Assistive Robotics

THE NEED FOR ASSISTIVE ROBOTIC GRASPING

- Growing population with limited mobility

 400,000 spinal cord injury patients worldwide
 50% experience below neck paralysis
 5 Million stroke patients
 Aging worldwide population
- Full time care is expensive and difficult
- Improving autonomy increases quality of life

THE CENTRAL ROLE OF GRASPING

• Transport is reported as a critical issue for disabled people.

Grasping is the first step in many tasks

□It is also the hardest part in many tasks

Explicitly involves contact with the environment.

Avoiding contacts is relatively easy. Purposeful contact requires precise control.

THE EIGENGRASP PLANNER

- Planning in a reduced dimensional subspace
- 20 DOF human hand space can be approximated with Principal Component Analysis (PCA)
- First 2 Eigenvectors of PCA cover 80% of normal grasps
- Uses simulated annealing to efficiently search 2-DOF space
- Given approach direction, stable grasps found
- User can control approach direction

On-Line Interactive Dexterous Grasping

Grasping and Assistive Robotics

- We can use the "smarts" in our grasp planner to assist in grasping tasks for disabled
- User can supply "minimal" info to grasp planner
- User can confirm/reject planner choices
- Can use low-bandwidth, simple-to-use interfaces

EMG Interfaces and Grasping Pipelines: Shared Control

- Small, non-invasive EMG sensor
- Many possible locations on body
- Accurate and Repeatable Selection
- Dual-Frequency response
- Increases Information Transfer Rate

- UI simplifies grasp selection
- Robustness to uncertainty, object location, end effector pose
- Can grasp wide variety of objects
- Operates in cluttered environments

Surface EMG recording

- EMG signal measured at a single recording site behind the ear.
 - \circ Hairless
 - Facial muscle control SC injuries.
- Subjects are trained to generate 2 dimensions of control

USING SEMG CONTROL

- 2D control is relatively fast, but somewhat inaccurate.
- Can handle center-out motions to targets
- These take the place of the gestures in the previous sections
 - Hitting the target selects the option, returning to rest activates it.

Goal: Build clinically useful device

Spinal Cord Injured Subject (C3-C4) Manipulates Objects in New York City while Using Interface in Davis, California

- Applicability to Different Medical Conditions
- Benefit vs. Frustration of Using Device
- Cognitive Load
- Interface Esthetics
- Learning Curves
- Neuromuscular Plasticity
- Portability
- Training Procedures

Experiment: Impaired User, Davis CA, Grasping in Columbia Robotics Lab

Surface EMG recording

- EMG signal measured at a single recording site behind the ear.
 - Hairless
 - Facial muscle control SC injuries.
- Subjects are trained to generate 2 dimensions of control

Human-in-the-Loop Grasping with Online and **Offline Planning Using Noisy, Low Bandwidth**

- Online shared control grasp planner [1]
- Offline Grasp Database [2]
- Integrated vision system [3]
- Novel behind the ear SEMG input device.[4]
 - Human subject validation

[1] - Ciocarlie and Allen, "Hand posture subspaces for dexterous robotic grasping," IJRR

[2] Goldfeder and Allen Blate-Driven Grasping, "Autonomous Robots 31.1, 2011
 [3] - Papazov and Burschka, "An efficient ransac for 3d object recognition in noisy and occluded scene - ACCV 2011
 [4] -S. Verhon and S. S. Josh, "Brain-muscle computer interface: mobile-phone prototype development and testing." IEEE Transactions Information Technology 2011.

Grasp Planning Interface

RESULTS

- Success feasible
- Selection very slow
- Cursor control noisy

Grasp	Time (s)	#Inputs	#Timeouts	Mistaken Selections
Detergent 1	564	14	14	2
Detergent 2	609	9	50	0
Shaving Gel	910	12	11	1

INCORPORATING PREPLANNED GRASPS

- Seed database with Offline Eigengrasp Planner
 - Run planner starting in each direction for each object
 - Take best grasp from each direction
- Grasps with special semantic meaning can be manually encoded
 - i.e. handle grasps
 - Automated generation of these is hard

HANDLING NOVEL OBJECTS

- The vision system will align the closest object that it can find.
- Grasping only requires local alignment.
- Users can rerun vision system until alignment is good at the right part.

SUBJECT VALIDATION

- 5 Subjects
- 3 Objects
 - Flashlight, Detergent Bottle, Novel juice bottle
- Known objects
 - 2 Grasp Directions,
 - Top, Side
 - o 3 Attempts
- 5 grasp attempts on novel object

Grasp	Subject	Success	Time
	1	Yes	75
D	2	Yes	53
Detergent	3	No	45
Bottle	4	No	122
Top	5	Yes	135
	Mean	60%	86
	1	No	66
D	2	Yes	40
Detergent	3	Yes	52
Bottle	4	Yes	80
Side	5	Yes	85
	Mean	80%	64
	1	Yes	50
Detergent	2	Yes	57
Bottle	3	Yes	53
Open	4	Yes	135
Choice	5	Yes	128
	Mean	100%	85
	1	Yes	151
Cl	2	Yes	72
Shampoo	3	Yes	60
Bottle	4	No	126
Tob	5	No	104
	Mean	60%	102
	1	Yes	134
~ 1	2	Yes	95
Shampoo	3	Yes	132
Bottle	4	Yes	164
Side	5	Yes	143
	Mean	100%	133

Grasp	Subject	Success	Time
	1	Yes	93
Shampoo	2	Yes	121
Bottle	3	Yes	63
Open	4	Yes	95
Choice	5	Yes	117
	Mean	100%	98
	1	No	83
	2	No	123
Shaving	3	Yes	112
Gel Top	4	No	139
	5	Yes	97
	Mean	60%	111
	1	Yes	65
	2	Yes	52
Shaving	3	Yes	57
Gel Side	4	Yes	88
	5	Yes	92
	Mean	100%	71
	1	No	73
	2	Yes	59
Shaving	3	Yes	76
Gel Open	4	Yes	81
Choice	5	Yes	85
	Mean	80%	75
	1	66%	87
	2	88%	75
Average	3	88%	72
Perfor-	4	77%	114
mance	5	88%	109
	Mean	82%	92

Grasping amidst Clutter

EEG Based Grasping

Rapid Serial Visual Presentation

PR 2: Cluttered scene, 5 subjects

Review Panes for Grasp Selection

MICO Arm:, 3 subjects, 3 objects, 3 grasps

Rapid Serial Visual Presentation Paradigm

CLASSIFYING THE INTEREST SIGNAL

Eight electrodes captured (x) Divided into 100 ms epochs 100 ms to 1200 ms post presentation Interest measure is a weight linear combination over all electrodes over all bins.

$$y_{sn} = \sum_{i} w_i x_{in} \quad y = \sum_{n} v_n y_{sn}$$

CLASSIFIER TRAINING

Object class selection task Find the bowls 38 distractors, 2 target images

REVIEW PANES (OBJECT SELECTION)

REVIEW PANES (GRASP SELECTION)

EEG Grasping

Grasping with your brain:

A brain-computer interface for fast grasp selection

Robert Ying, Jonathan Weisz, and Peter K. Allen Columbia University Robotics Group

RESULTS

100% success rate Grasps took between 2 and 4.5 minutes. Speeds comparable to self guided selection using sEMG

Grasp	Subject	Misselections	Refinement Iterations	Time(s)
	1	0	1	120
Detergent Bottle Top	2	2	3	150
	3	1	2	135
	1	0	1	120
Detergent Bottle Side	2	1	2	135
	3	0	1	120
	1	0	10	270
Detergent Bottle Choice	2	0	2	135
	3	3	5	180
	1	0	1	135
Shampoo Bottle Top	2	0	1	120
	3	0	1	150
	1	0	1	120
Shampoo Bottle Side	2	1	1	135
	3	0	2	135
	1	1	1	210
Shampoo Bottle Choice	2	1	3	120
	3	0	1	150
	1	0	2	180
Shaving Gel Top	2	1	1	120
	3	0	2	135
	1	1	2	135
Shaving Gel Side	2	0	1	120
	3	0	2	150
	1	0	2	120
Shaving Gel Choice	2	0	1	120
_	3	0	2	180

CONCLUSIONS

Some subjects required small adaptions Calibration procedure may be necessary Subjects were able to understand how to use the system pretty quickly. Combination of both approaches? RSVP to filter. sEMG to chose.