Robot Path Planning

Things to Consider:

« Spatial reasoning/understanding: robots can have many
dimensions in space, obstacles can be complicated

» Global Planning: Do we know the environment apriori ?

« Online Local Planning: is environment dynamic? Unknown
or moving obstacles? Can we compute path “on-the fly"?

« Besides collision-free, should a path be optimal in time,
energy or safety?

« Computing exact “safe” paths is provably computationally
expensive in 3D — “piano movers” problem

« Kinematic, dynamic, and temporal reasoning may also be
required

Robot Path Planning

Overview:
Visibility Graphs

1.
2. Voronoi Graphs

3.

4. Sampling-Based Planners

Potential Fields

PRM: Probabilistic Roadmap Methods
RRTs: Rapidly-exploring Random Trees

Visibility Graph

How does a Mobile Robot get from Ato B?

Assume robot is a point in 2-D planar space
Assume obstacles are 2-D polygons

Create a Visibility Graph:

— Nodes are start point, goal point, vertices of
obstacles

— Connect all nodes which are “visible” — straight line
un-obstructed path between any 2 nodes

— Includes all edges of polygonal obstacles
Use A* to search for path from start to goal

Visibility Graph - VGRAPH

start

« Start, goal, vertices of obstacles are graph nodes
« Edges are “visible” connections between nodes,
Including obstacle edges

Visibility Graph - VGRAPH

« A* search for shortest path via visible vertices

VGRAPH: Grown Obstacles

 VGRAPH algorithm assumes point robot
 What if robot has mass, size?

e Solution: expand each obstacle by size of the robot —
create Grown Obstacle Set

o B A -
origin —

robot obstacle grown obstacle
* This effectively “shrinks” the robot back to a point

e Graph search of the VGRAPH will now find shortest
path if one exists using grown obstacle set

C34733 Class Notes

1 2-D Robot Motion Planning Algorithm Using Grown Obstacles

e Reference: An Algorithmfor Planning Collision Free Paths Among Poyhedral Obstaclesby T. Lozano-Perez and M.
Wesley.

e This method of 2-D maotion planning assumes a set of 2-D convex polygonal obstacles and a 2-D convex polygonal
mobile robot.

e The general idea is grow the obstacles by the size of the mobile robot, thereby reducing the analysis of the robot’s
motion from a moving area to a single moving point. The point will always be a safe disatnce away form each
obstacle due the growing step of each obstacle. Once we shrink the robot to a point, we can then find a safe path for
the robot using a graph search technique.

2 Algorithm

e Method I: Grow each obstacle in the scene by the size of the mobile robot. This is done by finding a set of vertices
that determine the grown obstacle (see figure 1). First, we reflect the robot about its X and Y axes. Placing this
reflected object at each obstacle vertex, we can map the robot reference points when added to these vertices. This
constitutes a grown set of vertices.

e Given the grown set of vertices, we can find its convex hull and form a grown polygonal obstacle. The obstacle is
guaranteed to be the convex hull.

e We can now create a visibility graph (see figure 2). A visibility graph is an undirected graph G = (V, E) where the
V is the set of vertices of the grown obstacles plus the start and goal points, and £ is a set of edges consisting of all
polygonal obstacle boundary edges, or an edge between any 2 vertices in V' that lies entirely in free space except for
its endpoints. Intuitively, if you place yourself at a vertex, you create an edge to any other vertex you can see (i.e.
is visible). A simple algorithm to compute G is the following. Assume all N vertices of the G are connected. This
forms w edges. Now, check each edge to see if it intersects (excepting its endpoints) any of the grown obstacle
edges in the graph If so, reject this edge. The remaining edges (including the grown obstacle edges) are the edges
of the visibility graph. This algorithm is brute force and slow (O(XN3) but simple to compute. Faster algorithms are
known.

e The shortest path in distance can be found by searching the Graph G using a shortest path search (Dijkstra’s Algo-
rithm) or other heuristic search method.

e Method II: Every grown obstacle has edges from the original obstacle and edges from the robot. These edges occur
in order of the obstacle edge’s outward facing normals and the inward facing normals of the robot. By sorting these
normals, you can construct the boundary of the grown obstacle(see figures 4.14. and 4.15 in this handout from
Planning Algorithms, S. Lavalle, Cambridge U. Press, 2006. http://planning.cs.uiuc.edu/)

VGRAPH: Growing Obstacles

Reflect robot about X, Y axes Add reflected robot vertices to
each obstacle vertex

. Triangular
obstacle

Compute convex hull of vertices Convex hull is grown obstacle

VGRAPH: Grown Obstacles

N/ v >

AN
Point Robot Path ¢ Path after growing obstacles

with square robot 8

P hmiiadatads” PR
e Fd »» Expanded
% <,/ object >

g i //l R R
= R
~
! R (reference point) Start Flipl -l Flip2
w ; Vertices (b)

>

(a)

__4Vertices

K S i Convex
/7 +Vertices &_~ hull
A - %
e A
(© (d)

Figure 1: Reflection method for computing grown obstacles (from P. McKerrow, Introduction to Robotics).

Hutart

Figure 2: Visibility graph with edges.

160 S. M. LaValle: Planning Algorithms

Cobs O

(a) (b)

Figure 4.14: (a) Slide the robot around the obstacle while keeping them both in
contact. (b) The edges traced out by the origin of A form Cps.

B2
} N
aq
Q2 ., --— —— a2
i ;; O% 33 B 4, 3

#

Ba B
(a) (b)

Figure 4.15: (a) Take the inward edge normals of A and the outward edge normals
of 0. (b) Sort the edge normals around S*. This gives the order of edges in Cyps.

VGRAPH Extensions

« Rotation: Mobile Robot can rotate

e Solution:
— Grow obstacles by size that includes all rotations
— Over-conservative. Some paths will be missed
— Create multiple VGRAPHS for different rotations

— Find regions in graphs where rotation is safe, then
move from one VGRAPH mapping to another

* Non-convex obstacles/robots: any concave polygon can
be modeled as set of convex polygons

VGRAPH: Rotations

Left: Rectangular robot that can rotate
Right: Polygon that approximates all rotations
Polygon is over-conservative, will miss legal paths

Fig. 5. Fig. 6.

A
=}
S
A A I~
{a,8) 7

Path for grown obstacles with fixed robot orientation Path for grown obstacles with robot rotation

Growing Non-Convex robots

| A

B B, By,

Figure 3: Concave objects. Decompose concave robot A into convex regions, Compute grown space of each convex region
with obstacle B, union the resulting grown spaces (from R. Schilling, /'undamentals of Robotics).

VGRAPH Summary

Guaranteed to give shortest path in 2D

Path is dangerously close to obstacles — no
room for error

Does not scale well to 3D. Shortest path in 3D
IS hot via vertices:

Growing obstacles //% Goal

is difficult in 3D /

Start /

Lt

4 Finding the Convex Hull of a 2-D Set of Points

o Reference: Computational Geometry in C by J. O’Rourke

e Given a set of points .S in a plane, we can compute the convex hull of the point set. The convex hull is an enclosing
polygon in which every point in S is in the interior or on the boundary of the polygon.

¢ An intuitve definition is to pound nails at every point in the set S and then stretch a rubber band around the outside
of these nails - the resulting image of the rubber band forms a polygonal shape called the Convex Hull. In 3-D, we
can think of “wrapping” the point set with plastic shrink wrap to form a convex polyhedron.

e A test for convexity: Given a line segment between any pair of points inside the Convex Hull, it will never contain
any points exterior to the Convex Hull.

o Another definition is that the convex hull of a point set S is the intersection of all half-spaces that contain S. In 2-D,
half spaces are half-planes, or planes on one side of a separating line.

5 Computing a 2-D Convex Hull: Grahams's Algorithm

There are many algorithms for computing a 2-D convex hull. The algorithm we will use is Graham’s Algorithm which is
an O(N Log N) algorithm (see figure 4).

a c D>

Given N points, find the righmost, lowest point, label it Py.

Sort all other points angularly about P,. Break ties in favor of closeness to Py. Label the sorted points Py - - - Py _1.
Push the points labeled Py _; and P, onto a stack. These points are guaranteed to be on the Convex Hull (why?).
Seti =1

While 7 < N do

If P; is strictly left of the line formed by top 2 stack entries (Piop, Prop—1), then Push P; onto the stack and
increment i; else Pop the stack (remove Py,p).

Stack contains Convex Hull vertices.

6 Finding Shortest Paths: Dijkstra’s Algorithm

1.

We want to compute the shorterst path distance from a source node S to all other nodes. We associate lengths or
costs on edges and find the shortest path.

We can’t use edges with a negative cost. Otherwise, we can take take endless loops to reduce the cost.

Finding a path from vertex S to vertex 7" has the same cost as finding a path from vertex S to all other vertices in the
graph (within a constant factor).

If all edge lengths are equal, then the Shortest Path algorithm is equivalent to the breadth-first search algorithm.
Breadth first search will exapnd the nodes of a graph in the minimum cost order from a specified starting vertex
(assuming equal edge weights everywhere in the graph).

Dijkstra’s Algorithm: This is a greedy algorithm to find the minimum distance from a node to all other nodes. At
each iteration of the algorithm, we choose the minimum distance vertex from all unvisited vertices in the graph,

e There are two kinds of nodes: settled or closed nodes are nodes whose minimum distance from the source
node S is known. Unsettled or open nodes are nodes where we don’t know the minimum distance from S.

e At each iteration we choose the unsetteld node V' of minimum distance from source S. This settles (closes)
the node since we know its distance from S. All we have to do now is to update the distance to any unsettled
node reachable by an arc from V. At each iteration we close off another node, and eventually we have all the
minimum distances from source node S.

- E
10 _-—~ 4 \\\
o 5 /) =
7 : /
7 : 15 /
14 1311 4 £
) /
{ A //
151) /
! // 1
I ST ...« Y //
! SPUEe-, S S . W VI kel SR g
16! /
/
\\\ //
~, .
*: 2 __o 2
18 F 17

Below is shown the stack (point indices only) and the value of i at the top of
the while loop. The stack is initialized to (0, 18), where the top is shown
leftmost (the opposite of our earlier convention), Point p, is added to form
(1,0,18), but then p, causes p, to be deleted, and so on. Note that p; causes
the deletion of p,, when i = 18, as it should. For this example, the total number
of iterations s 29 < 2 p=2-19 =38,

i= 1: 0, 18
i= 2: 1, 0, 18
i= 2: 0, 18
i= 3: 2, 0, 18

i= 4: 3, 2, 0, 18
i= 5: 4, 3, 2, 0, 18
i=s5: 3, 2, 0, 18
i= 6z 5, 3, 2, 0, 1B

i= 6: 3, 2, 0, 18
i=7: 6, 3, 2, 0, 18
i=7: 3, 2, 0, 18

i= 8: T; 35E5 0% 18
i= 8: 3, 2, 0, 18

i= 9; 8, 3, 2, G, 18
i=10: 9, 8, 3, 2, 0, 18

i=10: 8, 3, 2, 0, 18

i=11: 10, 8, 3, 2, 0, 18

f=12: 11, 10, 8, 3, -2 G, 18
i=13; 12, 11, 10, 8, 3, 2, 0, 18
i=13: 11, 10, 8, 3, 2, 0, 18

i=13: 10, 8, 3, 2,0, 18

i=14: 13; 10, 8; '3, 2,.0; 18

i=14: 10, 8, 3, 2, 0, 18

i=15: 14, 10, 8, 3, 2, 0, 18

i=16: 15, 14, 10, &, 3, 2, 0, i
i=16: 14, 10, 8, 3, 2, 0, 18

i=17: 16, 14, 10, 8, 3, 2, 0, 18
i=18: 17, 16, 14, 10, 8, 3, 2, 0, 18
i=18: 16, 14, 10, 8, 3, 2, 0, 18,

i=19: 18, 16, 14, 10, 8, 3, 2, 0, 18

After popping off the redundant copy of p,,, we have the precise hull we seek;
(0,2,3,8,10,14. 16, 18).

Figure 4: Graham Convex Hull Algorithm example from J. O’ Rourke, Computational Geometry in C

h=ramion
na

e I - T = R AR 5

{a) The gragh

B Bar o cre e oy P Dk sk
1 i 3 4 5. & 7 a 9

1 ! 343 97 I 39 | Balimore
2 345 18 252 445 388 217 Buffala

3 244 265 284 492 | Cincnnas

4 186 244 167 507 125 Ceveland
3 52 45 167 - Detroit

& 5 Ehr 92 3836 Naw York

7| 97 185 92 308 Philadelphia
8|30 07 14 18 386 305 231 | Pitsburgh
9 3 492 pic Washington
EXAMPLE OF DWKSTRA'S ALGORITHM
DETANCES

1 2] i 5 5] T
Satt led Salacted Hal Buff Clne Cley Det WYC Phl
Q oL B inf irf inf inf a7
1 a Q L £ irf inf inf a7
1.9 Iy Q oL BN £ irf inf 189 a7
18,7 g o g Im s inf 189 o7
18976]] e 511 ok inf 184 o7
187EE,] o 45 LS4 =L o5F 184 o7
18,7682 4 o g £14 oS g 184 o7
1876824 = o ME L4 oS & 189 o7
18765245] 245 &4 mEE 555 189 o7

Figure 5: Example of Dijkstra’s algorithm for finding shortest path

4]
Wash
=9
=9
=9
29
29
29
29
29
et

6. Pseudo Code for Dijkstra’s Algorithm (see figure 5)
Note: initialize all distances from Start vertex S
to each visible vertex. Al unknown di stances assumed
infinite. WMark Start Vertex S as VISITED, DI ST=0

Dijkstra(Graph G Source Vertex S)

{
While Vertices in Gremain UNVI SI TED
{
Find cl osest Vertex V that is UNVISI TED
Mark V as VI SI TED
For each UNVI SITED vertex Wvisible fromV
{
If (DIST(S,V) + DIST(V,W) < DIST(S, W
then DIST(S,W = DI ST(S,V) + DIST(V, W
}
}
}

7. Sketch of Proof that Dijkstra’s Algorithm Produces Min Cost Path

(a) At each stage of the algorithm, we settle a new node V" and that will be the minimum distance from the source
node S to V. To prove this, assume the algorithm does not report the minimum distance to a node, and let V/
be the first such node reported as settled yet whose distance reported by Dijkstra, Dist(V), is not a minimum.

(b) If Dist(V) is notthe minimum cost, then there must be an unsettled node X such that Dist(X)+ FEdge(X,V) <
Dist(V'). However, this implies that Dist(X) < Dist(V'), and if this were so, Dijkstra’s algorithm would
have chosen to settle node X before we settled node V' since it has a smaller distance value from S. Therefore,
Dist(X) cannot be < Dist(V'), and Dist(V') is the minium cost path from S'to V.

8. Improving Dijkstra: A* Algorithm — Heuristic Search

The A* algorithm searches a graph efficiently, with respect to a chosen heuristic. If the heuristic is “good,”
then the search is efficient; if the heuristic is “bad,” although a path will be found, its search will take more
time than probably required and possibly return a suboptimal path. The path cost at a node is F=G+H,
where G is the minimum distance to the current node from the start node, and H is the heuristic cost of
traveling from the current node to the goal. A* will produce an optimal path if it's heuristic is optimistic. An
optimistic, or admissible, heuristic always returns a value less than or equal to the actual cost of the
shortest path from the current node to the goal node within the graph.

The A* search has a priority queue which contains a list of nodes sorted by priority. This priority is
determined by the sum of the distance from the start node to the current node and the heuristic at the
current node. The first node to be put into the priority queue is naturally the start node. Next, we expand
the start node by popping the start node and putting all adjacent nodes to the start node into the priority
gqueue sorted by their corresponding priorities (path costs). Note that only unvisited nodes are added to
the priority queue. At each step, the highest priority node (i.e. least cost node) is dequeued and expanded
until the goal is reached. A*is greedy in that it tries to skew the search towards the goal. Breadth first
search can be thought of as search with heuristic function H=0 (i.e. no heuristic).

A W N PR, O S W N PR O

A W NP O

Opener

0,0
1,0
2,0
3,0
4,0
4,1
4,2
4,2
43
3,2
33
33
34
3,4
3,5

A* with a heuristic function =0 becomes Breadth First Search

A¥* Search on 4- neighbor Grid
Breadth First search expands more nodes than A*

A* is admissible if heuristic cost is an UNDERESTIMATE of the true cost

0 1 2 3 4 5
S
G

Example 1

0 1 2 3 4 5

0

1

2

3

4 5 6 7 8 9
A* Node Expansion (Example 1)

0 1 2 3 4 5

S

1

2

3 8 9 10 11

4 5 6 7 - G
A* Node Expansion (Example 2)

OPEN LIST - Example 2

Node
[0,0]
[1,0]
[2,0]
[3,0]
[4,0]
[41]
[4,2]
[4,3]
[3,2]
[3,3]
[2,2]
[2,3]
[3,4]
[3,5]
[2,4]
[4,5]

f
0+9
1+8
2+7
3+6
445
5+4
6+3
7+2
7+4
8+3
8+5
8+4
8+2
9+1
9+3

goal

O O WO OWNNOOULE, WNEROOMN

h f

9 9 0

8 9 1

7 9 2

6 9 3

5 9 4

4 9 5

3 9 6

2 9 7

4 11 8

3 11 9

5 13

4 12

2 10 10
1 10 11
3 12

expand order

0 1 2 3 4 5
0 0
1 1 12
2 2 9 13
3 3 7 10 14
4 4 5 6 8 11 15

Breadth First Search Node Expansion

0 1 2 3 4 5
0 9 8 7 6 5 4
1 8 7 6 5 4 3
2 7 6 5 4 3 2
3 6 5 4 3 2 1
4 5 4 3 2 1 0

Heuristic (L1 dist to Goal)
3 4 5

0
1
2
3 8 10|
4 6 7 11

A* Final Path

(follow goal node back via
Opener node to compute path)

Path Cost=f =g+h
g= min distance traveled to this node
h= heuristic cost to goal from this node

(we are using L1 metric cost on 4-neighbor grid)

A* is admissible if heuristic cost is an UNDERESTIMATE

of the true cost: h <= C(i,j)

Robot Path Planning

Overview:
Visibility Graphs

1.
2. Voronoi Graphs

3.

4. Sampling-Based Planners

Potential Fields

PRM: Probabilistic Roadmap Methods
RRTs: Rapidly-exploring Random Trees

Potential Field Path Planning

Simple idea: Have robot “attracted” to the goal and
“repelled” from the obstacles

Think of robot as a positively charged particle moving
towards negatively charged goal — attractive force
Obstacles have same charge as robot — repelling force
States far away from goal have large potential energy,
goal state has zero potential energy

Path of robot is from state of high energy to low (zero)
energy at the goal

Think of the planning space as an elevated surface, and
the robot is a marble rolling “downhill” towards the goal

Potential Field Path Planning

Repulsive force

L1

Attractive force

Potential Field Path Planning

Attractive Energy: Distance to goal
Highly attractive farther away F L
Goes to zero at goal at(4) (9 dgoat)

Repelling Energy:
Inverse of distance to obstacles [}, (q) = 2 Oblsmdes)
Goes to zero as we move away *

Potential Function:

Sum of energy acting onrobot F'(q) = Fuu(q) + aF..(q)
a weights + and - forces

Robot moves along B 5
negative gradient of F(q) v F(q)

Potential Field

goal

 Attractive Potential Function is distance from goal
« High energy away from goal, Zero at goal
« Path is negative gradient, largest change in energy

Potential Field

/ obstacles

start

200

180

100

10

goal

« Obstacles create high energy barriers
« Gradient descent follows energy minimization path to goal

Potential Field Limitations

® goal

Local minimum:
attractive force (goal) = repulsive force (obstacles)

Potential Field Methods

Local minimum: attractive force = repulsive force
Solution: Take a random walk — perturb out of minima
Need to remember where you have been!

Potential Fields Summary

More than just a path planner: Provides simple control
function to move robot: gradient descent

Allows robot to move from wherever it finds itself
Can get trapped in local minima

Can be used as online, local method:
— As robot encounters new obstacles .

compute the Potential Function onlir \\
— Laser/sonar scans give online \\ A

.
o

2

distance to obstacles ///

	astargrid.pdf
	Sheet1

