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Probabilistic Roadmap Path Planning

• Explicit Geometry based planners  (grown 
obstacles, Voronoi etc) impractical in high 
dimensional spaces.

• Exact solutions with complex geometries are 
provably exponential 

• Sampling based planners can often create plans 
in high-dimensional spaces efficiently

• Rather than Compute the C-Space explicitly, we 
Sample it



Explicitly computing C-Space for more than 3 DOF is prohibitive!





Notion of Completeness in Planning

• Complete Planner: always answers a path 
planning query correctly in bounded time

• Probabilistic Complete Planner:  if a solution 
exists, planner will eventually find it, using 
random sampling (e.g. Monte Carlo sampling)

• Resolution Complete Planner: same as above 
but based on a deterministic sampling (e.g 
sampling on a fixed grid).



Sampling Based-Planners

• Do not attempt to explicitly construct the C-Space and its 
boundaries

• Simply need to know if a single robot configuration is in 
collision

• Exploits simple tests for collision with full knowledge of 
the space

• Collision detection is a separate module- can be tailored 
to the application

• As collision detection improves, so do these algorithms
• Different approaches for single-query and multi-query 

requests



PRM Planner

• Roadmap is a graph G(V,E)
• Robot configuration q→Q_free is a vertex 
• Edge (q1, q2) implies collision-free path 

between these robot configurations
• A metric is needed for d(q1,q2) (e.g. 

Euclidean distance)
• Uses coarse sampling of the nodes, and 

fine sampling of the edges
• Result: a roadmap in Q_free



PRM Planner: Step 1, Learning the Map

• Initially empty Graph G
• A configuration q is randomly chosen
• If q→Q_free then added to G (collision detection

needed here)
• Repeat until N vertices chosen
• For each q, select k closest neighbors 
• Local planner Δ connects q to neighbor q’
• If connect successful (i.e. collision free local 

path), add edge (q, q’)







PRM  Planner: Step 2, Finding a Path

• Given q_init and q_goal, need to connect 
each to the roadmap

• Find k nearest neigbors of q_init and 
q_goal in roadmap, plan local path Δ

• Problem: Roadmap Graph may have 
disconnected components…

• Need to find connections from q_init, 
q_goal to same component

• Once on roadmap, use Dijkstra algorithm







PRM Planner – unanswered questions

• How are random configurations chosen?
• How are closest neighbors found?
• How do we choose distance function?
• How are local path’s generated?



PRM Sampling and Connectivity

• Sampling: Uniform random sampling of Q_free
• Can be multi-dimensional (e.g. translation and 

rotation, both 2-D or 3-D or higher)
• Connectivity: need to find nearest neighbors
• Naïve search is O(n)
• K-D trees are efficient ways to find nearest 

neighbors
• Cost:  O(sqrt(n)) for d=2



Applet: http://donar.umiacs.umd.edu/quadtree/points/kdtree.html
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http://donar.umiacs.umd.edu/quadtree/index.html


Local Planner

• Important aspect of PRM algorithm
• Tradeoff:

– powerful planners are slow, but can find paths 
between relatively isolated nodes

– fast planner is less accurate, more nodes 
need to be generated, called more often 

• Local planner also needed for finding path 
from q_init and q_goal to roadmap



Local Planner

• Simplest: straight line planner.  Connect q 
and q’ by linear segment 

• Now check the segment for collisions:
– Incremental: use a small step size and iterate 

over the linear segment
– Subdivision: use binary search decomposition 

to check for collisions





Postprocessing: Path Improvement

• Once a path is found, it can be optimized
• Try connecting non-adjacent 

configurations. Choose q_1 and q_2 
randomly, try to connect.

• Greedy approach: try connecting points 
q_0, q_1, …q_n to q_goal.

• If q_k connects to q_goal, do the above 
with q_k as q_goal





Example: 6-DOF Path Planning

• Robot: Rigid non-convex object in 3 space
• Obstacle:  Solid wall with small opening
• Random configuration is chosen from R3 for 

translation
• Axis and angle of rotation randomly chosen for 

rotation (quaternion representation)



Collision Detection

• Given configuration q and nearest neighbor 
q’ we can use straight line collision detection

• Each configuration 
q=(p,r)=(trans,quaternion)

• Check for collision by interpolating along line 
(p,p’) and along spherical interpolation (r,r’).



video

http://www1.cs.columbia.edu/~allen/F10/NOTES/sixway.mov.mov
allen
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allen
Typewritten Text

https://youtu.be/I39OrkmHZSs
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Distance Calculation for Rigid Object in 3D
• Distance function needed between 2 configurations q, q’
• Ideally, distance is the swept volume of the robot as it moves between 

configurations q and q’.  Difficult to compute exactly
• Method I:  Can approximate this distance with an embedding in a Euclidean 

metric space: d(q,q’) = || embed(q) - embed(q’)||
– Choose set of p points on robot, concatenate them, and create a vector of 

size p x dimension of workspace. 
– Example of rigid object in 3D:    Create vector of size 3p, choosing p points 

on the object.  Intuitively, a “sampling” of the object’s Euclidean domain.
– For configuration q, embed(q) is the vector of p points transformed by the 

translation and rotation that is configuration q. Transform each of the p 
points into the vector embed(q).

– Do the same for configuration q’, create embed(q’).
– Distance is now Euclidean distance between the 3p vectors:

d(q,q’) = || embed(q) - embed(q’)||
• How do you choose the p points?
• Cheaper solution: choose 2 points p1 and p2 of maximum extent on the object.
• Method II:  Separate a configuration q into a translation X and a rotation R: 

q=(X,R)
• Calculate a weighted distance function d(q,q’) = w1||X-X’|| + w2 f(R,R’).
• Need to use a metric on rotations – quaternions are good for this
• Weights w1 and w2 need to be chosen, no real insight into this



OBPRM: Obstacle PRM

• If tight, small regions of the Cspace are needed to 
create a path (e.g. small opening in the wall), 
sampling may miss this

• Problem areas tend to be near the obstacles in 
tight spaces

• Solution: generate configuration q.  If q in collision, 
choose random direction v and move q away from 
obstacle in direction v a small distance.  If q now in 
Q_free, use this node

• Biases sampling near obstacles



Single-Query Sampling Based Planners

• PRM samples the entire space, plans 
paths anywhere

• Single query planners don’t explore all of 
Q_free, only relevant parts

• PRM can be used this way, inserting q_init 
and q_goal in Graph at beginning, then 
checking for a path



Random search

Random walks

Often combined with potential field methods to escape minima

random walks are not perfect...

“Filling in” local minima



RRT:  Rapidly-exploring Random Trees

• Idea: sample Q_free for path from q_init to 
q_goal

• Use 2 trees, rooted at q_init and q_goal. 
• As trees grow, the eventually share a 

common node, and are merged into a path



RRTs

connects global & local information

1) Maintain a tree of configurations reachable from the starting point.

2) Choose a point at random from free space

3) Find the closest configuration already in the tree

4) Extend the tree in the direction of the new configuration EXTEND step



Growth of an RRT

Example growth of an RRT - Biased toward the unexplored free space at each step.

Voronoi diagrams



A Mature RRT

RRT - blue

Voronoi - red
http://msl.cs.uiuc.edu/rrt
http://www.kuffner.org/james/humanoid/planning.php

http://msl.cs.uiuc.edu/rrt


Path Planning with RRT Algorithm

• 2 trees, T_init, T_goal, rooted at q_init, 
q_goal

• Each tree is expanded by:
– q_rand is generated from uniform dist.
– q_near is found, nearest tree node to q_rand
– move step-size along line (q_near, q_rand) to 

q_new. If no collision, add q_new to tree
• If trees merge, path is found







RRT Algorithm

• Algorithm sensitive to step-size
• How far do we move along line (q_near, 

q_rand)?
• Can a greedier algorithm work better?
• Why not move all the way to q_rand?





RRT Tradeoffs

• If step-size is small, many nodes 
generated, close together

• As number of nodes increases, nearest-
neighbor computation slows down

• May be better to only add the last sample 
along the line (q_near, q_rand)



Shaping the RRT

• q_rand determines what direction we go
• What if q_rand == q_goal?
• Very greedy algorithm.  Introduces too much 

bias
• Becomes a potential field planner that gets 

stuck in local minima
• Idea: use uniform q_rand with occasional 

q_rand ==q_goal (maybe we get lucky?)
• Introducing just .05 bias towards goal, results 

improve



Merging RRT’s





Using RRTs

http://msl.cs.uiuc.edu/rrt/



Bidirectional search



Additional complexity
additional degrees of freedom



Additional complexity
additional degrees of freedom

xy projections



Additional complexity
additional degrees of freedom

xy projections time-lapse paths



Additional complexity
articulated linkages



Additional complexity
articulated linkages

http://msl.cs.uiuc.edu/rrt
http://www.kuffner.org/james/humanoid/planning.html

http://msl.cs.uiuc.edu/rrt
http://www.kuffner.org/james/humanoid/planning.html
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