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Lecture 6 - Perception - Vision

Lec. 6
4 Image Intensities & Data reduction

= Monochrome image = matrix of intensity values

= Typical sizes:
= 320 x 240 (QVGA)
= 640 x 480 (VGA)
= 1280 x 720 (HD)

= Intensities sampled to 256 grey levels = 8 bits

= Images capture a lot of information /

= Reduce the amount of input data:
preserving useful info & discarding redundant info

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL
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Lecture 6 - Perception - Vision

What is USEFUL, What is REDUNDANT ?
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hat is USEFUL, What is REDUNDANT ?
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J What is USEFUL, What is REDUNDANT ?
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CS4733 Class Notes, Computer Vision

Sources for online computer vision tutorials and demos p:titww.dai.ed.ac.uk/HIPR2 and

Computer Vision resources online - http://www.dai.edigfCVonline

1 Vision Sensing

2

The fundamental relationship in imaging a surfacd {sX, Y) = F(R, G, L), where |=intensity
of the image at pixel (X,Y), R=Reflectance of the surface, @e@etry of the surface, and
L=Lighting

Given the image intensitiels we would like to recover the surfaces we have imaged (i.pthde
and orientation at each point on the surface). There are arai problems in inverting this
equation:

Mapping is projection from 3-D to 2-D, which means the ineeis multi-valued (each visible
point projects to a unique image point, but each image ptiatk projects” to a line in space.

The effects ofk, GG, L on intensity of the image are coupled. They can not be easgraited
out.

To make vision systems work, we need to add constraints. dditbonstraints, vision problem
is too hard and too ill-posed to solve

Machine Vision

Why is it machine vision so hard when we can “see” with soditibnscious effort?

— Matrix is not a retina; variable resoltuion in retina

— Biological systems use active vision. High leve of coortiorabetween eye movements
and procesing

— Biological vision is robust to lighting changes, surfaca®tance changes, color changes,
resolution changes
Robot Vision systems are characterized by:

— Images tend to be binary, not gray scale

— Resolution reduced to enable real-time processing

— Lighting is controlled

— Objects usually in known position and orientation

— 2-D methods prevail; 3-D methods typically require more patation

1



The process of acquiring an image, processing it and uradelistg its content (i.e. perception)
can be thought of as a “Signals to Symbols” paradigm.

Low-level: image acquisition, noise reduction, enhanaaiexige detection.

Middle-level: Segmentation and region labeling. Surfaaeovery - depth and orientation (2
1/2-D sketch). Analysis of texture, motion, color, shadatg

High-level: Labeling of images with 3-D components, objatognition, functional analysis

LEVELS OF MACHINE VISION

LOW MIDDLE HIGH

Digitization Shape From Methods Scene Understandgling
Compression  -texture 3-D Preception
Enhancement -motion Object Recognition
Morphology  -shading Model Building
Features -stereo

edges, corners Segmentation
2 2-D Sketch

e The hardest problem in using machine vision is getting tiaedod high levels integrated.

3 Low Level Vision

We first acquire images digitally. An Image is a continuogmal that is sampled at discrete spacings
called pixels. Each pixel is typically quantized to 8 bitge$olution mononchrome (256 gray levels)
or 24 bits for color (8 bits each for the 3 color channels RddeBnd Green).

Low-Ivel vision is a series of weak methods to understangbbrscenes. Many common low-level
processes use the following idea:

e For each image, construct a new filtered image.

e The filtered image will consist of a weighted sum of the pixaisrounding each pixel in the
image. Every pixel gets combinéaotally with the same set of weights.

3.1 Filtering

¢ Images are subject to noise. Common filters include median fd reduce spike noise, averag-
ing and Gaussian smoothing filters to remove high frequeanyponents. Filtering can be done
in the spatial domain with convolutions or in the frequenoyn@in using Fourier techniques.
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Figure 1. Gaussian filter. Left: 1-D Gaussian with mean=0@nd 1. Middle: 2-D Gaussian with
mean=0 and = 1. Right: 525 convolution mask for Gaussian smoothing with mean=0ard1

e Mean Averaging Filter: This filter just averages the pixel values in a neighborhaodiad a
pixel. Neighborhood sizes are variable, depending uporsplagial extent of the filter needed.
Common sizes are 3x3, 5x5, 7x7 etc. A 3x3 mean filter uses tleviog set of local weights:

O | LD O |
NeJ NNl oy
O LD O |

e Gaussian Smoothing Filter: Another smoothing filter is the Gaussian filter, which usesigm
borhood that approximates the fall-off of a Gaussian cedten the pixel of interest. This filter
has larger weights for the central pixels and nearest neighfather than the mean filter which
treats all pixels in the neighborhood with equal weights fgure 1 above.

123 (125 | 126 | 130 | 140

Neighbourhood values:
122 [ 124 | 126 | 127 | 135

- 115,119, 120, 123, 124,
118 | 120 | 150 | 125 | 134 125,126,127, 150

119 11153 | 11% | 123 | 133

Median value: 124
111 | 116 | 1100 | 120 | 130

Figure 2: Median filter. Noisy pixel in center (150) is remdJiy median of its neighborhood.

e Median Filter: This filter is used to remove outlier noiseued in a region. It is based upon
order statistics, and is a non-linear filter. In this filter, pixels in a neiginbood are sorted by
value, and thenedian value of the pixel’s in the neighborhood is taken to be therfdtresponse.
If the pixel being processed is an outlier, it will be repldd® the median value. This filter is
useful for “shot” or “salt-and-pepper” noise. See figure 2.
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3.2 Enhancement

Often, most of the image values will be centered within at@dirange of the full 256 gray levels of
an image.Contrast stretching performs a linear remapping from the gray level rageg, . Z5,.) to
(0, 255), effectively “stretching” the contrast in the image. Searfeg3. Before the stretching can be
performed it is necessary to specify the upper and lowel padee limits over which the image is to
be normalized. Often these limits will just be the minimund anaximum pixel values in the image.
For example for 8-bit graylevel images the lower and uppeité might be 0 and 255. Call the lower
and the upper limits a and b respectively.

The simplest sort of normalization then scans the image dtifie lowest and highest pixel values
currently present in the image. Call these c and d. Then eixeh P is scaled using the following
function: Py = (Pin — ¢)(52) + @

ixel wzlue

ue histogram
gt 1 ‘ "I aal bl
] Z00

166

Figure 3: Contrast stretching. Original image and histogaad stretched image and histogram.

Histogram equalization is used to change the response over the entire range of gagsvaOf-
ten, it is used to createwniform histogram that has all gray values used at the same frequ&hty
may or may not be useful: large homogeneous regions can meippEed into many gray levels, in-
troducing texture(see figure 4). If an image Hasows andC' columns, and there a® gray levels
21,29, 23, - - -, 2 tOtal (e.g. 256) then uniform histogram equalization reggieach gray value to occur
q = R]XVC times. Using the original histogram, we defifg, [i] as the number of pixels in the original
image having gray level;,. The first gray level threshold is found by advancingin the input image
histogram untily pixels are used. All input image pixels with gray levelt; will be mapped to gray

level z; in the output image:

t1—1

> Hall <4< S Hali

i=1

This means that; is the smallest gray level such that the original histogramt@ins no more
thatng pixels with lower gray values. Thieth threshold:,, is defined by continuing the iteration:

te—1 t

Y Hinli) <k-q <) Hpli]

i=1 =1



Figure 4: Histogram Equalization. Original image and hgséon and equalized image and histogram.
See http://www.dai.ed.ac.uk/HIPR2/histeq.htm.

3.3 Edge Detection
Find the gradients at each pixel in the image using a grad@ertator. Common edge detection masks

look for a derivative of the image intensity values in a dert@direction. Derivatives are found by
differencing the intensity values. The simplest edge detenasks are:

VericalOrientedEdge : [ -1 1 } HorizontalOriented Edge : [ _11 ]

Each edge detector esentially generates a gradient iXthedY" directions,G,, G,. We can
calculate the gradient magnitude of the filter’s response as

Gl = G+ Gy or |Gl = |Ga] + ]Gyl

and the edge’s orientation (direction) will Be= atan2(G,, G,).
More sophisticated masks include the Sobel Operators:

-1 0 1 -1 -2 -1
Vertical : -2 0 2 Horizontal : 0 0 0
-1 0 1 1 2 1
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Lec. 6

i Spatial filters

= S,y * neighborhood of pixels around the point (x,y) in an image |

= Spatial filtering operates on S,, to generate a new value for the corresponding pixel at
output image J

Image | Filtered Image J = F(I)

> I(r,c)

(r,c)eSy
(2M +1)(2N +1)

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

= For example, an averaging filter is: J(X,Y) =
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Lec. 6

& Constructing Filter from a Continuous Fn

(x=p)?
e 207

= Common practice for image smoothing: use a Gaussian G(x) =

1
o2

u=0

o : controls the amount of smoothing

= Near-by pixels have a bigger influence on the averaged value rather than
more distant ones

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL
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Lec. 6
il Constructing Filter from a Continuous Fn

(x=p)?

= Common practice for image smoothing: use a Gaussian G(x) = 1 e 2o

o2

u=0

o : controls the amount of smoothing

o|lo|o|eo|o

Normalize filter so that values always add up to 1

= Near-by pixels have a bigger influence on the averaged value rather than
more distant ones

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL



Lecture 6 - Perception - Vision

Lec. 6
& Taking derivatives with Correlation

= Derivative of an image: quantifies how quickly intensities change
(along the direction of the derivative)

= Approximate a derivative operator:

| : I(x=D| 1(x) |I1(x+1)

X

F:| -1/2 0 1/2

N

J: J (X)

I (x+1)—-1(x-1)
2

J(X) =

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL
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Lec. 6
il Matching using Correlation

= Find locations in an image that are similar to a template

= Filter = template 3 8 3 = test it against all image locations

l: | 3 2 4 1 3 8 4 0 3 8 7 7

= Similarity measure: Sum of Squared Différences (SSD)
N \ ,

> (F)—1(x+D)

i=—N

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL
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Lec. 6

&) Edge Detection

= Ultimate goal of edge detection: an idealized line drawing.

= Edge contours in the image correspond to important scene contours.

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL
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Lec. 6

24 Edge = intensity discontinuity in one direction

= Edges correspond to sharp changes of intensity
= Change is measured by 1st order derivative in 1D
= Big intensity change = magnitude of derivative is large

= Qr 2" order derivative is zero.

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL
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Lec. 6

s 1D Edge detection

= Image intensity shows an obvious change

1(x)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
X

d
&|(X) 0

| | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

X

= Where is the edge? = image noise cannot be ignored

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL
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Lec. 6
2 Solution: smooth first

Sigma = 50

Signal

[ (X)

Kernel

G, (x)

s5(x) = 1(x) =G, (x)

Convolution

s'(X) = (s(x))

Differentiation

0 200 400 600 800 1400 1600 1800 2000

= Where is the edge? At the extrema of S'(X)

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL
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Lec. 6

2 Derivative theorem of convolution

-sw»-(ewwmm GL(x)*1(x)

- Thls saves us ~ro nNnaratinn:

1(X)

Signal

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

G, (X) =—G, (x)

Kernel

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Edges occur at maxima/minima of $'(X)

§'(X) = G5 (%) * 1(x)

Convolution

| | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL
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Lec. 6
el /ero-crossings

= Locations of Maxima/minima in s'(X) are equivalent to zero-
crossings in s"(x)
Sigma = 50

Signal

1(X)

] ] ] ] ]
0 200 400 600 800 1000 1200 1400 1600 1800 2000

; LapIaC|an of Gau55|an operator

............................................................

2

" d
G, (X) = ﬁGa(X)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

$"(x) = GL(X)* 1 (x)

Convolution
-
T
f

| | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Lec. 6
sl 2D Edge detection

= Find gradient of smoothed image in both directions
Usually use a separable
filter such that:
GO' (X’ y) = GO' (X)Ga(y)

G, 1)) [aG, ,,
: . G. (X)G, (y)*|
VS =V(G, *1)=| 56 %1} | 5éa*| :{GG(X)G;(y)*I}
oy | Loy

= Discard pixels with |VS| below a certain below a certain threshold

= Non-maximal suppression: identify local maxima of [VS| along
the directions+|VS]

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL
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Lec. 6

& 2D Edge detection: Example

| : original image (Lena image)

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL
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Lec. 6

e 2D Edge detection: Example

VS =V(G, *1)

VS| : Edge strength

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL
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Lec. 6

4 2D Edge detection: Example

Thresholding |VS|

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL
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Lec. 6

e 2D Edge detection: Example

II" 1| Y by ||

iy,

IS
! | ! Il "I"":I!'|

Thinning: non-maximal suppression

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL



Figure 5: Edge Detection on image. Edge color signifies edggnitude (brighter == larger magni-
tude.

4 Middle Level Vision

Middle level vision tries to move beyond the pixel level togar abstractions including shape and
geometry.

4.1 Region Labeling: Recursive Region Growing

Recursive region growing is a simple method. Starting frobirary image, it scans the image for
any foreground pixels (not black). For each foreground Ipikdabels that pixel with a unique la-
bel, “grows” the pixel by coloring any of its non-black 4-gabors with this unique color label, and
pushing these pixels on a queue. The queue is then processleehupty. All 4-connected pixels in
the region will be labeled consistently. Recursive methaa loe slow however, and may need large
memory for recursive calls.



# Recursive Region Grower
# Do the following for every univisited SEED pixel.....

Input: Binary image — White(255) = foreground, Black(0) = background. Output: labeled regions

Choose a foreground SEED pixel ( pixel whose value = White), I(c,r)
Enqueue(c,r), and mark (c,r) as Visited
Label = K # random color
While Queue 'Empty do
(c,r) = Dequeue
Out_image(c,r) =K
if 1(c-1,r) Visited && I(c-1,r) == White # WEST neighbor pixel, hasn’t been Visited and is foreground pixel
enqueuer(c-1,r), mark (c-1,r) as Visited
if I(c+1,r) Visited && I(c+1,r) == White # EAST neighbor pixel, hasn’t been Visited and is foreground pixel
enqueuer(c+1,r), mark (c+1,r) as Visited
if I(c,r-1) 'Visited && I(c,r-1) == White # NORTH neighbor pixel, hasn’t been Visited and is foreground pixel
enqueuer(c,r-1), mark (c,r-1) as Visited
if I(c,r+1) !Visited && I(c,r+1) == White # SOUTH neighbor pixel, hasn’t been Visited and 1s foreground pixel
enqueuer(c,r+1), mark (c,r+1) as Visited



Recursive Region Grower - Seed Pixel is (2,2)

Queue

2,2

Queue

2,5
3,5

Queue

1,7

Queue

2,3

Queue

3,5
2,6

Queue

empty

Queue

2,4

Queue

2,6

Queue

3,4
2,5

Queue

1,6



4.2 Region Labeling: Blob Coloring

This algorithm uses 2 passes. The first pass labels eachgngdehe second pass merges the labels
into a consistent labeling.

Let the initial color,k = init.,.,, and choose a coldncrement to change the color each time
a new blob is found. Scan the image from left to right and toppdtiom. Assign colors to each
non-zero pixel in pass 1. In pass2, we merge the regions wdtdses are equivalent. To maintain the
equivalence table between merged colors, we can use a glatigi@int set Union-Find data structure.

If I(z¢) = 0 then continue
else begin

if/(zy) =1andl(z;) =0

then color(z¢): = color (zy)

|f](ZL’L) =1 and](xU) =0

then color(z¢): = color (zr)

|f](ZL’L) =1 and](xU) =1

then begin /* two colors are equivalent. */
color (z¢): = color (z)
color () is equivalent to colofz)
end

if[(x;) = 0andl(xy) = 0 /* new color */
then color(z¢): = k; k: = k + colorincrement

end

Figure 6: Image topology of,,, z., x; for region growing



Figure 7: Blob coloring. Left: original binary image. Midsdlblob color assignment after first pass.
Right: Blob color assignment after merging colors.

Below are 3 ascii images, showing the original test patteriigure 6, the first pass results, and
the final image after region labels are merged. The initildrs@0 and the color increment is 50.

0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 1 0
0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0
0 1 0 1 1 1 0 1 0
0 1 0 0 0 0 0 1 0
0 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0
0 80 0 0 130 130 130 130 0
0 80 0 0 0 0 0 130 0
0 80 0 180 0 230 0 130 0
0 80 0 180 0 230 0 130 0
0 80 0 180 180 180 0 130 0
0 80 0 0 0 0 0 130 0
0O 80 8 8 80 80 80 80 0
0 0 0 0 0 0 0 0 0
0 130 0 0 130 130 130 130 0
0 130 0 0 0 0 0 130 0
0 130 0 230 0 230 0 130 0
0 130 0 230 0 230 0 130 0
0 130 0 230 230 230 0 130 0
0 130 0 0 0 0 0 130 0
0 130 130 130 130 130 130 130 0

5 Simple Shape Matching

e Template Matching: Simple matching of masks (templatest)¢bntain object’s image structure

e Objectis represented as a region of pixels. Region is coaajagainst all other positions in the
image.

e Measure is absolute value of difference between templatdgpand image pixels - zero means
exact match. Find minimum response for template operatbtlas is best match

e Problems: Translation, Rotation, Scaling, Lighting ches\getween image and template
e Translation is handled by applying template everywherenage

¢ Rotation handled by using a set of templates oriented eesvydegrees. Increases cost
8





