
Cider: Native Execution of iOS Apps on Android

Jeremy Andrus, Alexander Van’t Hof, Naser AlDuaij,
Christoffer Dall, Nicolas Viennot, and Jason Nieh

Department of Computer Science
Columbia University

{jeremya, alexvh, alduaij, cdall, nviennot, nieh}@cs.columbia.edu

Abstract
We present Cider, an operating system compatibility archi-
tecture that can run applications built for different mobile
ecosystems, iOS or Android, together on the same smart-
phone or tablet. Cider enhances the domestic operating sys-
tem, Android, of a device with kernel-managed, per-thread
personas to mimic the application binary interface of a for-
eign operating system, iOS, enabling it to run unmodified
foreign binaries. This is accomplished using a novel com-
bination of binary compatibility techniques including two
new mechanisms: compile-time code adaptation, and diplo-
matic functions. Compile-time code adaptation enables ex-
isting unmodified foreign source code to be reused in the
domestic kernel, reducing implementation effort required to
support multiple binary interfaces for executing domestic
and foreign applications. Diplomatic functions leverage per-
thread personas, and allow foreign applications to use do-
mestic libraries to access proprietary software and hardware
interfaces. We have built a Cider prototype, and demonstrate
that it imposes modest performance overhead and runs un-
modified iOS and Android applications together on a Google
Nexus tablet running the latest version of Android.

Categories and Subject Descriptors C.0 [Computer Sys-
tems Organization]: General–System architectures; D.2.7
[Software Engineering]: Distribution, Maintenance, and En-
hancement; D.2.11 [Software Engineering]: Software Ar-
chitectures; D.3.4 [Programming Languages]: Processors–
Run-time environments; D.4.7 [Operating Systems]: Orga-
nization and Design; D.4.9 [Operating Systems]: Systems
Programs and Utilities

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’14, March 1–4, 2014, Salt Lake City, Utah, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/2541940.2541972

Keywords Android, iOS, Mobile Computing, Binary Com-
patibility, Operating System Compatibility

1. Introduction
Mobile devices such as tablets and smartphones are chang-
ing the way that computing platforms are designed, from the
separation of hardware and software concerns in the tradi-
tional PC world, to vertically integrated platforms. Hardware
components are integrated together in compact devices using
non-standard interfaces. Software is customized for the hard-
ware, often using proprietary libraries to interface with spe-
cialized hardware. Applications (apps) are tightly integrated
with libraries and frameworks, and often only available on
particular hardware devices.

These design decisions and the maturity of the mobile
market can limit user choice and stifle innovation. Users who
want to run iOS gaming apps on their smartphones are stuck
with the smaller screen sizes of those devices. Users who
prefer the larger selection of hardware form factors avail-
able for Android are stuck with the poorer quality and selec-
tion of Android games available compared to the well popu-
lated Apple App Store [21]. Android users cannot access the
rich multimedia content available in Apple iTunes, and iOS
users cannot easily access Flash-based Web content. Some
companies release cross-platform variants of their software,
but this requires developers to master many different graphi-
cal, system, and library APIs, and creates additional support
and maintenance burden on the company. Many developers
who lack such resources choose one platform over another,
limiting user choice. Companies or researchers that want to
build innovative new devices or mobile software platforms
are limited in the functionality they can provide because they
lack access to the huge app base of existing platforms. New
platforms without an enormous pool of user apps face the
difficult, if not impossible, task of end user adoption, creat-
ing huge barriers to entry into the mobile device market.

While virtual machines (VMs) are useful for desktop and
server computers to run apps intended for one platform on
a different platform [36, 44], using them for smartphones

367

and tablets is problematic for at least two reasons. First, mo-
bile devices are more resource constrained, and running an
entire additional operating system (OS) and user space envi-
ronment in a VM just to run one app imposes high overhead.
High overhead and slow system responsiveness are much
less acceptable on a smartphone than on a desktop computer
because smartphones are often used for just a few minutes or
even seconds at a time. Second, mobile devices are tightly
integrated hardware platforms that incorporate a plethora
of devices, such as GPUs, that use non-standardized inter-
faces. VMs provide no effective mechanism to enable apps
to directly leverage these hardware device features, severely
limiting performance and making existing VM-based ap-
proaches unusable on smartphones and tablets.

To address these problems, we created Cider, an OS com-
patibility architecture that can simultaneously run apps writ-
ten and compiled for different mobile ecosystems, iOS or
Android, simultaneously on the same smartphone or tablet.
Cider runs domestic binaries, those developed for a given
device’s OS, the domestic OS, and foreign binaries, those
developed for a different OS, the foreign OS, together on
the same device. In our prototype, Android is the domestic
OS, running domestic Android apps, and iOS is the foreign
OS. We use the terms foreign and iOS, and domestic and
Android interchangeably. Cider defines a persona as an exe-
cution mode assigned to each thread in the system, identify-
ing the thread as executing either foreign or domestic code,
using a foreign persona or domestic persona, respectively.
Cider supports multiple personas within a single process by
extending the domestic kernel’s application binary interface
(ABI) to be aware of both foreign and domestic threads.

Cider provides OS compatibility by augmenting the do-
mestic Android kernel with the ability to simultaneously
present both a domestic kernel ABI as well as a foreign
kernel ABI. Foreign user space code interacts with a Cider-
enabled kernel in exactly the same way as a foreign kernel,
i.e., iOS apps trap into the Linux kernel exactly as if they
were trapping into a kernel running on an iPhone or iPad.
Modifying the domestic kernel in this way allows Cider both
to avoid the traditional VM overhead of running a complete
instance of a foreign kernel, and reuse and run unmodified
foreign user space library code. The latter is essential since
mobile ecosystem libraries and frameworks are often com-
plex, closed-source, and proprietary.

To run unmodified foreign libraries and apps on a domes-
tic OS, we had to overcome two key challenges: the diffi-
culty of porting and reimplementing complex functionality
of one OS in another, and the use of proprietary and opaque
kernel interfaces to access custom hardware. In particular,
tightly integrated libraries on mobile devices will often di-
rectly access proprietary hardware resources of a particular
device through opaque kernel interfaces such as the ioctl

system call. Proprietary and opaque foreign kernel interfaces
cannot easily be implemented in the domestic kernel, and

custom foreign hardware is often missing from the domes-
tic device. Our solution takes advantage of two aspects of
mobile ecosystems. First, although user space libraries and
frameworks are often proprietary and closed, even closed
mobile ecosystems increasingly build on open source ker-
nel code through well-defined interfaces; iOS builds on the
open source XNU kernel [6]. Second, although libraries on
mobile devices will access custom hardware through opaque
kernel interfaces, the actual functionality provided is often
cross platform as companies mimic the best features of their
competitors’ devices such as the use of touchscreens for in-
put and OpenGL ES for graphics on mobile ecosystems.

Based on these observations, Cider supports running un-
modified foreign apps on a domestic OS through a novel
combination of binary compatibility techniques, including
two new OS compatibility mechanisms. Cider introduces
duct tape, a novel compile-time code adaptation layer, that
allows unmodified foreign kernel code to be directly com-
piled into the domestic kernel. Foreign binaries can then
use these new kernel services not otherwise present in the
domestic kernel. Brute force implementation of these ser-
vices and functionality can be error-prone and tedious. Duct
tape maximizes reuse of available foreign open source OS
code to substantially reduce implementation effort and cod-
ing errors. Cider introduces diplomatic functions to allow
foreign apps to use domestic libraries to access proprietary
software and hardware interfaces on the device. A diplo-
matic function is a function which temporarily switches the
persona of a calling thread to execute domestic code from
within a foreign app, or vice-versa. Using diplomatic func-
tions, Cider replaces calls into foreign hardware-managing
libraries, such as OpenGL ES, with calls into domestic li-
braries that manage domestic hardware, such as a GPU.
Diplomatic functions make it possible to deliver the same li-
brary functionality required by foreign apps without the need
to reverse engineer and reimplement the opaque foreign ker-
nel interfaces used by proprietary foreign libraries.

Using these OS compatibility mechanisms, we built a
Cider prototype that can run unmodified iOS and Android
apps on Android devices. We leverage existing software
infrastructure as much as possible, including unmodified
frameworks across both iOS and Android ecosystems. We
demonstrate the effectiveness of our prototype by running
various iOS apps from the Apple App Store together with
Android apps from Google Play on a Nexus 7 tablet run-
ning the latest version of Android. Users can interact with
iOS apps using multi-touch input, and iOS apps can leverage
GPU hardware to display smooth, accelerated graphics. Our
microbenchmark and app measurements show that Cider im-
poses modest performance overhead, and can deliver faster
performance for iOS apps than corresponding Android coun-
terparts on Android hardware. The faster performance is due
to the greater efficiencies of running native iOS code instead
of interpreted bytecode as used by Android.

368

 iOS Kernel

IOKit
Android Linux

Kernel

Su
rfa

ce
Fl

in
ge

r

La
un

ch
er

An
dr

oi
d

Ap
p

Sy
st

em
Se

rv
er

Sp
rin

gB
oa

rd

no
tif

yd

iO
S

Ap
p

la
un

ch
d

co
nfi

gd

VFS Layer

Sockets

Security

G
ra

ph
ics

In
pu

t

M
ac

h
IP

C

In
pu

t

G
ra

ph
ics

Mach BSD

Figure 1: Android and iOS architectures

2. Overview of Android and iOS
To understand how Cider runs iOS apps on Android, we
first provide a brief overview of the operation of Android
and iOS. We limit our discussion to central components
providing app startup, graphics, and input on both systems.

Figure 1 shows an overview of these two systems. An-
droid is built on the Linux kernel and runs on ARM CPUs.
The Android framework consists of a number of system ser-
vices and libraries used to provide app services, graphics, in-
put, and more. For example, SystemServer starts Launcher,
the home screen app on Android, and SurfaceFlinger, the
rendering engine which uses the GPU to compose all the
graphics surfaces for different apps and display the final
composed surface to the screen.

Each Android app is compiled into Dalvik bytecode (dex)
format, and runs in a separate Dalvik VM instance. When a
user interacts with an Android app, input events are delivered
from the Linux kernel device driver through the Android
framework to the app. The app displays content by obtaining
window memory (a graphics surface) from SurfaceFlinger
and draws directly into the window memory. An app can
attach an OpenGL context to the window memory and use
the OpenGL ES framework to render hardware-accelerated
graphics into the window memory using the GPU.

iOS runs on ARM CPUs like Android, but has a very
different software ecosystem. iOS is built on the XNU ker-
nel [6], a hybrid combination of a monolithic BSD kernel
and a Mach microkernel running in a single kernel address
space. XNU leverages the BSD socket and VFS subsystems,
but also benefits from the virtual memory management [42]
and IPC mechanisms [47] provided by Mach. iOS makes ex-
tensive use of both BSD and Mach XNU services. The iOS
user space framework consists of a number of user space
daemons. launchd is responsible for booting the system,
and starting, stopping, and maintaining services and apps.
launchd starts Mach IPC services such as configd, the sys-
tem configuration daemon, notifyd, the asynchronous no-
tification server, and mediaserverd, the audio/video server.

launchd also starts the SpringBoard app, which displays
the iOS home screen, handles and routes user input to apps,
and uses the GPU to compose app display surfaces onto
the screen. SpringBoard is analogous to an amalgamation of
SurfaceFlinger, Launcher, and SystemServer in Android.1

iOS apps are written in Objective-C, and compiled and
run as native binaries in an extended Mach-O [4] format.
In contrast, the Java archives used by Android apps are
interpreted by the Dalvik VM, not loaded as native binaries.
On iOS, apps are loaded directly by a kernel-level Mach-
O loader which interprets the binary, loads its text and data
segments, and jumps to the app entry point. Dynamically
linked libraries are loaded by dyld, a user space binary,
which is invoked from the Mach-O loader. Examples of
frequently used libraries in iOS apps include UIKit, the user
interface framework; QuartzCore and OpenGL ES, the core
graphics frameworks; and WebKit, the web browser engine.

3. System Integration
Cider provides a familiar user experience when running iOS
apps on Android. Apps are launched from the Android home
screen, just like any other Android app, and users can switch
seamlessly between domestic Android apps and foreign iOS
apps. Cider accomplishes this without running the iOS XNU
kernel or the SpringBoard app. Cider overlays a file sys-
tem (FS) hierarchy on the existing Android FS, and pro-
vides several background user-level services required by iOS
apps. The overlaid FS hierarchy allows iOS apps to ac-
cess familiar iOS paths, such as /Documents, and the back-
ground services establish key microkernel-style functional-
ity in user space necessary to run iOS apps. Figure 2 shows
an overview of the integration of iOS functionality into our
Android-based Cider prototype.

iOS apps running on Cider need access to a number of
framework components including iOS libraries and user-
level Mach IPC services. Instead of reimplementing these
components, a task which would require substantial engi-
neering and reverse-engineering efforts, we simply copy the
existing binaries from iOS and run them on the domestic sys-
tem, leveraging Cider’s OS compatibility architecture. Back-
ground user-level services such as launchd, configd, and
notifyd were copied from an iOS device, and core frame-
work libraries were copied from the Xcode SDK, Apple’s
development environment.

To provide seamless system integration, and minimize
Android user space changes, Cider introduces a proxy ser-
vice, CiderPress. The launch procedure and binary format of
iOS and Android apps are completely different, so iOS app
startup and management cannot be directly performed by the
Android framework. CiderPress is a standard Android app
that integrates launch and execution of an iOS app with An-
droid’s Launcher and system services. It is directly started by

1 In newer versions of iOS, graphics rendering and input event pumping
have been offloaded to backboardd.

369

User-Level iOS Services

Cider Linux Kernel

Su
rfa

ce
Fl

in
ge

r

La
un

ch
er

An
dr

oi
d

Ap
p

Sy
st

em
Se

rv
er launchd

iOS App

iOS App

CiderPress

CiderPress eventpump

eventpump

notifyd

configd installd

Figure 2: System integration overview

Android’s Launcher, receives input such as touch events and
accelerometer data from the Android input subsystem, and
its life cycle is managed like any other Android app. Cider-
Press launches the foreign binary, and proxies its own dis-
play memory, incoming input events, and app state changes
to the iOS app. An Android Launcher short cut pointing to
CiderPress allows a user to click an icon on the Android
home screen to start an iOS app, and the proxied display
surface allows screen shots of the iOS app to appear in An-
droid’s recent activity list. Proxied app state changes allow
the iOS app to be started, stopped, and paused (put into the
background) like a standard Android app.

4. Architecture
The primary goal of Cider is to run unmodified iOS binaries
on Android, including iOS apps, frameworks, and services.
This is challenging because iOS binaries are built to run on
iOS and XNU, not Android and Linux. The XNU kernel pro-
vides a different system call (syscall) interface from Linux,
and iOS apps make extensive use of OS services not avail-
able on Linux, such as Mach IPC [5]. Clearly, more than just
binary compatibility is necessary: Cider must make Android
compatible with iOS. Cider’s multi-persona OS compatibil-
ity architecture solves this problem.

Figure 3 provides an overview of the Cider OS com-
patibility architecture which can be divided into three key
components. First, Cider provides XNU kernel compatibil-
ity by implementing a Mach-O loader for the Linux ker-
nel, supporting the XNU syscall interface, and facilitating
proper signal delivery – together referred to as the ker-
nel application binary interface (ABI). Second, Cider pro-
vides a duct tape layer to import foreign kernel code that
supports syscalls and subsystems not available in Linux.
Third, Cider introduces diplomatic functions, implemented
in the libdiplomat iOS library, to support apps that use
closed iOS libraries which issue device-specific calls such as
opaque Mach IPC messages or ioctls. We describe these
components in further detail in the following sections.

iOS Application

Mach-O
Loader

XNU ABI
Compatibility

Standard Linux
ABI

iOS Libraries

Cider
Libraries libdiplomat

Android
Libraries

iOS
Mach IPC
Services

IOKit
Driver Bridge

 XNU Source
IOKit

Mach IPC Cider Linux Kernel
Persona

Management

notifyd
configd
launchd

Duct Tape

installd

Figure 3: Overview of Cider architecture

4.1 Kernel ABI
At a high-level, providing an OS compatibility solution is
straightforward. The interaction between apps and an OS is
defined by the kernel application binary interface (ABI). The
ABI defines all possible interactions between apps and the
kernel. The ABI consists of a binary loader which interprets
the physical contents of the application binary and associ-
ated libraries, asynchronous signal delivery, and the syscall
interface. To run iOS apps in Android, we need to implement
these three components of the XNU ABI in the Linux kernel.

Cider provides a Mach-O binary loader built into the
Linux kernel to handle the binary format used by iOS apps.
When a Mach-O binary is loaded, the kernel tags the cur-
rent thread with an iOS persona, used in all interactions with
user space. Personas are tracked on a per-thread basis, inher-
ited on fork or clone, and enable processes with multiple
threads to simultaneously support multiple personas. Multi-
persona processes play a key role in supporting hardware-
accelerated graphics as discussed in Section 5.3.

Cider provides a translation layer for asynchronous signal
delivery that converts signals from the Linux kernel (gener-
ated from events such as an illegal instruction, or a segmen-
tation fault) into signals which would have been generated
by the XNU kernel. The XNU signals are then delivered to
iOS applications, as appropriate, where they can be prop-
erly handled. Cider also converts XNU signals generated
programmatically from iOS applications into corresponding
Linux signals, so they can be delivered to non-iOS applica-
tions or threads. Cider uses the persona of a given thread
to deliver the correct signal. Android apps (or threads) can
deliver signals to iOS apps (or threads) and vice-versa.

Since an app’s primary interface to the kernel is through
syscalls, Cider provides multiple syscall interfaces to sup-
port different kernel ABIs. Cider maintains one or more
syscall dispatch tables for each persona, and switches among
them based on the persona of the calling thread and the
syscall number. Cider is aware of XNU’s low-level syscall
interface, and translates things such as function parameters

370

and CPU flags into the Linux calling convention, making it
possible to directly invoke existing Linux syscall implemen-
tations. Different kernels have different syscall entry and exit
code paths. For example, iOS apps can trap into the kernel
in four different ways depending on the system call being
executed, and many XNU syscalls return an error indication
through CPU flags where Linux would return a negative in-
teger. Cider manages these syscall entry and exit path differ-
ences through persona-tagged support functions.

Because the iOS kernel, XNU, is based on POSIX-
compliant BSD, most syscalls overlap with functionality
already provided by the Linux kernel. For these syscalls,
Cider provides a simple wrapper that maps arguments from
XNU structures to Linux structures and then calls the Linux
implementation. To implement XNU syscalls that have no
corresponding Linux syscall, but for which similar Linux
functionality exists, the wrapper reuses one or more exist-
ing Linux functions. For example, Cider implements the
posix spawn syscall, which is a flexible method of starting
a thread or new application, by leveraging the Linux clone

and exec syscall implementations.

4.2 Duct Tape
Simple wrappers and combinations of existing syscall im-
plementations are not enough to implement the entire XNU
ABI. Many XNU syscalls require a core subsystem that does
not exist in the Linux kernel. Reimplementing these mech-
anisms would be a difficult and error-prone process. Mach
IPC is a prime example of a subsystem missing from the
Linux kernel, but used extensively by iOS apps. It is a rich
and complicated API providing inter-process communica-
tion and memory sharing. Implementing such a subsystem
from scratch in the Linux kernel would be a daunting task.
Given the availability of XNU source code, one approach
would be to try to port such code to the Linux kernel. This
approach is common among driver developers, but is time
consuming and error-prone given that different kernels have
completely different APIs and data structures. For example,
the Linux kernel offers a completely different set of synchro-
nization primitives from the XNU kernel.

To address this problem, Cider introduces duct tape,
a novel compile-time code adaptation layer that supports
cross-kernel compilation: direct compilation of unmodified
foreign kernel source code into a domestic kernel. Duct
tape translates foreign kernel APIs such as synchronization,
memory allocation, process control, and list management,
into domestic kernel APIs. The resulting module or subsys-
tem is a first-class member of the domestic kernel and can
be accessed by both foreign and domestic apps.

To duct tape foreign code into a domestic kernel, there
are three steps. First, three distinct coding zones are created
within the domestic kernel: the domestic, foreign, and duct
tape zones. Code in the domestic zone cannot access sym-
bols in foreign zone, and code in the foreign zone cannot
access symbols in the domestic zone. Both foreign and do-

mestic zones can access symbols in the duct tape zone, and
the duct tape zone can access symbols in both the foreign
and domestic zones. Second, all external symbols and sym-
bol conflicts with domestic code are automatically identified
in the foreign code. Third, conflicts are remapped to unique
symbols, and all external foreign symbols are mapped to
appropriate domestic kernel symbols. Simple symbol map-
ping occurs through preprocessor tokens or small static in-
line functions in the duct tape zone. More complicated exter-
nal foreign dependencies require some implementation ef-
fort within the duct tape or domestic zone.

Duct tape provides two important advantages. First, for-
eign code is easier to maintain and upgrade. Because the
original foreign code is not modified, bug fixes, security
patches, and feature upgrades can be applied directly from
the original maintainer’s source repository. Second, the code
adaptation layer created for one subsystem is directly re-
usable for other subsystems. For example, most kernel code
will use locking and synchronization primitives, and an
adaptation layer translating these APIs and structures for one
foreign subsystem into the domestic kernel will work for all
subsystems from the same foreign kernel. As more foreign
code is added, the duct tape process becomes simpler.

Cider successfully uses duct tape to add three different
subsystems from the XNU kernel into Android’s Linux ker-
nel: pthread support, Mach IPC, and Apple’s I/O Kit device
driver framework, the latter is discussed in Section 5.1. iOS
pthread support differs substantially from Android in func-
tional separation between the pthread library and the kernel.
The iOS user space pthread library makes extensive use of
kernel-level support for mutexes, semaphores, and condition
variables, none of which are present in the Linux kernel. This
support is found in the bsd/kern/pthread support.c file
in the XNU source provided by Apple. Cider uses duct tape
to directly compile this file without modification.

The Mach IPC subsystem is significantly more compli-
cated than pthread support. Cider uses duct tape to directly
compile the majority of Mach IPC into the Linux kernel.
However, code relying on the assumption of a deeper stack
depth in XNU required reimplementation. In particular,
XNU’s Mach IPC code uses recursive queuing structures,
something disallowed in the Linux kernel. This queuing was
rewritten to better fit within Linux.

Note that the BSD kqueue and kevent notification mecha-
nisms were easier to support in Cider as user space libraries
because of the availability of existing open source user-level
implementations [25]. Because they did not need to be incor-
porated into the kernel, they did not need to be incorporated
using duct tape, but simply via API interposition [27].

4.3 Diplomatic Functions
XNU kernel ABI support coupled with duct tape allows
Cider to successfully handle most kernel interactions from
iOS apps, however, the behavior of several key syscalls is
not well-defined. For example, the ioctl syscall passes a

371

driver-specific request code and a pointer to memory, and
its behavior is driver-specific. Without any understanding of
how ioctls are used, simply implementing the syscall itself
is of little benefit to apps.

Additionally, Mobile apps often make use of closed and
proprietary hardware and software stacks. Compressed con-
sumer production time lines and tight vertical integration
of hardware and software lead developers to discard cum-
bersome abstractions present on Desktop PCs in favor of
custom, direct hardware communication. For example, the
OpenGL ES libraries on both Android and iOS directly com-
municate with graphics hardware (GPU) through proprietary
software and hardware interfaces using device-specific ioctls
(Android), or opaque IPC messages (iOS).

Cider cannot simply implement kernel-level support for
foreign, closed libraries which directly manipulate hardware
through proprietary interfaces. Not only are the semantics of
the closed library unknown, but they are likely closely tied
to foreign hardware not present on the domestic device.

Cider solves the problem of direct access to proprietary
hardware through the novel concept of diplomatic functions.
A diplomatic function temporarily switches the persona of a
calling thread to execute domestic functions from within a
foreign app. A thread’s persona, or execution mode, selects
the kernel ABI personality and thread local storage (TLS)
information used during execution. The TLS area contains
per-thread state such as errno and a thread’s ID.

Cider’s diplomatic function support comprises three key
components: (1) The ability to load and interpret domestic
binaries and libraries within a foreign app. This involves the
use of a domestic loader compiled as a foreign library. For
example, Cider incorporates an Android ELF loader cross-
compiled as an iOS library. (2) Kernel-level persona man-
agement at a thread level including both kernel ABI and TLS
data management. The Cider kernel maintains kernel ABI
and TLS area pointers for every persona in which a given
thread executes. A new syscall (available from all personas)
named set persona, switches a thread’s persona. Differ-
ent personas use different TLS organizations, e.g., the errno
pointer is at a different location in the iOS TLS than in the
Android TLS. After a persona switch, any kernel traps or
accesses to the TLS area will use the new persona’s point-
ers. This allows the thread to invoke functions from libraries
compiled for a different persona. For example, in Section 5.3
we describe how, using diplomatic functions, an iOS app can
load and execute code in the Android OpenGL ES library
and thereby directly interact with the underlying GPU hard-
ware (3) The ability to mediate foreign function calls into do-
mestic libraries, appropriately loading, switching, and man-
aging the domestic persona; this is done through diplomats.
A diplomat is a function stub that uses an arbitration process
to switch the current thread’s persona, invoke a function in
the new persona, switch back to the calling function’s per-
sona, and return any results.

The Cider arbitration process for calling a domestic func-
tion from foreign code through a diplomat is as follows: (1)
Upon first invocation, a diplomat loads the appropriate do-
mestic library and locates the required entry point, storing a
pointer to the function in a locally-scoped static variable for
efficient reuse. (2) The arguments to the domestic function
call are stored on the stack. (3) The set persona syscall
is invoked from the foreign persona to switch the calling
thread’s kernel ABI, and TLS area pointer to their domestic
values. (4) The arguments to the domestic function call are
restored from the stack. (5) The domestic function call is di-
rectly invoked through the symbol stored in step 1. (6) Upon
return from the domestic function, the return value is saved
on the stack. (7) The set persona syscall is invoked from
the domestic persona to switch the kernel ABI and TLS area
pointer back to the foreign code’s values. (8) Any domes-
tic TLS values, such as errno, are appropriately converted
and updated in the foreign TLS area. (9) The domestic func-
tion’s return value is restored from the stack, and control is
returned to the calling foreign function.

Because Cider maintains kernel ABI and TLS infor-
mation on a per-thread basis, a single app can simultane-
ously execute both foreign and domestic code in multiple
threads. For example, while one thread executes compli-
cated OpenGL ES rendering algorithms using the domestic
persona, another thread in the same app can simultaneously
process input data using the foreign persona. Unlike previ-
ous binary compatibility work [13, 19, 20, 23], which only
allowed an app to use a single persona, Cider allows an app
to switch among personas and use multiple personas simul-
taneously. Cider can replace an entire foreign library with
diplomats, or it can define a single diplomat to use targeted
functionality in a domestic library such as popping up a sys-
tem notification. Section 5.3 describes how Cider replaces
the iOS OpenGL ES library with diplomats that use An-
droid’s OpenGL ES libraries.

5. iOS Subsystems on Android
We highlight three examples of key iOS subsystems to show
how Cider’s OS compatibility architecture supports each
subsystem on an Android device. Due to space constraints,
we only provide an overview of the XNU I/O Kit subsystem,
multi-touch input, and graphics support. A full discussion of
all supported subsystems is beyond the scope of this paper.

5.1 Devices
Cider uses duct tape to make Android hardware devices
available to iOS apps via Apple’s I/O Kit. I/O Kit is Ap-
ple’s open source driver framework based on NeXTSTEP’s
DriverKit. It is written primarily in a restricted subset of
C++, and is accessed via Mach IPC. iOS Apps and libraries
access Android devices via I/O Kit drivers in Cider exactly
as they would access Apple devices on iOS.

372

To directly compile the I/O Kit framework, Cider added
a basic C++ runtime to the Linux kernel based on Android’s
Bionic. Linux kernel Makefile support was added such that
compilation of C++ files from within the kernel required
nothing more than assigning an object name to the obj-y

Makefile variable. Cider uses duct tape and its Linux ker-
nel C++ runtime to directly compile the majority of the I/O
Kit code, found in the XNU iokit source directory, without
modification.2 In fact, we initially compiled Cider with the
I/O Kit framework found in XNU v1699.24.8, but later di-
rectly applied source code patches upgrading to the I/O Kit
framework found in XNU v2050.18.24.

Cider makes devices available via both the Linux device
driver framework and I/O Kit. Using a small hook in the
Linux device add function, Cider creates a Linux device
node I/O Kit registry entry (a device class instance) for ev-
ery registered Linux device. Cider also provides an I/O Kit
driver class for each device that interfaces with the corre-
sponding Linux device driver. This allows iOS apps to ac-
cess devices as well as query the I/O Kit registry to locate
devices or properties.

For example, iOS apps expect to interact with the de-
vice framebuffer through a C++ class named AppleM2CLCD

which derives from the IOMobileFramebuffer C++ class
interface. Using the C++ runtime support added to the Linux
kernel, the Cider prototype added a single C++ file in the
Nexus 7 display driver’s source tree that defines a class
named AppleM2CLCD. This C++ class acts as a thin wrapper
around the Linux device driver’s functionality. The class is
instantiated and registered as a driver class instance with I/O
Kit through a small interface function called on Linux ker-
nel boot. The duct taped I/O Kit code matches the C++ driver
class instance with the Linux device node (previously added
from the Linux device add function). After the driver class
instance is matched to the device class instance, iOS user
space can query and use the device as a standard iOS de-
vice. We believe that a similar process can be done for most
devices found on a tablet or smartphone.

5.2 Input
No user-facing app would be complete without input from
both the user and devices such as the accelerometer. In
iOS, every app monitors a Mach IPC port for incoming
low-level event notifications and passes these events up the
user space stack through gesture recognizers and event han-
dlers. The events sent to this port include mouse, button,
accelerometer, proximity and touch screen events. A sys-
tem service, SpringBoard, is responsible for communicating
with the lower-level iOS input system, determining which
app should receive the input, and then sending correspond-
ing input events to the app via its respective Mach IPC port.

2 Portions of the I/O Kit codebase such as IODMAController.cpp and
IOInterruptController.cpp were not necessary as they are primarily
used by I/O Kit drivers communicating directly with hardware.

Replicating the interactions between SpringBoard and the
lower-level input system on Android would potentially in-
volve reverse engineering complex device driver interactions
with input hardware that is not present in Android devices.

Cider takes a simpler approach to provide complete, in-
teractive, multi-touch input support for iOS. Cider does not
attempt to replicate the lower-level iOS input system. In-
stead, it simply reads events from the Android input system,
translates them as necessary into a format understood by iOS
apps, and sends them to the Mach IPC port used by apps to
receive events. In particular, Cider creates a new thread in
each iOS app to act as a bridge between the Android input
system and the Mach IPC port expecting input events. This
thread, the eventpump seen in Figure 2, listens for events
from the Android CiderPress app on a BSD socket. It then
pumps those events into the iOS app via Mach IPC. In the
future, this intermediary thread could be avoided with a min-
imal Linux Mach IPC wrapper ABI. Using this approach,
Cider is able to provide complete, interactive, multi-touch
input support in a straightforward manner. Panning, pinch-
to-zoom, iOS on-screen keyboards and keypads, and other
input gestures are also all completely supported.

5.3 Graphics
Cider leverages kernel-level personas through diplomatic
functions to provide 2D and 3D graphics support in iOS
apps. User space libraries such as WebKit, UIKit, and Core-
Animation render content, such as buttons, text, web pages,
and images, using the OpenGL ES and IOSurface iOS li-
braries. These libraries communicate directly to the iOS ker-
nel via Mach IPC. They use I/O Kit drivers to allocate and
share graphics memory, control hardware facilities such as
frame rates and subsystem power, and perform more com-
plex rendering tasks such as those required for 3D graphics.

Supporting the iOS graphics subsystem is a huge OS
compatibility challenge; highly optimized user space li-
braries are tightly integrated with mobile hardware. Libraries
such as OpenGL ES, call into a set of proprietary, closed
source, helper libraries which, in turn, use opaque Mach IPC
messages to closed source kernel drivers that control black-
box pieces of hardware. Opaque Mach IPC calls to kernel
drivers are essentially used as device-specific syscalls. Un-
like the modern desktop OS, there are no well-defined mo-
bile interfaces to graphics acceleration hardware, such as
the Direct Rendering Infrastructure used by the X Window
system. Neither implementing kernel-level emulation code
nor duct taping a piece GPU driver code, if it were even
available, will solve this problem.

Cider enables 2D and 3D graphics in iOS apps through
a novel combination of I/O Kit Linux driver wrappers, and
diplomatic IOSurface and OpenGL ES libraries. The IO-
Surface iOS library provides a zero-copy abstraction for all
graphics memory in iOS. An IOSurface object can be used
to render 2D graphics via CPU-bound drawing routines, effi-
ciently passed to other processes or apps via Mach IPC, and

373

even used as the backing memory for OpenGL ES textures
in 3D rendering. Cider interposes diplomatic functions on
key IOSurface API entry points such as IOSurfaceCreate.
These diplomats call into Android-specific graphics memory
allocation libraries such as libgralloc. Well-known API
interposition techniques are used to force iOS apps to link
against the Cider version of a particular entry point.

To support more complicated 2D and 3D graphics, Cider
replaces the entire iOS OpenGL ES library with diplomats.
We leverage the fact that while the implementation of pro-
prietary libraries, such as OpenGL ES, and their interface to
kernel drivers is closed, the app-facing API is well-known,
and is typically similar across platforms such as iOS and An-
droid.3 The iOS OpenGL ES library consists of two parts:
the standardized OpenGL ES API [29, 31] and the Apple-
specific EAGL [7] extensions. Cider provides a replacement
iOS OpenGL ES library with a diplomat for every exported
symbol in both of these categories.

For standard OpenGL ES API entry points, Cider pro-
vides a set of diplomats that use the arbitration process, de-
scribed in Section 4.3, to load, initialize, and call into the
Android OpenGL ES libraries. Because each of these entry
points has a well-defined, standardized function prototype,
the process of creating diplomats was automated by a script.
This script analyzed exported symbols in the iOS OpenGL
ES Mach-O library, searched through a directory of Android
ELF shared objects for a matching export, and automatically
generated diplomats for each matching function.

Cider provides diplomats for Apple’s EAGL extensions
that call into a custom Android library to implement the re-
quired functionality. Apple-specific EAGL extensions, used
to control window memory and graphics contexts, do not
exist on Android. Fortunately, the EAGL extensions are Ap-
ple’s replacement for the Native Platform Graphics Inter-
face Layer (EGL) standard [30], and this is implemented in
an Android EGL library. To support Apple’s EAGL exten-
sions, Cider uses a custom domestic Android library, called
libEGLbridge, that utilizes Android’s libEGL library and
SurfaceFlinger service to provide functionality correspond-
ing to the missing EAGL functions. Diplomatic EAGL func-
tions in the Cider OpenGL ES library call into the cus-
tom Android libEGLbridge library to fully support Apple’s
EAGL APIs in iOS apps. Allocating window memory via the
standard Android SurfaceFlinger service also allows Cider
to manage the iOS display in the same manner that all An-
droid app windows are managed.

6. Experimental Results
We have implemented a Cider prototype for running both
iOS and Android apps on an Android device, and present
some experimental results to measure its performance. We
compared three different Android system configurations to

3 Cider could also leverage a Direct3D to OpenGL translation layer from
the Wine project to support Windows Mobile devices.

measure the performance of Cider: (1) Linux binaries and
Android apps running on unmodified (vanilla) Android, (2)
Linux binaries and Android apps running on Cider, and (3)
iOS binaries and apps running on Cider. For our experi-
ments, we used a Nexus 7 tablet with a 1.3 GHz quad-core
NVIDIA Tegra 3 CPU, 1 GB RAM, 16 GB of flash stor-
age, and a 7” 1280x800 display running Android 4.2 (Jelly
Bean). We also ran iOS binaries and apps on a jailbroken
iPad mini with a 1 GHz dual-core A5 CPU, 512 MB RAM,
16 GB of flash storage, and a 7.9” 1024x768 display run-
ning iOS 6.1.2. Since the iPad mini was released around the
same time as the Nexus 7 and has a similar form factor, it
provides a useful point of comparison even though it costs
50% more.

We used both microbenchmarks and real apps to evaluate
the performance of Cider. To measure the latency of com-
mon low-level OS operations, we used microbenchmarks
from lmbench 3.0 and compiled two versions: an ELF Linux
binary version, and a Mach-O iOS binary version, using the
standard Linux GCC 4.4.1 and Xcode 4.2.1 compilers, re-
spectively. We used four categories of lmbench tests: basic
operations, syscalls and signals, process creation, and local
communication and file operations. To measure real app per-
formance, we used comparable iOS and Android PassMark
apps available from the Apple App Store [37] and Google
Play [38], respectively. PassMark conducts a wide range of
resource intensive tests to evaluate CPU, memory, I/O, and
graphics performance. We used PassMark because it is a
widely used, commercially-supported app available on both
iOS and Android, and provides a conservative measure of
various aspects of app performance. We normalize all results
using vanilla Android performance as the baseline to com-
pare across systems. This is useful to measure Cider perfor-
mance overhead, and also provides some key observations
regarding the characteristics of Android and iOS apps.

6.1 Obtaining iOS Apps
The iOS apps used in our evaluation were downloaded from
the Apple App Store. In the future, we envision that devel-
opers and app distributors would be incentivized to provide
alternative distribution methods. For example, Google Play
might be incentivized to take advantage of Cider to make a
greater number and higher quality of apps available for An-
droid devices. However, using the App Store required a few
more steps to install the applications on an Android device
because of various security measures used by Apple.

App Store apps, unlike iOS system apps such as Stocks,
are encrypted and must be decrypted using keys stored in
encrypted, non-volatile memory found in an Apple device.
We modified a widely used script [43] to decrypt apps on
any jailbroken iOS device using gdb [22]. To illustrate this
point, we used an old iPhone 3GS with iOS 5.0.1 for this pur-
pose. The script decrypts the app, and then re-packages the
decrypted binary, along with any associated data files, into
a single .ipa file (iOS App Store Package). Each .ipa file

374

(a) Cider home screen (b) Calculator Pro for iPad Free (c) Papers for iOS by Mekentosj B.V. (d) PassMark 3D Benchmark

Figure 4: Cider displaying and running iOS apps

was copied to the Cider prototype, and a small background
process automatically unpacked each .ipa and created An-
droid shortcuts on the Launcher home screen, pointing each
one to the CiderPress Android app. The iOS app icon was
used for the Android shortcut. Decrypted iOS apps work on
Cider exactly as they would on an iPhone or iPad, including
displaying ads using Apple’s iAd framework.

Figure 4 shows screenshots of the Nexus 7 tablet with var-
ious iOS apps that we installed and ran on the device (from
left to right): the Nexus 7 home screen with iOS and An-
droid apps, the Calculator Pro for iPad Free [3], one of the
top three free utilities for iPad, displaying a banner ad via
the iAd framework, the highly-rated Papers [11] app high-
lighting text in a PDF, and the PassMark [37] app running
the 3D performance test.

6.2 Microbenchmark Measurements
Figure 5 shows the results of running lmbench microbench-
marks on the four system configurations. Vanilla Android
performance is normalized to one in all cases, and the re-
sults are not explicitly shown. Measurements are latencies,
so smaller numbers are better. Measurements are shown at
two scales to provide a clear comparison despite the wide
range of results. Results are analyzed in four groups.

First, Figure 5 shows basic CPU operation measurements
for integer multiply, integer divide, double precision float-
ing point add, double precision floating point multiply, and
double precision bogomflop tests. They provide a compari-
son that reflects differences in the Android and iOS hardware
and compilers used. The basic CPU operation measurements
were essentially the same for all three system configurations
using the Android device, except for the integer divide test,
which showed that the Linux compiler generated more op-
timized code than the iOS compiler. In all cases, the mea-
surements for the iOS device were worse than the Android

device, confirming that the iPad mini’s CPU is not as fast as
the Nexus 7’s CPU for basic math operations.

Second, Figure 5 shows syscall and signal handler mea-
surements including null syscall, read, write, open/close,
and signal handler tests. The null syscall measurement
shows the overhead incurred by Cider on a syscall that does
no work, providing a conservative measure of the cost of
Cider. The overhead is 8.5% over vanilla Android running
the same Linux binary. This is due to extra persona checking
and handling code run on every syscall entry. The overhead
is 40% when running the iOS binary over vanilla Android
running the Linux binary. This demonstrates the additional
cost of using the iOS persona, and translating the syscall into
the corresponding Linux syscall. These overheads fall into
the noise for syscalls that perform some useful function, as
shown by the other syscall measurements. Running the iOS
binary on the Nexus 7 using Cider is much faster in these
syscall measurements than running the same binary on the
iPad mini, illustrating a benefit of using Cider to leverage
the faster performance characteristics of Android hardware.

The signal handler measurement shows Cider’s signal
delivery overhead when the signal is generated and delivered
within the same process. This is a conservative measurement
because no work is done by the process as a result of signal
delivery. The overhead is small: 3% over vanilla Android
running the same Linux binary. This is due to the added
cost of determining the persona of the target thread. The
overhead is 25% when running the iOS binary over vanilla
Android running the Linux binary. This shows the overhead
of the iOS persona which includes translation of the signal
information and delivery of a larger signal delivery structure
expected by iOS binaries. Running the iOS binary on the
iPad mini takes 175% longer than running the same binary
on the Nexus 7 using Cider for the signal handler test.

375

0"

1"

2"

3"

0"

10"

20"

30"

40"

50"

60"

70"

in
t"
m
u
l"

in
t"
d
iv
"

d
o
u
b
le
"a
d
d
"

d
o
u
b
le
"m
u
l"

b
o
go
m
fl
o
p
s"

n
u
ll"
sy
sc
al
l"

re
ad
"

w
ri
te
"

o
p
en
/c
lo
se
"

si
gn
al
"

fo
rk
+e
xi
t"

fo
rk
+e
xe
c(
an
d
ro
id
)"

fo
rk
+e
xe
c(
io
s)
"

fo
rk
+s
h
(a
n
d
ro
id
)"

fo
rk
+s
h
(i
o
s)
"

p
ip
e"

A
F_
U
N
IX
"

se
le
ct
"1
0
"f
d
"

se
le
ct
"1
0
0
"f
d
"

se
le
ct
"2
5
0
"f
d
"

cr
ea
te
"0
K
"fi
le
"

d
el
et
e"
0
K
"fi
le
"

cr
ea
te
"1
0
K
"fi
le
"

d
el
et
e"
1
0
K
"fi
le
"

Cider"Android" Cider"iOS" iOS"

Figure 5: Microbenchmark latency measurements normalized to vanilla Android; lower is better performance.

Third, Figure 5 shows five sets of process creation mea-
surements, fork+exit, fork+exec, and fork+sh tests.
The fork+exit measurement shows that Cider incurs neg-
ligible overhead versus vanilla Android running a Linux
binary despite the fact that it must do some extra work in
Mach IPC initialization. However, Cider takes almost 14
times longer to run the iOS binary version of the test com-
pared to the Linux binary. The absolute difference in time
is roughly 3.5 ms, the Linux binary takes 245 µs while the
iOS binary takes 3.75 ms. There are two reasons for this dif-
ference. First, the process running the iOS binary consumes
significantly more memory than the Linux binary because
the iOS dynamic linker, dyld, maps 90 MB of extra mem-
ory from 115 different libraries, irrespective of whether or
not those libraries are used by the binary. The fork syscall
must then duplicate the page table entries corresponding to
all the extra memory, incurring almost 1 ms of extra over-
head. Second, an iOS process does a lot more work in user
space when it forks because iOS libraries use a large num-
ber of pthread atfork callbacks that are called before and
after fork. Similarly, for each library, dyld registers a call-
back that is called on exit, resulting in the execution of
115 handlers on exit. These user space callbacks account for
2.5 ms of extra overhead. Note that the fork+exit mea-
surement on the iPad mini is significantly faster than using
Cider on the Android device due to a shared library cache
optimization that is not yet supported in the Cider prototype.
To save time on library loading, iOS’s dyld stores common
libraries prelinked on disk in a shared cache in lieu of stor-
ing the libraries separately. iOS treats the shared cache in a
special way and optimizes how it is handled.

The fork+exec measurement is done in several unique
variations on Cider. This test spawns a child process which
executes a simple hello world program. We compile two ver-
sions of the program: a Linux binary and an iOS binary. The
test itself is also compiled as both a Linux binary and an iOS
binary. A vanilla Android system can only run a Linux bi-
nary that spawns a child to run a Linux binary. Similarly, the
iPad mini can only run an iOS binary that spawns a child to
run an iOS binary. Using Cider, the test can be run four dif-
ferent ways: a Linux binary can spawn a child to run either
a Linux or an iOS binary, and an iOS binary can spawn a

child to run either a Linux or an iOS binary. To compare the
different fork+exec measurements, we normalize perfor-
mance against the vanilla Android system running a Linux
binary that spawns a child running a Linux binary. Figure 5
shows all four fork+exec measurements using Cider.

The fork+exec(android) test forks a child that ex-
ecs a Linux binary. The Cider Android bar shows results
of a Linux test program while the Cider iOS bar shows re-
sults of an iOS test program. Cider incurs negligible over-
head in the Cider Android case. The actual test run time is
roughly 590 µs, a little more than twice the time it takes
to run the fork+exit measurement, reflecting the fact
that executing the hello world program is more expensive
than simply exiting. Cider takes 4.8 times longer to run the
test in the Cider iOS case. The extra overhead is due to
the cost of an iOS binary calling fork, as discussed pre-
viously in the fork+exit measurement. Interestingly, the
fork+exec(android) Cider iOS measurement is 3.42 ms,
less than the fork+exit measurement because the child
process replaces its iOS binary with the hello world Linux
binary. This is less expensive than having the original iOS
binary exit because of all the exit handlers that must execute.

The fork+exec(ios) test forks a child that execs an iOS
binary. The Cider Android bar shows results of a Linux test
program. The Cider iOS and iOS bars show results of an
iOS test program. This test is not possible on vanilla An-
droid, thus the comparison is intentionally unfair and skews
the results against this test. Nevertheless, using this compar-
ison, Figure 5 shows that spawning a child to run an iOS
binary is much more expensive. This is because the Cider
prototype uses non-prelinked libraries, and dyld must walk
the filesystem to load each library on every exec. The ex-
tra overhead of starting with an iOS binary versus a Linux
binary is due to the cost of the iOS binary calling fork, as
discussed previously in the fork+exit measurement. Run-
ning the fork+exec test on the iPad mini is faster than using
Cider on the Android device because of its shared cache op-
timization which avoids the need to walk the filesystem to
load each library.

Similar to the fork+exec measurement, the fork+sh
measurement is done in four variations on Cider. The
fork+sh(android) test launches a shell that runs a Linux

376

binary. Cider incurs negligible overhead versus vanilla An-
droid when the test program is a Linux binary, but takes
110% longer when the test program is an iOS binary. The
extra overhead is due to the cost of an iOS binary calling
fork, as discussed previously in the fork+exec measure-
ment. Because the fork+sh(android) measurement takes
longer, 6.8 ms using the iOS binary, the relative overhead is
less than the fork+exec(android) measurement.

The fork+sh(ios) test launches a shell that runs an iOS
binary. This is not possible on vanilla Android, so we nor-
malize to the fork+sh(android) test, skewing the results
against this test. Using this comparison, Figure 5 shows that
spawning a child to run an iOS binary is much more expen-
sive for the same reasons as the fork+exec measurements.
Because the fork+sh(ios) test takes longer, the relative
overhead is less than the fork+exec(ios) measurement.

Finally, Figure 5 shows local communication and filesys-
tem measurements including pipe, AF UNIX, select on 10
to 250 file descriptors, and creating and deleting 0 KB and 10
KB files. Measurements were quite similar for all three sys-
tem configurations using the Android device. However, mea-
surements on the iPad mini were significantly worse than the
Android device in a number of cases. Perhaps the worst of-
fender was the select test whose overhead increased lin-
early with the number of file descriptors to more than 10
times the cost of running the test on vanilla Android. The test
simply failed to complete for 250 file descriptors. In contrast,
the same iOS binary runs using Cider on Android with per-
formance comparable to running a Linux binary on vanilla
Android across all measurement variations.

6.3 Application Measurements
Figure 6 shows the results of the iOS and Android PassMark
benchmark apps [37, 38] on the four different system config-
urations. Vanilla Android performance is normalized to one
in all cases, and not explicitly shown. Measurements are in
operations per second, so larger numbers are better. In all
tests, Cider adds negligible overhead to the Android Pass-
Mark app. Test results are analyzed in five groups.

First, Figure 6 shows CPU operation measurements for
integer, floating point, find primes, random string sort, data
encryption, and data compression tests. Unlike the basic
lmbench CPU measurements, the PassMark measurements
show that Cider delivers significantly faster performance
when running the iOS PassMark app on Android. This is be-
cause the Android version is written in Java and interpreted
through the Dalvik VM while the iOS version is written in
Objective-C and compiled and run as a native binary. Be-
cause the Android device contains a faster CPU than the
iPad mini, Cider outperforms iOS when running the CPU
tests from the same iOS PassMark application binary.

Second, Figure 6 shows storage operation measurements
for write and read tests. Cider has similar storage read per-
formance to the iPad mini when running the iOS app. How-
ever, the iPad mini has much better storage write perfor-

mance than either the iOS or Android app running on Cider.
Because storage performance can depend heavily on the OS,
these results may reflect differences in both the underlying
hardware and the OS.

Third, Figure 6 shows memory operation measurements
for write and read tests. Cider delivers significantly faster
performance when running the iOS PassMark app on An-
droid. This is, again, because Cider runs the iOS app na-
tively while Android interprets the app through the Dalvik
VM. Cider outperforms the iPad mini running the memory
tests from the same iOS PassMark app binary, again reflect-
ing the benefit of using faster Android hardware.

Fourth, Figure 6 shows graphics measurements for a vari-
ety of 2D graphics operations including solid vectors, trans-
parent vectors, complex vectors, image rendering, and image
filters. With the exception of complex vectors, the Android
app performs much better than the iOS binary on both Cider
and the iPad mini. This is most likely due to more efficien-
t/optimized 2D drawing libraries in Android. Additionally,
since these tests are CPU bound, Cider generally outper-
forms iOS due to the Nexus 7’s faster CPU. However, bugs
in the Cider OpenGL ES library related to “fence” synchro-
nization primitives caused under-performance in the image
rendering tests.

Finally, Figure 6 shows graphics measurements for sim-
ple and complex 3D tests, the latter shown in Figure 4d. Be-
cause the iPad mini has a faster GPU than the Nexus 7, it
has better 3D graphics performance. The iOS binary run-
ning on Cider performs 20-37% worse than the Android
PassMark app due to the extra cost of diplomatic function
calls. Each function call into the OpenGL ES library is medi-
ated into the Android OpenGL ES library through diplomats.
As the complexity of a given frame increases, the number
of OpenGL ES calls increases, which correspondingly in-
creases the overhead. This can potentially be optimized by
aggregating OpenGL ES calls into a single diplomat, or by
reducing the overhead of a diplomatic function call. Both
optimizations are left to future work.

6.4 Limitations
We have not encountered any fundamental limitations re-
garding the feasibility of the Cider approach, such as any
unbridgeable compatibility issues between iOS and Android.
However, while we have implemented an initial Cider pro-
totype that successfully runs many iOS apps on Android de-
vices, the implementation is incomplete. In particular, smart-
phones and tablets incorporate a plethora of devices that
apps expect to be able to use, such as GPS, cameras, cell
phone radio, Bluetooth, and others. Support for the full range
of devices available on smartphones and tablets is beyond
the scope of this paper. Cider will not currently run iOS apps
that depend on such devices. For example, an app such as
Facetime that requires use of the camera does not currently
work with Cider. If the iOS app has a fall-back code path, it
can still partially function. For example, the iOS Yelp [46]

377

0"

1"

2"

3"

4"0"

5"

10"

15"

20"

Integer" Floa2ng"
Point"

Find"Primes" Random"
String"Sort"

Data"
Encryp2on"

Data"
Compression"

Storage"
Write"

Storage"
Read"

Memory"
Write"

Memory"
Read"

Solid"Vectors"Transparent"
Vectors"

Complex"
Vectors"

Image"
Rendering"

Image"Filters" Simple"3D"
Test"

Complex"3D"
Test"

Cider"Android" Cider"iOS" iOS"

Figure 6: App throughput measurements normalized to vanilla Android; higher is better performance.

app runs on Cider even though GPS and location services
are currently unsupported. Yelp simply assumes the user’s
current location is unavailable, and continues to function as
it would on an Apple device with location services disabled.

Implementation of Cider device support varies with de-
vice and interface complexity. Devices with a simple inter-
face, such as GPS, can be supported with I/O Kit drivers,
discussed in Section 5.1, and diplomatic functions. Devices
that use more standardized interfaces can be supported either
through duct tape given an open source implementation, or
diplomatic functions given a well-defined API. More com-
plicated devices such as the camera and cell radio were not
investigated as part of this research, but we believe that tech-
niques similar to those used in Section 5.3 could be used to
support these devices. For example, iOS exposes a camera
API to apps. By replacing these API entry points with diplo-
matic functions that interact with native Android hardware,
it may be possible to provide camera support for iOS apps.

The current prototype also has some other implementa-
tion limitations. Incorrect “fence” synchronization primitive
support in the Cider OpenGL ES library, discussed in Sec-
tion 6.3, degraded our graphics performance, and the iOS
WebKit framework is only partially supported due to its
multi-threaded use of the OpenGL ES API. We expect these
limitations to be removed with additional engineering effort.

Finally, Cider does not map iOS security to Android
security. Android’s permission-based security model differs
significantly from the more dynamic iOS security, which is
enforced at runtime. A complete mapping of the two models
is left to future work.

7. Related Work
Many approaches have tried to run apps from multiple
OSes on the same hardware, though primarily in the con-
text of desktop computers, not mobile devices. Several
BSD variants maintain binary compatibility layers for other
OSes [18, 19, 23] at the kernel level. BSD reimplements
foreign syscalls in the OS, using a different syscall dispatch
table for each OS to glue the calls into the BSD kernel. It
works for foreign OSes that are close enough to BSD such

as Linux, but attempts to extend this approach to Mac OS X
apps only provide limited support for command-line tools,
not GUI apps [20]. Similarly, Solaris 10 Zones [33, 34] pro-
vided an lx brand mechanism that emulates outdated Linux
2.4 kernel system call interfaces to run some Linux binaries
on Solaris, though this feature is no longer available as of
Solaris 11 [35]. Cider goes beyond these approaches by in-
troducing duct tape to make it easier to add foreign kernel
code to an OS and diplomatic functions to support the use
of opaque foreign kernel interfaces, providing a richer OS
compatibility layer that supports GUI apps with accelerated
graphical interfaces.

Operating at user instead of kernel level, Wine [1] runs
Windows apps on x86 computers running Linux. It achieves
this by attempting to reimplement the entire foreign user
space library API, such as Win32, using native APIs. This
is tedious and overwhelmingly complex. Wine has been un-
der development for over 20 years, but continues to chase
Windows as every new release contains new APIs that need
to be implemented. Darling [17] takes a similar approach to
try to run Mac OS X apps on Linux, though it remains a
work in progress unable to run anything other than simple
command-line apps. In contrast, Cider provides kernel-level
persona management that leverages existing unmodified li-
braries and frameworks to avoid rewriting huge amounts
of user space code. Cider’s duct tape layer and diplomatic
function calls facilitate this by incorporating existing foreign
kernel code without tedious reimplementation, and allowing
foreign apps to directly leverage existing domestic libraries.

Wabi [26] from Sun Microsystems ran Windows apps on
Solaris. It supported apps developed for Windows 3.1, but
did not support later versions of Windows and was discon-
tinued. Unlike Wine, it required Windows 3.1 and leveraged
existing Windows libraries except for the lowest layers of
the Windows environment, for which it replaced low-level
Windows API libraries with versions that translated from
Windows to Solaris calls. It also provided CPU emulation
to allow x86 Windows apps to run on Sparc, similar to bi-
nary translation systems such as DEC’s FX!32 [13]. Wabi
ran on top of Solaris and provided all of its functionality
outside of the OS, limiting its ability to support apps that

378

require kernel-level services not available in Solaris. In con-
trast, Cider provides binary personality support in the OS to
support foreign kernel services, uses diplomatic functions to
make custom domestic hardware accessible to foreign apps,
and does not need to perform any binary translation since
both iOS and Android run on ARM CPUs.

While most previous approaches have not considered mo-
bile software ecosystems, AppPlayer from BlueStacks [10]
allows users to run Android apps on a Windows PC or Ap-
ple OS X computer by utilizing a cross-compiled Dalvik VM
and ported Android services such as SurfaceFlinger. This
is possible because Android is open source, and the whole
system can be easily cross-compiled. Since many Android
apps are entirely Java-based and consist of bytecodes run
in a VM, it is relatively easy to run them anywhere. How-
ever, many popular Android apps increasingly incorporate
native libraries for performance reasons – these apps will
not work. Similarly, this approach will not work for iOS apps
which are native binaries running on a proprietary system for
which source code is not available. In contrast, Cider utilizes
kernel-level persona management and diplomatic function
calls to support unmodified iOS binaries which link against
unmodified iOS libraries and communicate with unmodified
iOS support services such as notifyd and syslogd.

Some developer frameworks [14, 39, 45] allow mobile
app developers to target multiple OSes from a single code
base. This requires apps to be written using these frame-
works. Because such frameworks are often more limited than
those provided by the respective mobile software ecosys-
tems, the vast majority of apps are not written in this manner,
and are thus tied to a particular platform. Cider does not re-
quire developers to rewrite or recompile their apps to use
specific non-standard frameworks, but instead runs unmodi-
fied iOS binaries on an Android device.

Other partial solutions to OS compatibility have been ex-
plored for desktop systems. Shinichiro Hamaji’s Mach-O
loader for Linux [24] can load and run some desktop OS
X command-line binaries in Linux. This project supports
binaries using the “misc” binary format, and dynamically
overwrites C entry points to syscalls. NDISWrapper [32]
allows the Linux kernel to load and use Windows NDIS
driver DLLs. The project’s kernel driver implements the Net-
work Driver Interface Specification (NDIS) [41], and dy-
namically links the Windows DLL to this implementation. It
is narrowly focused on a single driver specification, does not
support incorporation of general foreign kernel subsystems,
and does not support app code. In contrast, Cider makes
it possible to incorporate general kernel subsystems, such
as Mach IPC, without substantial implementation effort and
provides a complete environment for foreign binaries includ-
ing graphics libraries and device access.

VMs are commonly used to run apps requiring dif-
ferent OS instances on desktop computers. Various ap-
proaches [8, 15, 28] have attempted to bring VMs to mo-

bile devices, but they cannot run unmodified OSes, incur
higher overhead than their desktop counterparts, and pro-
vide at best poor, if any, graphics performance within VMs.
Some of these limitations are being addressed by ongoing
work on KVM/ARM using ARM hardware virtualization
support [16]. Lightweight OS virtualization [2, 12] claims
lower performance overhead, but does not support different
OS instances and therefore cannot run foreign apps at all.
Unlike Cider, none of these previous approaches can run
iOS and Android apps on the same device.

Drawbridge [40] and Bascule [9] provide user mode
OS personalities for desktop apps by refactoring traditional
OSes into library OSes that call down into a host OS. Refac-
toring is a complex and tedious process, and there is no evi-
dence that these systems would work for mobile devices. For
example, Bascule has no support for general inter-process
sharing, and relies on an external X11 server using network-
based graphics, running on the host OS, to support GUI
apps. It is unclear how these systems might support verti-
cally integrated libraries that require direct communication
to hardware, or multi-process services based on inter-process
communication. In contrast, Cider provides duct tape to eas-
ily incorporate kernel subsystems that facilitate the multi-
process communication required by iOS apps, and leverages
diplomatic function calls to support direct communication
with closed or proprietary hardware – a feature crucial for
vertically integrated mobile devices.

8. Conclusions
Cider is the first system that can run unmodified iOS apps
on non-Apple devices. It accomplishes this through a novel
combination of binary compatibility techniques including
two new operating system compatibility mechanisms: duct
tape and diplomatic functions. Duct tape allows source code
from a foreign kernel to be compiled, without modification,
into the domestic kernel. This avoids the difficult, tedious,
and error prone process of porting or implementing new for-
eign subsystems. Diplomatic functions leverage per-thread
personas and mediate foreign function calls into domestic li-
braries. This enables Cider to support foreign libraries that
are closely tied to foreign hardware by replacing library
function calls with diplomats that utilize domestic libraries
and hardware. We built a Cider prototype that reuses ex-
isting unmodified frameworks across both iOS and Android
ecosystems. Our results demonstrate that Cider has modest
performance overhead and runs popular iOS and Android
apps together seamlessly on the same Android device.

9. Acknowledgments
Yan Zou helped with running benchmarks to obtain many of
the measurements in this paper. Lin Zhong provided helpful
comments on earlier drafts of this paper. This work was sup-
ported in part by a Facebook Graduate Fellowship and NSF
grants CNS-1162447, CNS-1018355, and CNS-0905246.

379

References
[1] B. Amstadt and M. K. Johnson. Wine. Linux Journal, 1994

(4es), Aug. 1994. ISSN 1075-3583.

[2] J. Andrus, C. Dall, A. Van’t Hof, O. Laadan, and J. Nieh.
Cells: A Virtual Mobile Smartphone Architecture. In Pro-
ceedings of the 23rd ACM Symposium on Operating Systems
Principles, pages 173–187, Cascais, Portugal, Oct. 2011.

[3] Apalon Apps. Calculator Pro for iPad Free on the App
Store on iTunes. https://itunes.apple.com/us/app/

calculator-pro-for-ipad-free/id749118884, Dec.
2013. Accessed: 12/20/2013.

[4] Apple, Inc. OS X ABI Mach-O File Format Refer-
ence. https://developer.apple.com/library/

mac/#documentation/DeveloperTools/Conceptual/

MachORuntime/Reference/reference.html, Feb. 2009.
Accessed: 3/20/2013.

[5] Apple, Inc. Porting UNIX/Linux Applications to OS
X. https://developer.apple.com/library/mac/

#documentation/Porting/Conceptual/PortingUnix/

background/background.html, June 2012. Accessed:
3/27/2013.

[6] Apple, Inc. Source Browser. http://www.opensource.

apple.com/source/xnu/xnu-2050.18.24/, Aug. 2012.
Accessed: 3/21/2013.

[7] Apple, Inc. OpenGL ES Programming Guide
for iOS: Configuring OpenGL ES Contexts.
https://developer.apple.com/library/ios/

documentation/3DDrawing/Conceptual/OpenGLES_

ProgrammingGuide/WorkingwithOpenGLESContexts/

WorkingwithOpenGLESContexts.html, Sept. 2013.
Accessed: 12/4/2013.

[8] K. Barr, P. Bungale, S. Deasy, V. Gyuris, P. Hung, C. Newell,
H. Tuch, and B. Zoppis. The VMware Mobile Virtualization
Platform: Is That a Hypervisor in Your Pocket? ACM SIGOPS
Operating Systems Review, 44(4):124–135, Dec. 2010. ISSN
0163-5980.

[9] A. Baumann, D. Lee, P. Fonesca, L. Glendenning, J. R. Lorch,
B. Bond, R. Olinsky, and G. C. Hunt. Composing OS Ex-
tensions Safely and Efficiently with Bascule. In Proceedings
of the 8th ACM European Conference on Computer Systems,
pages 239–252, Prague, Czech Republic, Apr. 2013.

[10] BlueStacks. Run Mobile Apps on Window PC or Mac
With BlueStacks — Android App Player. http://www.

bluestacks.com/. Accessed: 7/23/2013.

[11] M. B.V. Papers on the App Store on iTunes. https://

itunes.apple.com/us/app/papers/id304655618, Oct.
2013. Accessed: 12/10/2013.

[12] Cellrox. Cellrox ThinVisor Technology. http://www.

cellrox.com/how-it-works/, Feb. 2013. Accessed:
4/5/2013.

[13] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin,
T. Tye, S. B. Yadavalli, and J. Yates. FX!32: A Profile-
Directed Binary Translator. IEEE Micro, 18(2):56–64, Mar.
1998. ISSN 0272-1732. .

[14] D. Connelly, T. Ball, and K. Stanger. j2objc - A Java to iOS
Objective-C translation tool and runtime. - Google Project
Hosting. https://code.google.com/p/j2objc/. Ac-
cessed: 7/23/2013.

[15] C. Dall and J. Nieh. KVM for ARM. In Proceedings of the
Ottawa Linux Symposium, Ottawa, Canada, June 2010.

[16] C. Dall and J. Nieh. KVM/ARM: The Design and Implemen-
tation of the Linux ARM Hypervisor. In Proceedings of the
19th International Conference on Architectural Support for
Programming Languages and Operating Systems, Salt Lake
City, UT, Mar. 2014.

[17] L. Doleel. The Darling Project. http://darling.dolezel.
info/en/Darling, Aug. 2012. Accessed: 4/5/2013.

[18] E. Dreyfus. Linux Compatibility on BSD for the PPC Plat-
form. http://onlamp.com/lpt/a/833, May 2001. Ac-
cessed: 5/11/2012.

[19] E. Dreyfus. IRIX Binary Compatibility, Parts 1–6.
http://onlamp.com/lpt/a/2623, Aug. 2002. Accessed:
5/11/2012.

[20] E. Dreyfus. Mac OS X binary compatibility on NetBSD:
challenges and implementation. In Proceedings of the 2004
EuroBSDCon, Karlsruhe, Germany, Oct. 2004.

[21] Faraday, Owen. Android is a desolate wasteland when it
comes to games (Wired UK). http://www.wired.co.uk/

news/archive/2012-10/31/android-games, Oct. 2012.
Accessed: 3/21/2013.

[22] Free Software Foundation. GDB: The GNU Project Debug-
ger. https://www.gnu.org/software/gdb/, Dec. 2013.
Accessed: 12/10/2013.

[23] FreeBSD Documentation Project. Linux Binary Compatibil-
ity. In B. N. Handy, R. Murphey, and J. Mock, editors, The
FreeBSD Handbook 3rd Edition, Vol.1: User Guide, chap-
ter 11. Mar. 2004.

[24] S. Hamaji. Mach-O Loader for Linux. https://github.

com/shinh/maloader, Mar. 2011. Accessed: 3/15/2013.

[25] M. Heily. libkqueue. http://www.heily.com/~mheily/

proj/libkqueue/, Mar. 2011. Accessed: 1/3/2014.

[26] P. Hohensee, M. Myszewski, and D. Reese. Wabi CPU Emu-
lation. In Hot Chips 8, Palo Alto, CA, Aug. 1996.

[27] G. C. Hunt and D. Brubacher. Detours: Binary Interception
of Win32 Functions. In Proceedings of the 3rd USENIX
Windows NT Symposium, Seattle, WA, July 1999.

[28] J. Hwang, S. Suh, S. Heo, C. Park, J. Ryu, S. Park, and C. Kim.
Xen on ARM: System Virtualization using Xen Hypervisor
for ARM-based Secure Mobile Phones. In Proceedings of
the 5th Consumer Communications and Network Conference,
pages 257–261, Las Vegas, NV, Jan. 2008.

[29] Khronos Group. OpenGL ES Common Profile
Specification Version 2.0.25 (Full Specification).
http://www.khronos.org/registry/gles/specs/

2.0/es_full_spec_2.0.25.pdf, Nov. 2010. Accessed:
4/8/2013.

[30] Khronos Group. Khronos Native Platform Graphics Interface
(EGL Version 1.4). http://www.khronos.org/registry/
egl/specs/eglspec.1.4.20130211.pdf, Feb. 2013. Ac-
cessed: 12/4/2013.

380

https://itunes.apple.com/us/app/calculator-pro-for-ipad-free/id749118884
https://itunes.apple.com/us/app/calculator-pro-for-ipad-free/id749118884
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://developer.apple.com/library/mac/#documentation/Porting/Conceptual/PortingUnix/background/background.html
https://developer.apple.com/library/mac/#documentation/Porting/Conceptual/PortingUnix/background/background.html
https://developer.apple.com/library/mac/#documentation/Porting/Conceptual/PortingUnix/background/background.html
http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/
http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/
https://developer.apple.com/library/ios/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/WorkingwithOpenGLESContexts/WorkingwithOpenGLESContexts.html
https://developer.apple.com/library/ios/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/WorkingwithOpenGLESContexts/WorkingwithOpenGLESContexts.html
https://developer.apple.com/library/ios/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/WorkingwithOpenGLESContexts/WorkingwithOpenGLESContexts.html
https://developer.apple.com/library/ios/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/WorkingwithOpenGLESContexts/WorkingwithOpenGLESContexts.html
http://www.bluestacks.com/
http://www.bluestacks.com/
https://itunes.apple.com/us/app/papers/id304655618
https://itunes.apple.com/us/app/papers/id304655618
http://www.cellrox.com/how-it-works/
http://www.cellrox.com/how-it-works/
https://code.google.com/p/j2objc/
http://darling.dolezel.info/en/Darling
http://darling.dolezel.info/en/Darling
http://onlamp.com/lpt/a/833
http://onlamp.com/lpt/a/2623
http://www.wired.co.uk/news/archive/2012-10/31/android-games
http://www.wired.co.uk/news/archive/2012-10/31/android-games
https://www.gnu.org/software/gdb/
https://github.com/shinh/maloader
https://github.com/shinh/maloader
http://www.heily.com/~mheily/proj/libkqueue/
http://www.heily.com/~mheily/proj/libkqueue/
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.khronos.org/registry/egl/specs/eglspec.1.4.20130211.pdf
http://www.khronos.org/registry/egl/specs/eglspec.1.4.20130211.pdf

[31] Khronos Group. OpenGL ES – The Standard for Embed-
ded Accelerated 3D Graphics. http://www.khronos.org/
opengles/, Jan. 2013. Accessed: 3/22/2013.

[32] J. Kiszka, G. Pemmasani, and P. Fuchs. SourceForge.net:
ndiswrapper. http://ndiswrapper.sourceforge.net/.
Accessed: 7/23/2013.

[33] N. Nieuwejaar, E. Schrock, W. Kucharski, R. Blaine, E. Pi-
latowicz, and A. Leventhal. Method for Defining Non-
Native Operating Environments. US 7689566, Filed Dec.
12, 2006, Issued Mar. 30, 2010. http://www.patentlens.
net/patentlens/patent/US_7689566/.

[34] Oracle Corporation. System Administration Guide: Ora-
cle Solaris Containers-Resource Management and Oracle So-
laris Zones. http://docs.oracle.com/cd/E19253-01/

817-1592/817-1592.pdf, Sept. 2010. Accessed: 1/3/2014.

[35] Oracle Corporation. Transitioning From Oracle Solaris
10 to Oracle Solaris 11. http://docs.oracle.com/

cd/E23824_01/pdf/E24456.pdf, Mar. 2012. Accessed:
1/3/2014.

[36] Parallels IP Holdings GmbH. Parallels Desktop. http:

//www.parallels.com/products/desktop/. Accessed:
3/22/2013.

[37] PassMark Software, Inc. PerformanceTest Mobile on the App
Store on iTunes. https://itunes.apple.com/us/app/

performancetest-mobile/id494438360, June 2012. Ac-
cessed: 12/10/2013.

[38] PassMark Software, Inc. PassMark PerformanceTest – An-
droid Apps on Google Play. https://play.google.com/

store/apps/details?id=com.passmark.pt_mobile,
Jan. 2013. Accessed: 3/14/2013.

[39] PhoneGap. PhoneGap — Home. http://phonegap.com/.
Accessed: 7/23/2013.

[40] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and
G. C. Hunt. Rethinking the Library OS from the Top Down.
In Proceedings of the 16th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 291–304, Newport Beach, CA, Mar. 2011.

[41] I. Printing Communications Assoc. NDIS Developer’s Refer-
ence. http://www.ndis.com/. Accessed: 7/24/2013.

[42] R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron,
D. Black, W. Bolosky, and J. Chew. Machine-independent Vir-
tual Memory Management for Paged Uniprocessor and Mul-
tiprocessor Architectures. ACM SIGOPS Operating Systems
Review, 21(4):31–39, Oct. 1987. ISSN 0163-5980.

[43] C. K. Tung. CK’s IT blog: How To Decrypt iPhone IPA
file. http://tungchingkai.blogspot.com/2009/02/

how-to-decrypt-iphone-ipa-file.html, Feb. 2009.
Accessed: 3/14/2013.

[44] VMware, Inc. VMware Workstation. http://www.vmware.
com/products/workstation/. Accessed: 3/22/2013.

[45] Yeecco, Ltd. www.yeeccoo.com. http://http://www.

yeecco.com/stella. Accessed: 6/27/2013.

[46] Yelp. Yelp on the App Store on iTunes. https://itunes.

apple.com/us/app/yelp/id284910350, Dec. 2013. Ac-
cessed: 1/8/2014.

[47] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. J.
Chew, W. J. Bolosky, D. Black, and R. Baron. The Duality
of Memory and Communication in the Implementation of a
Multiprocessor Operating System. In Proceedings of the 11th
ACM Symposium on Operating Systems Principles, pages 63–
76, Austin, TX, Nov. 1987. ACM.

381

http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://ndiswrapper.sourceforge.net/
http://www.patentlens.net/patentlens/patent/US_7689566/
http://www.patentlens.net/patentlens/patent/US_7689566/
http://docs.oracle.com/cd/E19253-01/817-1592/817-1592.pdf
http://docs.oracle.com/cd/E19253-01/817-1592/817-1592.pdf
http://docs.oracle.com/cd/E23824_01/pdf/E24456.pdf
http://docs.oracle.com/cd/E23824_01/pdf/E24456.pdf
http://www.parallels.com/products/desktop/
http://www.parallels.com/products/desktop/
https://itunes.apple.com/us/app/performancetest-mobile/id494438360
https://itunes.apple.com/us/app/performancetest-mobile/id494438360
https://play.google.com/store/apps/details?id=com.passmark.pt_mobile
https://play.google.com/store/apps/details?id=com.passmark.pt_mobile
http://phonegap.com/
http://www.ndis.com/
http://tungchingkai.blogspot.com/2009/02/how-to-decrypt-iphone-ipa-file.html
http://tungchingkai.blogspot.com/2009/02/how-to-decrypt-iphone-ipa-file.html
http://www.vmware.com/products/workstation/
http://www.vmware.com/products/workstation/
http://http://www.yeecco.com/stella
http://http://www.yeecco.com/stella
https://itunes.apple.com/us/app/yelp/id284910350
https://itunes.apple.com/us/app/yelp/id284910350

	Introduction
	Overview of Android and iOS
	System Integration
	Architecture
	Kernel ABI
	Duct Tape
	Diplomatic Functions

	iOS Subsystems on Android
	Devices
	Input
	Graphics

	Experimental Results
	Obtaining iOS Apps
	Microbenchmark Measurements
	Application Measurements
	Limitations

	Related Work
	Conclusions
	Acknowledgments

