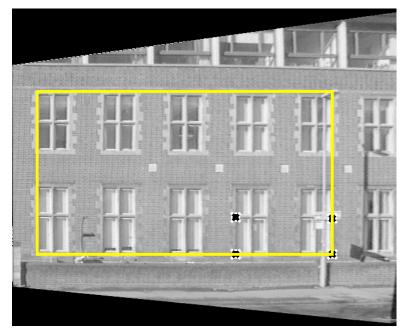
Homography, Transforms, Mosaics

Credits: S. Seitz, R. Collins, J. Hays, K. Grauman, C. Choi, C. Brunner, R. Szeliski, L. Zitnick

Robert Collins Applying Homographies to Remove CSE486, Penn State Perspective Distortion

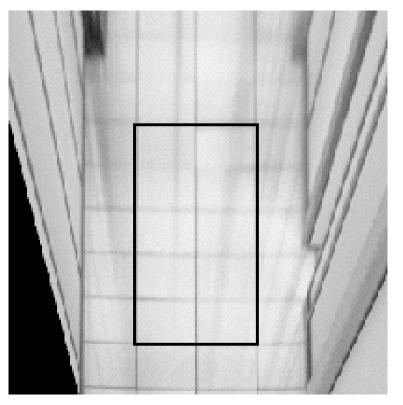


from Hartley & Zisserman

4 point correspondences suffice for the planar building facade

Robert Collins CSE486, Penn State

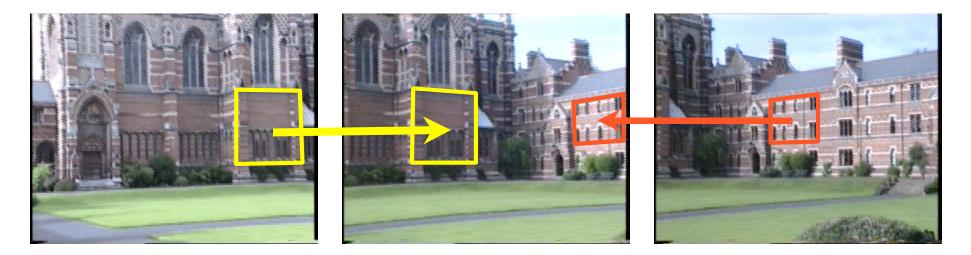
Homographies for Bird's-eye Views

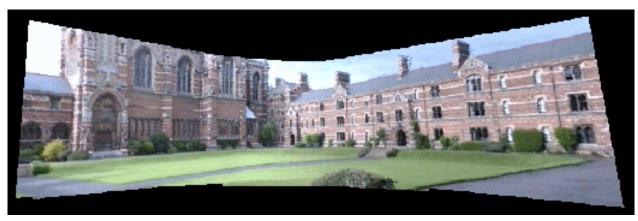


from Hartley & Zisserman

Robert Collins CSE486, Penn State

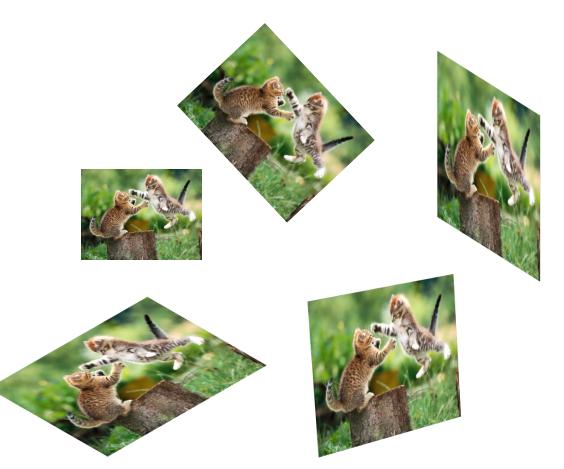
Homographies for Mosaicing



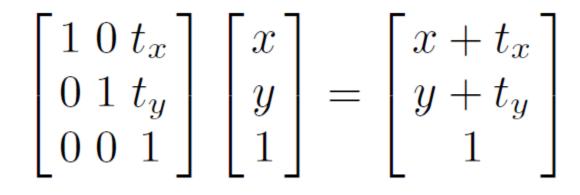


from Hartley & Zisserman

What are 2D geometric transformations?

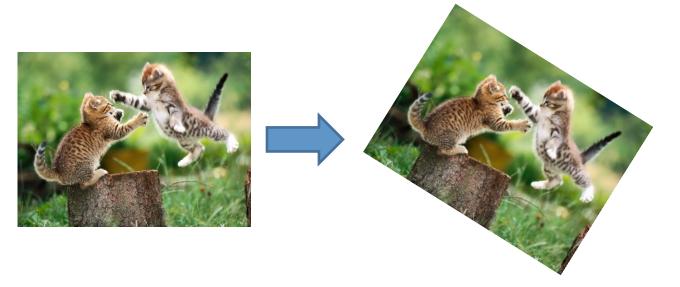


Translation



Preserves: Orientation

Translation and rotation

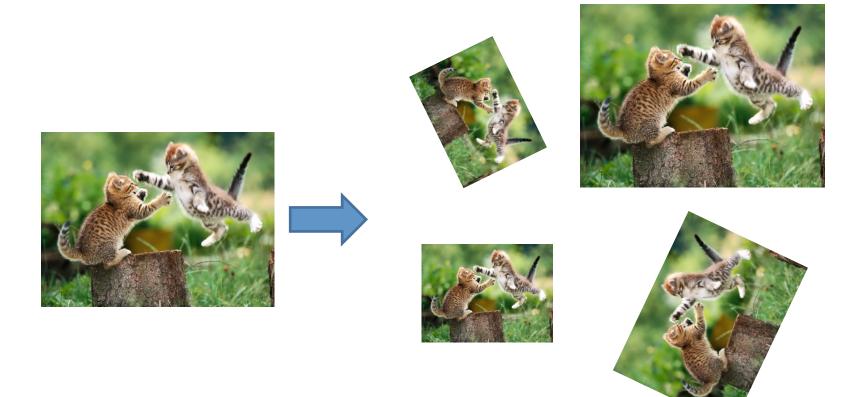


$$\begin{bmatrix} \cos(\theta) - \sin(\theta) \ t_x \\ \sin(\theta) \ \cos(\theta) \ t_y \\ 0 \ 0 \ 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$

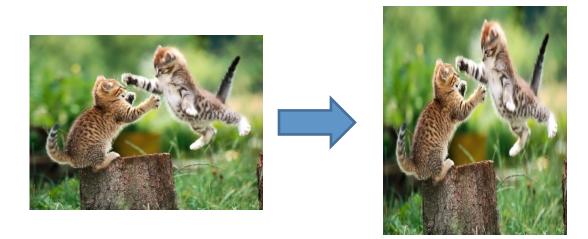
Similarity transformations



Similarity transform (4 DoF) = translation + rotation + scale

Preserves: Angles

Aspect ratio

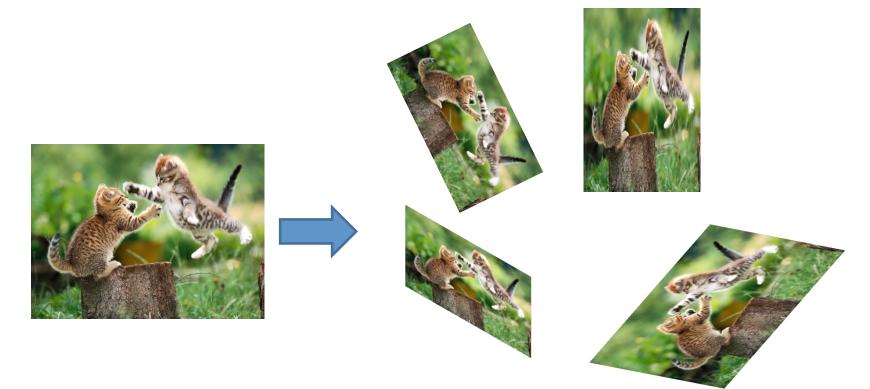


 $\begin{bmatrix} a & 0 & 0 \\ 0 & \frac{1}{a} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$

Shear

$$\begin{bmatrix} 1 & a & 0 \\ b & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$

Affine transformations



Affine transform (6 DoF) = translation + rotation + scale + aspect ratio + shear

Preserves: Parallelism

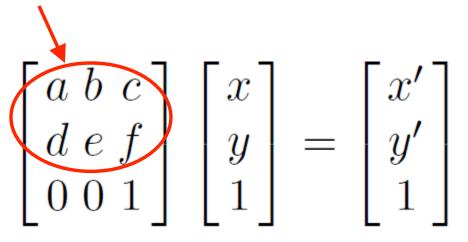
What is missing?

Canaletto

Are there any other planar transformations?

General affine

We already used these



How do we compute projective transformations?

Homogeneous coordinates

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

One extra step:

$$x' = u/w$$
$$y' = v/w$$

Projective transformations

a.k.a. Homographies

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} \qquad x' = u/w$$
$$y' = v/w$$

"keystone" distortions

Preserves: Straight Lines

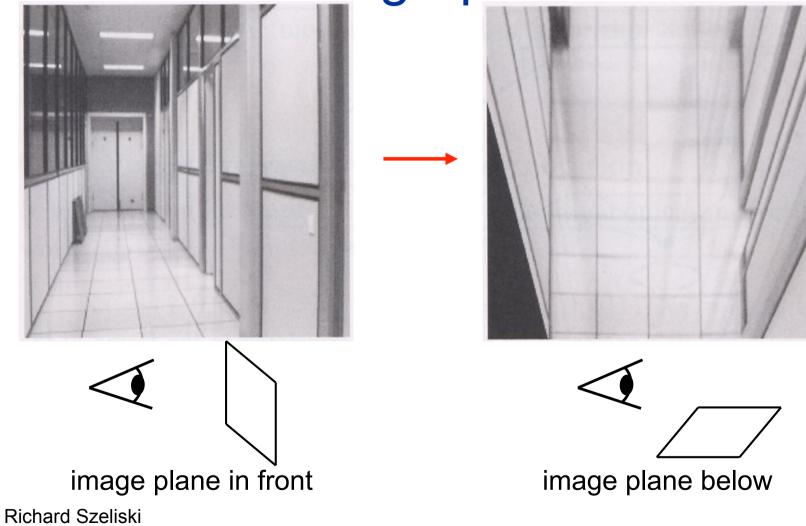
Finding the transformation

- Translation =
- Similarity =
- Affine =
- Homography =

- 2 degrees of freedom
 - 4 degrees of freedom
- 6 degrees of freedom
- = 8 degrees of freedom

How many corresponding points do we need to solve?

Image warping with homographies

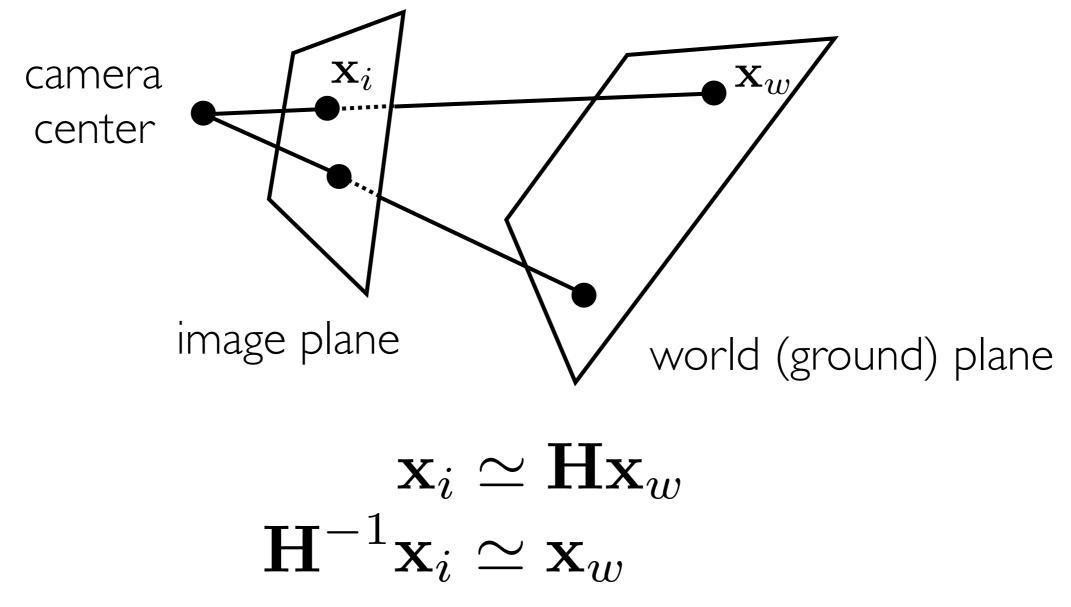


Finding the transformation

- How can we find the transformation between these images?
- How many corresponding points do we need to solve?

Planar Homography

- A *projective mapping* from one plane to another
- e.g. mapping of points on a ground plane to the image of the camera



Homography

Projective – mapping between any two PPs with the same center of projection

- rectangle should map to a quadrilateral.
 - straight lines *are* conserved.
 - parallel lines *are not* conserved.
- same as: project, rotate, reproject.

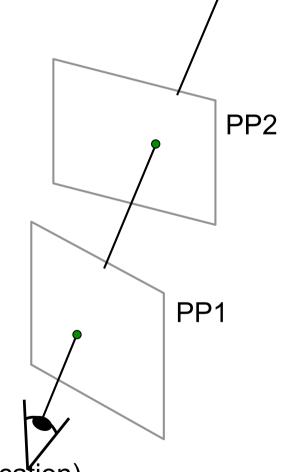
called *Homography*

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ l \end{bmatrix}$$

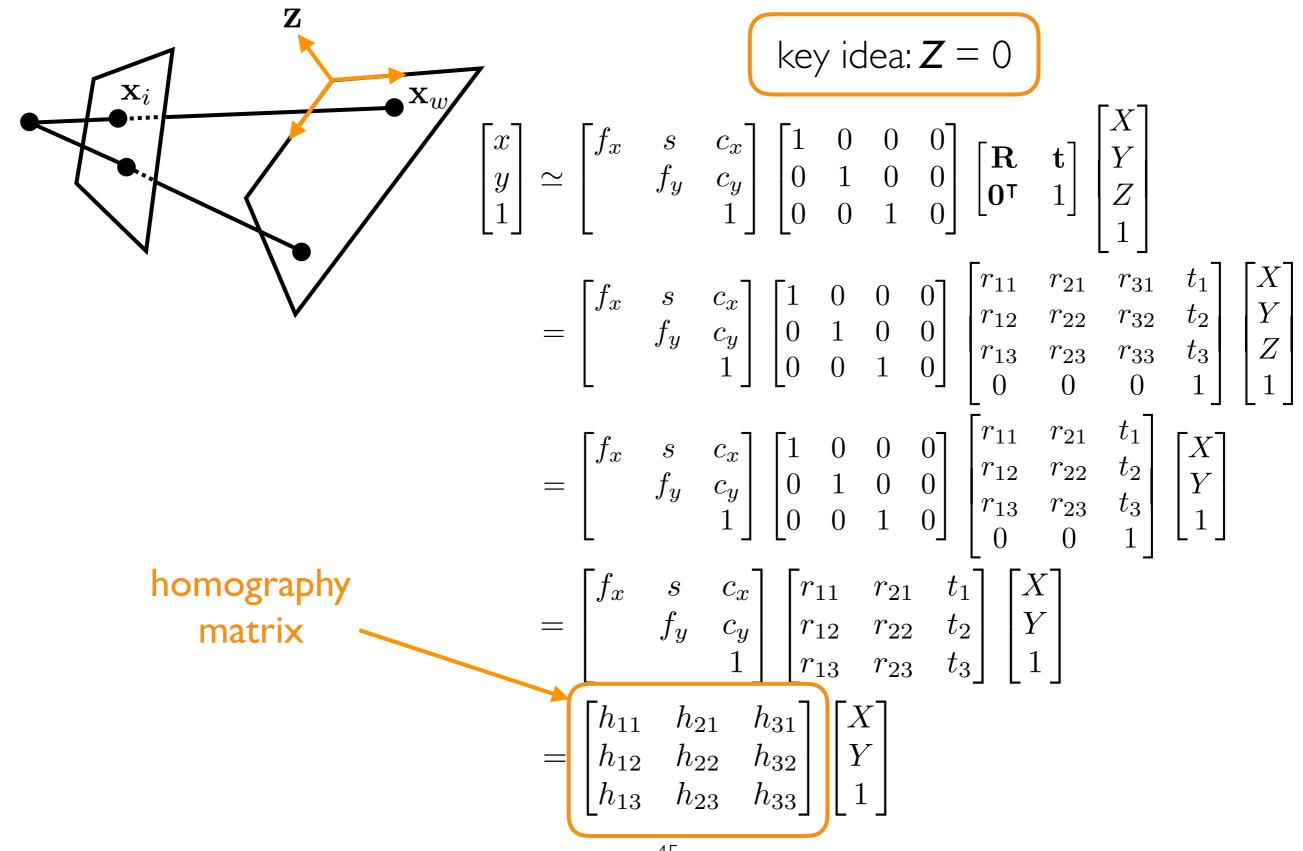
$$\mathbf{p'} \qquad \mathbf{H} \qquad \mathbf{p}$$

To apply a homography **H**

- Compute **p'** = **Hp** (regular matrix multiplication)
- Convert **p**' from homogeneous to image coordinates

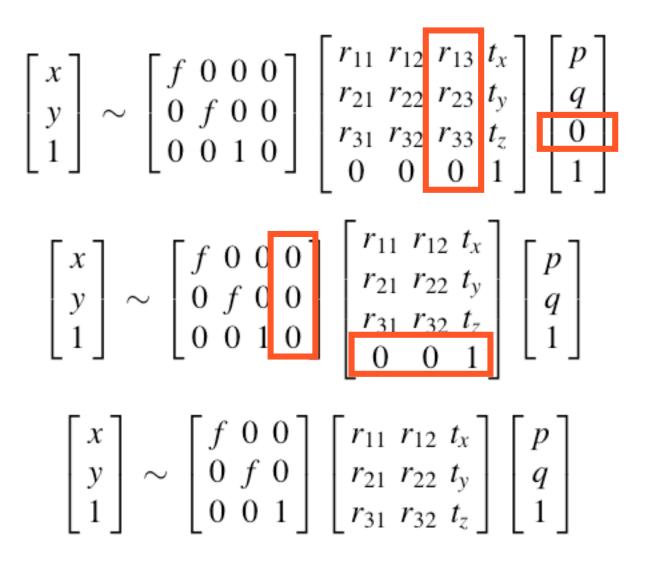


Planar Homography



Robert Collins CSE486, Penn State

Projection of Planar Points



Fitting a homography

• Recall: homogeneous coordinates

$$(x,y) \Rightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array} \right]$$

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

Converting *to* homogeneous image coordinates

Converting *from* homogeneous image coordinates

• Equation for homography:

$$\lambda \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Robert Collins CSE486, Penn State

Estimating a Homography

Matrix Form:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \sim \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Equations:

$$x' = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}}$$

$$y' = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}$$

Robert Collins CSE486, Penn State

Degrees of Freedom?

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \sim \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

There are 9 numbers h_{11}, \dots, h_{33} , so are there 9 DOF? No. Note that we can multiply all h_{ij} by nonzero k without changing the equations:

$$x' = \frac{kh_{11}x + kh_{12}y + kh_{13}}{kh_{31}x + kh_{32}y + kh_{33}}$$
$$x' = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}}$$
$$y' = \frac{kh_{21}x + kh_{22}y + kh_{23}}{kh_{31}x + kh_{32}y + kh_{33}}$$
$$y' = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}$$

Solving for homographies

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Can set scale factor i=1. So, there are 8 unknowns. Set up a system of linear equations:

Ah = b

where vector of unknowns $h = [a,b,c,d,e,f,g,h]^T$ Need at least 8 eqs, but the more the better... Solve for h. If overconstrained, solve using least-squares: $\min ||Ah - b||^2$

Image Stitching, Alignment, Blending

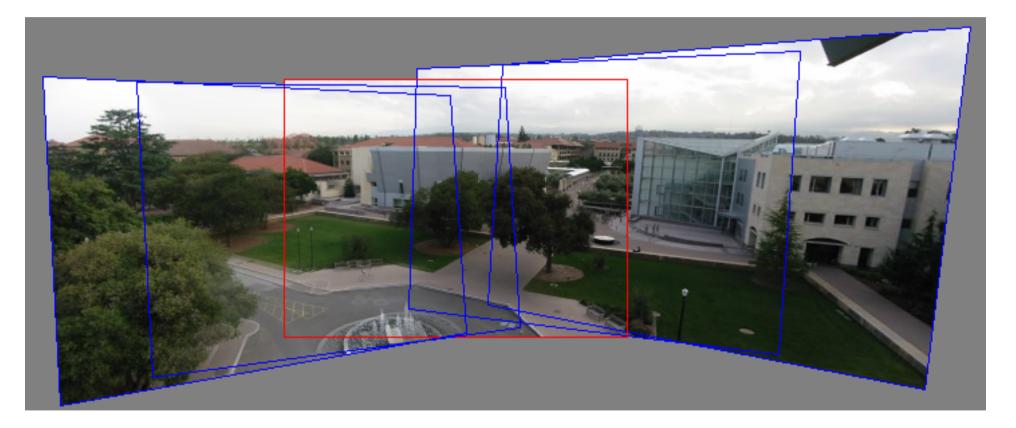
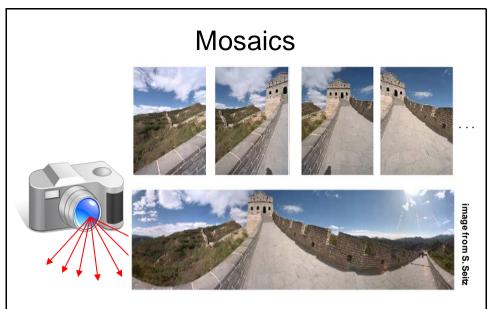


Image from http://graphics.cs.cmu.edu/courses/15-463/2010_fall/



Obtain a wider angle view by combining multiple images.

Why Mosaic?

Are you getting the whole picture?

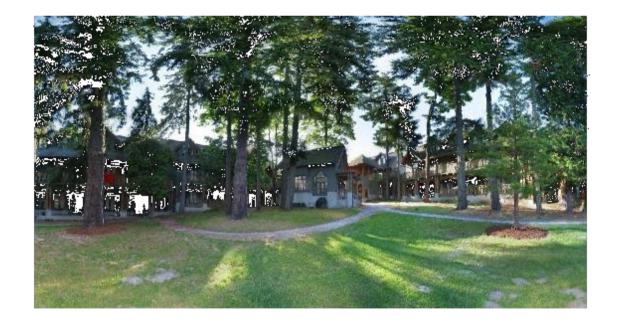
• Compact Camera FOV = 50 x 35°

Slide from Brown & Lowe

Why Mosaic?

Are you getting the whole picture?

- Compact Camera FOV = 50 x 35°
- Human FOV = $200 \times 135^{\circ}$

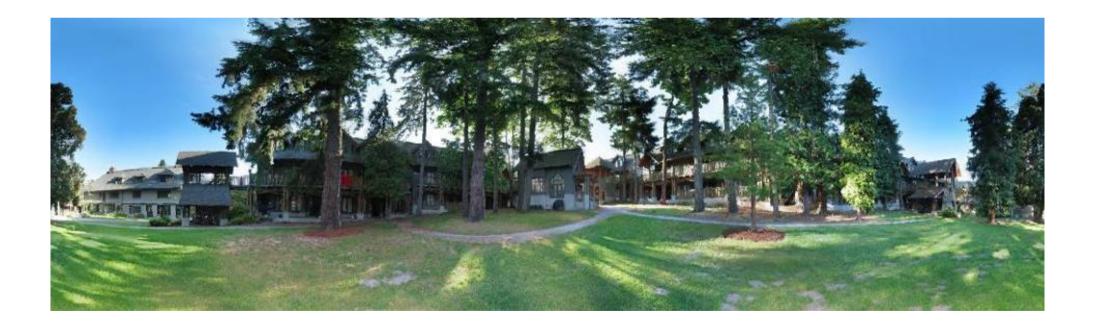


Slide from Brown & Lowe

Why Mosaic?

Are you getting the whole picture?

- Compact Camera FOV = 50 x 35°
- Human FOV = $200 \times 135^{\circ}$
- Panoramic Mosaic = $360 \times 180^{\circ}$



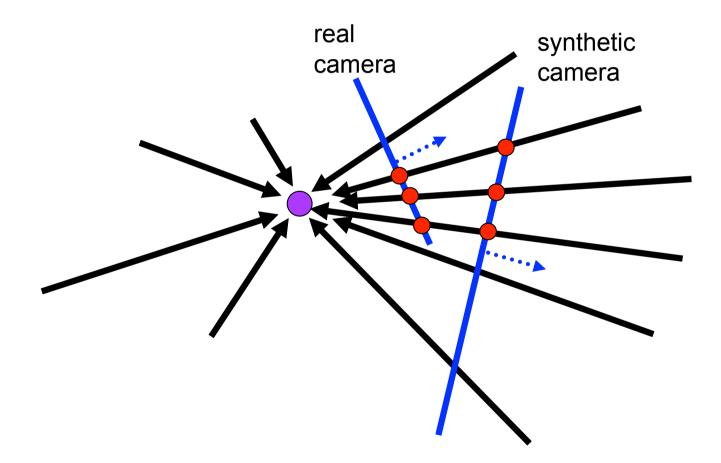
Slide from Brown & Lowe

Image Mosaics

virtual wide-angle camera

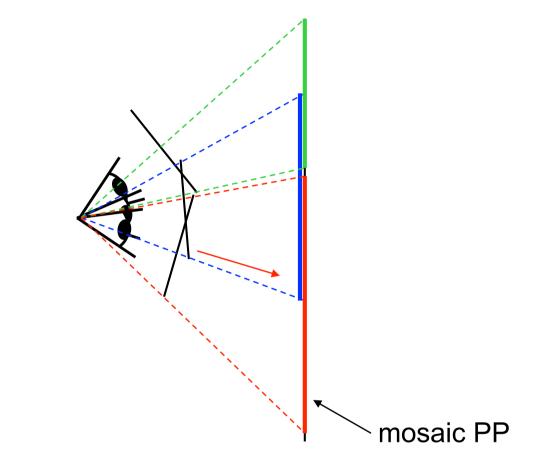
Goal: Stitch together several images into a seamless composite

A pencil of rays contains all views



Can generate any synthetic camera view as long as it has **the same center of projection**!

Image reprojection



The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera

How to do it?

Basic Procedure

- 1. Take a sequence of images from the same position.
 - Rotate the camera about its optical center.
- 2. Compute transformation between second image and first.
- 3. Transform the second image to overlap with the first.
- 4. Blend the two together to create a mosaic.
- 5. If there are more images, repeat.

Full-view Panorama

