., 2004, 2005).

3. Rover localization based on bundle adjustment of
the surface image network

As indicated above, onboard rover localization is
primarily performed by IMU, wheel-odometry, and sun-
sensing technologies. In cases where the rover experi-
ences slippage caused by traversing loose soil or steep
slopes, particularly in a crater, the onboard visual
odometry (VO) technique was applied (Biesiadecki and
Maimone, 2005; Olson et al., 2003; Li et al., 2005). In
this mission, VO has acquired consecutive Navcam
stereo pairs (step b0.75 m) within short traverse
distances (often b10 m). The VO algorithm estimates
the rover motion by tracking interest points between
consecutive stereo pairs both in the 2D image space and
3D ground space (Matthies, 1989; Olson et al., 2003;
Cheng et al., 2006). In the MER mission, the onboard
VO processing can take two to 3 min per image pair on
MER's 20 MHz RAD6000 CPU, which reduces the
amount of distance that can be driven each sol when
using VO (Cheng et al., 2006). So VO was only enabled
in the more slippery or uncertain terrains, e.g., on the
crater wall of Endurance Crater.

A typical drive distance within each sol is 20 m to
50 m, occasionally around 100 m. A long drive may
consist of a blind drive supported by priori visualization
and analysis of images offline on Earth and an autonav
drive supported by onboard rover navigation algorithms.
The blind drive allows the rover to drive a distance
efficiently without consecutive images taken along the
traverse. This made the onboard VO algorithm or other
sequence tracking algorithms inapplicable. The BA
method builds an image network containing all
panoramas and traversing images along the traverse to

achieve a high-accuracy solution of rover positions
along the entire traverse (Fig. 2). BA-based rover
localization is performed on Earth. Whenever the rover
moves, the rover localization results are reported to the
MER science and engineering teams and are used for
planning of next sol's rover traverse.

3.1. Image network construction

As shown in Fig. 2, panoramas and traversing stereo
images of Pancam and Navcam were taken at different
locations. Pancam panoramas were acquired mainly at
locations where substantial science exploration activi-
ties took place; Navcam panoramas were taken more
frequently for navigation and near-rover site character-
ization. For localization purpose, traversing images
(forward and backward stereo pairs) were often acquired
approximately at the midpoint of a long drive (e.g., over
70 m). The image network is constructed by linking the
panoramic and traversing images with automatically
and/or manually selected tie points. The key to the
success of BA is to select a sufficient number of high
quality well-distributed tie points that link the images to
form the network. A systematic approach to automatic
selection of tie points from the panoramic images taken
at one position was developed (Xu et al., 2002; Di et al.,
2002; Li et al., 2003; Xu, 2004). This tie point selection
method consists of four steps: interest point extraction
using the Förstner operator, interest point matching,
parallax verification, and, finally, tie point selection by
gridding. More details of the algorithms are presented in
Xu et al. (2002). Descriptions of interest point matching
and parallax verification will be given later in Section 5.
In matching interest points between adjacent stereo
pairs, an initial Digital Terrain Model (DTM) is
generated that can be used to predict the location of
conjugate points and to limit the search range in the
image space. Fig. 3 shows an example of automatically
selected tie points at two adjacent stereo pairs. Fig. 3(a)
and (b) are one stereo pair, and (c) and (d) are another
stereo pair adjacent to the first pair. The blue crosses are
intra-stereo tie points, which are the tie points within one
stereo pair. The red crosses are inter-stereo tie points,

Fig. 2. Illustration of a rover traverse and the image network built as the Pancam and Navcam panoramas and traversing images are taken.
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What is the SLAM problem?

• The problem could described in the following 
question:

“If we leave a robot in an unknown location in 
an unknown environment can the robot make 
a satisfactory map while simultaneously being 
able to find its pose in that map?”

• The solution to this problem was the “Holy 
Grail” of the field of mobile robotics.



The SLAM Problem (Difficulties)

• The bad news:
– Pretty difficult problem because it combines the 

difficulties of both the localization and mapping 
problem without  the essential assumptions of the 
known map or the known pose.  Classic chicken or 
egg problem.  Data Association problem also key.
 • The good news:

– The problem is considered solved but there are 
still some issues on having more general SLAM 
solutions and creating better maps.





The SLAM Problem- Preliminaries(1)

• Xk : the state vector 
describing the location and 
orientation of the vehicle at 
time k.

• uk : the control vector 
applied the time k-1.

• mi: a vector describing the 
location of the ith landmark. 
The landmarks are 
motionless.

• zik : an observation taken 
from the vehicle of the 
location of the ith landmark 
at time k.



The SLAM Problem- Preliminaries(2)

• Also the following sets are defined:

– X0:k = {x0, x1,··· , xk}       Position estimates

– U0:k = {u1, u2,··· , uk}     Motion update controls

– Z0:k = {z1, z2,··· , zk}       Sensor measurements

– m = {m1, m2,··· , mn}     Landmark locations



Full SLAM Problem

• We need to compute for all times k the probabilistic 
distribution of the joint posterior density of the 
landmarks and the state:

P(xk, m|Z0:k, U0:k, x0)  Why do we need the x0 element?

• In order to compute that probability we need to 
compute previously:

– P(zk|xk, m)  (measurement model)

– P(xk|xk−1, uk)  (motion model)

• Online SLAM just calculates the most recent 
state based upon the previous states 



Probabilistic SLAM - Updates

• Time update (prediction):

• Measurement update (correction):

• We can solve the localization problem with the assumption 
that we know the map:

• And the mapping problem with the assumption we know the 
location:



Structure of Probabilistic SLAM(1)

• The landmark locations estimates are highly 
correlated. We may know with high accuracy 
the relation between the landmarks even if 
the absolute location is uncertain!

• The correlations are increased for every 
observations. Also the estimates for the 
relative location for every landmark are 
improved monotonically as more observations 
are made!



Structure of Probabilistic SLAM(2)



Structure of Probabilistic SLAM(3)

• The observation made by the robot regarding the relative location 
of the landmarks can be considered nearly independent, because 
the relative location of the landmarks is independent from the 
robot’s coordinate frame.

• The observation made by the robot regarding the absolute location 
of the landmarks is more uncertain because the absolute location 
of each landmark is strongly related to the robots coordinate frame.

• Because of the correlations of the landmarks we can update the 
location of landmarks even we cannot observe. So the correlations 
are increased for every observation we make.

• Thus, the robot ‘s accuracy on building the relative map of the 
environment increased for more observations.



Solutions to SLAM Problem

• The goal is to find an appropriate representation for 
the observation and motion problem.

• Three different methods:

– Graph Slam

– EKF-SLAM: Using the Extended Kalman Filter.

– Using particle filters :

• Rao-Blackwellized particle filter (FastSLAM)
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Graph-Based SLAM ?? 
SLAM = simultaneous localization and  
mapping 
 
graph = representation of a set of  
objects where pairs of objects are  
connected by links encoding relations  
between the objects 

allen
Typewritten Text
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Robot pose Constraint  

Graph-Based SLAM 

§  Nodes represent poses or locations  
§  Constraints connect the poses of the 

robot while it is moving 
§  Constraints are inherently uncertain 
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Graph-Based SLAM 

§  Observing previously seen areas 
generates constraints between non-
successive poses 

 

Robot pose Constraint  

allen
Typewritten Text
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Idea of Graph-Based SLAM 

§  Use a graph to represent the problem 
§  Every node in the graph corresponds 

to a pose of the robot during mapping 
§  Every edge between two nodes 

corresponds to a spatial constraint  
between them 

§  Graph-Based SLAM: Build the graph 
and find a node configuration that 
minimize the error introduced by the 
constraints  
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Graph-SLAM and Least Squares 

§  The nodes represent the state 
§  Given a state, we can compute what 

we expect to perceive 
§  We have real observations relating  

the nodes with each other 
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Graph-SLAM and Least Squares 

§  The nodes represent the state 
§  Given a state, we can compute what 

we expect to perceive 

Find a configuration of the  
nodes so that the real and  
predicted observations are  

as similar as possible  

allen
Typewritten Text
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Create an Edge If… (1) 

§  …the robot moves from     to 
§  Edge corresponds to odometry 

The edge represents the 
odometry measurement 
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Create an Edge If… (2) 

§  …the robot observes the same part of 
the environment from     and from 

xi 

Measurement from     

xj 

Measurement from   
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The Graph with Landmarks 

§  Nodes can represent: 
§ Robot poses 
§ Landmark locations 

§  Edges can represent: 
§ Landmark observations  
§ Odometry measurements 

§  The minimization 
optimizes the landmark 
locations and robot 
poses  

Feature 

Pose 

Constraint 
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UAV Example 
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UAV Example 



Graph Slam 

• Treat constraints (motion and measurement) as “soft” elastic springs
• Want to minimize energy in the springs



Linear 1-D Graph Slam

• Solution:  List all constraints in a linear system

• Absolute constraint:  X(0) = Q  - starting position

• Movement Constraints:  X(t) = X(t-1) + Dx(t)

• Measurement Constraints:  Use distance measure 
to landmark:

Landmark L(k) = X(t) + N

• Each constraint can be an estimate based upon a 
probability distribution



Linear 1-D Graph Slam

• For exact solution, we need 1 constraint per unknown

• Example:  X(0) = -3; X(1) =X(0) + 5; X(2) = X(1) + 3

• Each constraint is a linear equation in the unknowns

• Solution: 

1  0  0          X(0)             -3 

-1  1  0          X(1)     =       5              A * X = B

0 -1  1          X(2)              3               X = A-1 * B

X = [-3  2  5]
1     0     0

A-1 =   1     1     0
1     1     1



Linear 1-D Graph Slam
• Now add landmark constraints, linking position with map:
• At X(0) see L(0) at distance 10; At X(1) see L(0) at distance 

5;  at X(2) see L(0) at distance 2
• Solution: 

1  0  0 0        X(0)             -3 
1 -1 0  0        X(1)     =     -5              A * X = B
0  1 -1 0        X(2)            -3               Cannot Invert A !
1  0  0 -1       L(0)            -10             X = A-1 * B
0  1  0 -1                           5
0  0  1 -1                           2

X = [-3  2  5 7]



Linear 1-D Graph Slam
For overdetermined system, compute PseudoInverse Matrix:

A * X = B
AT *A * X = AT * B;   AT = transpose of A
X = (AT*A)-1 * AT * B;     ATA guaranteed to be square
(AT*A)-1 * AT      is PseudoInverse

Solution: 
1  0  0 0        X(0)             -3 
1 -1 0  0        X(1)     =     -5              
0  1 -1 0        X(2)            -3               
1  0  0 -1       L(0)            -10             
0  1  0 -1                           5
0  0  1 -1                           2

X = [-3  2  5 7]



Matlab Code: Least Squares 

A=[1 0 0 0;-1 1 0 0; 0 -1 1 0; 1 0 0  -1;0 1 0 -1; 0 0 1 -1]
B=[-3; 5; 3; -10; -5; -2]

ATA = transpose(A)*A
ATB = transpose(A)*B
X= inv(ATA)*ATB;
disp('Solution:')
disp(X)

X(0) = -3; X(1) = 2; X(2)=5; L(0) = 7

A =
1     0     0     0

-1     1     0     0
0    -1     1     0
1     0     0    -1
0     1     0    -1
0     0     1    -1

B =
-3
5
3

-10
-5
-2

ATA =
3    -1     0    -1

-1     3    -1    -1
0    -1     2    -1

-1    -1    -1     3
ATB =

-18
-3
1

17
Solution:

-3
2
5
7



X(0) X(1) X(2)

-3

Move 5 Move 3

L0
7

10

5

2

Consistent Solution:  If L0 is at 7, each loop is consistent 

loop loop

2 5Location: 



Matlab Code: Inconsistent Measurements?

A=[1 0 0 0;-1 1 0 0; 0 -1 1 0; 1 0 0  -1;0 1 0 -1; 0 0 1 -1]
B=[-3; 5; 3; -10; -5; -1]

Inconsistent measurement
Was X(2) +2 =L(0)
Now (X2) +1 =L(0)

ATA = transpose(A)*A
ATB = transpose(A)*B
X= inv(ATA)*ATB;
disp('Solution:')
disp(X)

Least squares shifts the robot locations and landmark
Location to reduce the overall error.  Notice the 
locations and the landmark are adjusted!  However X(0)
Remains unchanged as it has an absolute constraint 
(X(0) = fixed location)

A =
1     0     0     0

-1     1     0     0
0    -1     1     0
1     0     0    -1
0     1     0    -1
0     0     1    -1

B =
-3
5
3

-10
-5
-1

ATA =
3    -1     0    -1

-1     3    -1    -1
0    -1     2    -1

-1    -1    -1     3
ATB =

-18
-3
1

16
Solution:

-3
2.125
5.5
6.875

Include an inconsistent measurement, find BEST solution



X(0) X(1) X(2)

-3

Orig. Move 5 Orig. Move 3 

L0
6.875

Orig. 10 

Orig. 5

Orig.2

Inconsistent Measurement Solution:  Adjust L0, 

X(1), X(2) to minimize error in measurements and movement.  
Now L0 = X(2) + 1.375, closer to measured value = 1.  Note 
ALL relative values are shifted to reduce global error.

loop loop

2.25 5.5



Adding Confidence Measures

• Linear Least Squares allows us to include a weighting of each linear constraint. 
• If we know something about how confident a measure is, we can include that 

in the computation
• We weight each constraint by a diagonal matrix where the weights are 

1/variance for each constraint.  
• Highly confident constraints have low variance; 1/variance is large weight. 
• Unconfident constraints have high variance; 1/variance is small weight.
• Matrix Formulation for weighted Least Squares (A*X=B):

X = (AT * W * A)-1 *  AT * W * B

Weights amplify/attenuate measurements based on measurements variance



Matlab Code: Confidence Weights

% x0= -3, x1= x0+5; x2=x1+3; xo sees L0 at 10; x1 sees L0 at 
5, x2 sees L0 at 1
% we also have MUCH higher confidence (small variance) in 
% X(2)  measurement of L0
% use weight matrix where diagonals are 1/sigma**2 –
% variance in each measurement.  Use variance of 0.2 (1/.2 
=5)

A=[1 0 0 0;-1 1 0 0; 0 -1 1 0; 1 0 0  -1;0 1 0 -1; 0 0 1 -1]
B=[-3; 5; 3; -10; -5; -1]
W=[1 0 0 0 0 0 ; 0 1 0 0 0 0; 0 0 1 0 0 0; 0 0 0 1 0 0; 0 0 0 0 1 
0; 0 0 0 0 0 5]

ATWA = transpose(A)*W*A
ATWB = transpose(A)*W*B
X= inv(ATWA)*ATWB;
disp('Solution:')
disp(X)

Note: Notice that L0 location from X(2) is now closer to the 
Measured value of 1 due to confidence weights

A =
1     0     0     0

-1     1     0     0
0    -1     1     0
1     0     0    -1
0     1     0    -1
0     0     1    -1

B =
-3
5
3

-10
-5
-1

W =
1     0     0     0     0     0
0     1     0     0     0     0
0     0     1     0     0     0
0     0     0     1     0     0
0     0     0     0     1     0
0     0     0     0     0     5

ATWA =
3    -1     0    -1

-1     3    -1    -1
0    -1     6    -5

-1    -1    -5     7
ATWB =

-18
-3
-2
20

Solution:
-3.0000
2.1786
5.7143
6.8214

Include a weight on a measurement, scaled by 1/variance



X(0) X(1) X(2)

-3

Orig. Move 5 Orig. Move 3 

L0
6.875 -> 6.8214

Orig. 10 

Orig. 5

Orig.2

Confidence Measures Solution:  Adjust L0, X(1), 

X(2) to minimize error in measurements and movement, 
given GREATER confidence in measurement of L0 from X(2).  
Now L0 = X(2) + 1.107, even closer to measured value = 1.  
Note ALL relative values are shifted to reduce global error.

loop loop

2.25 -> 2.7186 5.5 -> 5.7143



X(0) X(1) X(2)

5

Move 7 Move 2 

L0

2 4 2

Example: Multiple landmarks:  Can 
incorporate multiple landmarks – each 
measurement is a constraint.  Int his example, 
X(0)=5, X(1)=X(0)+7, X(2)=X(1)+2; X(0) sees L0 
at 2, X(1) sees L1 at 4 and X(2) sees L1 at 2

loop loop

L1

Solution:
X(0)=   5.0000
X(1)=  12.0000
X(2)=  14.0000
L0=       7.0000
L1=     16.0000

If X(1) sees L0 at 4
and X(2) sees L1 at 1

Solution:
X(0)=   5.0000
X(1)=  12.0000
X(2)=  14.3000
L0=       6.0000
L1=     15.6667



| 
Autonomous Mobile Robots 
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart  

ASL  
Autonomous Systems Lab 

§  Solution 1: Gaussian Filtering (EKF, UKF) 
§  Track a Gaussian belief of the state/landmarks 
§  Assume all noise is Gaussian 
§  Follow the well-known “predict/correct” approach 

§  Pros 
§  Runs online 
§  Well understood 
§  Works well for low-uncertainty problems 

§  Cons 
§  Works poorly for high-uncertainty problems 
§  Unimodal estimate 
§  States must be well approximated by a Gaussian 

Introduction 24 

SLAM: EKF Slam 
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§  Use internal representations for  
§  the positions of landmarks (: map)  
§  the camera parameters 

§  Assumption:  
Robot’s uncertainty at starting position is zero 

SLAM | how to do SLAM: Gaussian Filter 

Start: robot has zero uncertainty 

A 

B C 

25 Localization | SLAM: a worked example 
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SLAM | how to do SLAM: Gaussian Filter 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
 

26 

First measurement of feature A 

Localization | SLAM: a worked example 
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§  The robot observes a feature which is mapped with  
an uncertainty related to the measurement model 

SLAM | how to do SLAM: Gaussian Filter 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
 

27 Localization | SLAM: a worked example 
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§  As the robot moves, its pose uncertainty increases,  
obeying the robot’s motion model. 

SLAM | how to do SLAM: Gaussian Filter 

Robot moves forwards: uncertainty grows 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
 

28 Localization | SLAM: a worked example 
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§  Robot observes two new features.  

SLAM | how to do SLAM: Gaussian Filter 

Robot makes first measurements of B & C 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
 

29 Localization | SLAM: a worked example 
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§  Their position uncertainty results from the combination  
of the measurement error with the robot pose  
uncertainty. 

a map becomes correlated with the robot pose estimate.  

SLAM | how to do SLAM: Gaussian Filter 

Robot makes first measurements of B & C 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  Robot moves again and its uncertainty increases  
(motion model) 

SLAM | how to do SLAM: Gaussian Filter 

Robot moves again: uncertainty grows more 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  Robot re-observes an old feature 
a Loop closure detection 

 

SLAM | how to do SLAM: Gaussian Filter 

Robot re-measures A: “loop closure” 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  Robot updates its position: the resulting pose estimate  
becomes correlated with the feature location  
estimates. 

§  Robot’s uncertainty shrinks and so does the  
uncertainty in the rest of the map 

SLAM | how to do SLAM: Gaussian Filter 

Robot re-measures A: “loop closure” 
uncertainty shrinks 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
 

A 

B C 
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§  Solution 2: Particle Filtering 
§  Represent our belief by a series of samples 
§  Follow the well-known “predict/correct” approach 

§  Pros 
§  Noise densities can be from any distribution 
§  Works for multi-modal distribtuions 
§  Easy to implement 

§  Cons 
§  Does not scale to high-dimensional problems 
§  Requires many particles to have good convergence 
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§  Use internal representations for  
§  the positions of landmarks (: map)  
§  the camera parameters 

§  Assumption:  
Robot’s uncertainty at starting position is zero 

SLAM | how to do SLAM: Particle Filter 

Start: robot has zero uncertainty 

A 

B C 
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SLAM | how to do SLAM: Particle Filter 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  The robot observes a feature which is mapped with  
an uncertainty related to the measurement model 

SLAM | how to do SLAM: Particle Filter 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
 

37 Localization | SLAM: a worked example 



| 
Autonomous Mobile Robots 
Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart  

ASL  
Autonomous Systems Lab 

§  As the robot moves, its pose uncertainty increases,  
obeying the robot’s motion model. 

SLAM | how to do SLAM: Particle Filter 

Robot moves forwards: uncertainty grows 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  Robot observes two new features.  

SLAM | how to do SLAM: Particle Filter 

Robot makes first measurements of B & C 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  Their position uncertainty is encoded for each particle individually 

SLAM | how to do SLAM: Particle Filter 

Robot makes first measurements of B & C 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  Robot moves again and its uncertainty increases  
(motion model) 

SLAM | how to do SLAM: Particle Filter 

Robot moves again: uncertainty grows more 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  Robot moves again and its uncertainty increases  
(motion model) 

SLAM | how to do SLAM: Particle Filter 

A 

B C 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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A 

B C 

§  Robot re-observes an old feature 
a Loop closure detection 

 

SLAM | how to do SLAM: Particle Filter 

Robot re-measures A: “loop closure” 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
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§  After the measurement, particles are resampled 
according to the likelihood of the 
measurements. 

SLAM | how to do SLAM: Particle Filter 

Robot re-measures A: “loop closure” 
uncertainty shrinks 

 
 

On every frame: 
§ Predict how the robot has moved 
§ Measure  
§ Update the internal representations 
 

A 

B C 
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SLAM Challenges | components for scalable SLAM  

Map optimisation 
3 2 

Mapping &  
loop-closure 

detection 

1 

Robust local 
motion estimation 
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