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Abstract

This paper is a study on just-in-time compilation and traces its evolution from being a theoretical
performance optimization to a technology that provides concrete speed-ups for constrained applications
and in dynamic programming languages. Also highlighted are the increase in sophistication of the
techniques used to deal with the complexities that arise in these problem domains and the inherent
trade-offs.

1 Introduction

The advances in software and information technology
today put great demands on the hardware and sys-
tem software of devices. Devices like smart phones
have larger capabilities than an average computer in
the y2k era [16][18]. However, this increase in ca-
pability has also lead to a mind-boggling spectrum
of applications that these devices find. Further, with
the tremendous increase in the number of developers,
the quality of software being written is also varied.

In such a scenario, platform and system engineers
are pushing the boundaries when it comes to increas-
ing the performance of these systems. This process
has lead them to revisit some of the dormant ideas in
computer science and try to apply them from a newer
perspective and in a different computing landscape.
One such idea is just-in-time(JIT) compilation. JIT
compilers translate byte codes during run time to
the native hardware instruction set of the target ma-
chine [1]. Though this idea was first proposed in the
early seventies, it has seen a renaissance with inter-
preted languages like Java and dynamic languages
like JavaScript and Python being adopted for large
scale applications. This paper studies this trend and
discusses the evolution of this concept for modern
day computing.

The rest of this paper is organized as follows.
Section 2 gives a brief overview about just-in-time
compilation and talks about the trade-offs involved,
while Section 3 describes some of the earlier imple-
mentations of JIT compilation. Section 4 describes
a generic JIT Compiler, based on the Java run-time
environment. Section 5 describes the Android JIT,
while providing some background on the Android ap-
plication framework and also describes some similar

JIT implementations for embedded computers. Sec-
tion 6 describes a just-in-time compilers for dynamic
languages like JavaScript and Python and discusses
the features that make them applicable for today’s
internet systems.

2 JIT compilation

Just-in-time compilation attempts to bridge the gap
between the two approaches to program translation:
compilation and interpretation. Generally, compiled
programs run faster as they are translated to ma-
chine code. However, they occupy a larger memory
footprint as the compiled machine code is typically
larger than the high level program implementation.
Further, they also take a longer time to optimize the
code. Interpreted code on the other hand takes up
a smaller memory footprint as it is represented at
a higher level and hence can carry more semantic
information. Thus, it’s more portable. However, in-
terpreters need access to the runtime of the system
as they need to gather much more information dur-
ing the runtime to successfully execute the programs.
This is why interpreted programs take longer to run
and have a more complex runtime.

2.1 Overview

In the just-in-time compilation process, starting with
the interpreter, some features of a static compiler are
built into the system. Typically, a JIT compiler will
isolate some sections of the code at run-time which
are accessed more often and then compiles them to
native code, aggressively optimizing those sections in
the process. The sections of code that are to be stat-
ically compiled can be identified in many ways, and
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this is briefly described in Section 3. These sections
of code are commonly called hot-paths.

2.2 Hot-path detection

As described above, hot-paths are the most com-
monly accessed sections of code. Hot-paths could be
identified at various granularities. Here, granularity
means the level of detection of each commonly ac-
cess code part. This could mean at the method level
or at the level of a string of instructions or even at
the individual instruction level. Most JIT compilers
are written for statically typed languages like Java,
working on servers and desktop. Thus, they per-
formed method-based identification, where the hot-
paths are identified at the method level granularity.
While this technique works well in simplifying the
design of the JIT and provides high levels of speed-
up, studies have shown that there’s an additional
overhead in terms of memory and power consump-
tion [6]. This is because at this coarse granularity
(coarse, compared to a string of instructions), there a
different sections of the code which are compiled even
though they are not hot sections. This includes ex-
ceptions and other such code. To avoid this, a more
complex method of identifying hot-paths, known as
trace-based just in time compilation has been pro-
posed. Here hot-paths, which are also called traces,
are selected based on various criteria. Generally, the
trace head or start of a trace is selected as the be-
ginning of loop or a jump statement. A trace-based
JIT is explained in detail in Section 4.

2.3 A few considerations

In general, the design of a JIT system involves many
trade-offs. The most major consideration to take
into account is the fact that having both a compiler
and an interpreter at run-time could prove expensive.
This was the reason this idea did not catch on in the
early stages [4]. Further, constant switching between
interpreted and compiled code could prove for inter-
rupted execution. Thus, a JIT compiler writer must
take care to ensure seamless transitions between the
two modes of execution. Different systems do this
differently. A few JIT compilers manage this by hav-
ing an additional data structure called the transla-
tion cache that provides for quick reference to the
compiled code.

3 Chronology

In the purest sense, one of the first theoretical ideas
for a JIT compiler can be dated back to McCarthy’s
1960 Lisp paper [17] where he talks about compiling

the source to machine code. However, implementa-
tions of the idea surfaced about a decade later for
various languages like FORTRAN, Smalltalk, Self,
Erlang, O’Caml and even ML and the ubiquitous C
[4].

Some of the early ideas for JIT compilation can be
summarized in terms of mixed-code and throw-away
code compilation. Another interesting paradigm
shift is to view JIT compilers in terms of simulators.

3.1 Mixed code and throw-away code
compilation

Work by Dawson [9] and Dakin and Poole [8] are the
earliest papers that talk about just-in-time compila-
tion as we know it. Published in 1973 in the same
journal, both papers talk about how performance
of interpreted code can be improved by compiling
it down to machine code. In the mixed code ap-
proach in [8], Dakin and Poole propose that in order
to achieve the right balance between the poor space
utilization of direct compilation and the slower run-
ning times of interpreted code, a common approach
with data structure that keeps track of procedure
calls in both cases must be used. Similarly, in [9],
Dawson notes the three classes of instructions: very
rarely used, occasionally used and often used, and
addresses how we would select which of these instruc-
tions should be compiled. He states that the cost of
compilation is relatively smaller than that of storing
the compiled code and thus, once the memory for
storing the compiled code reaches its limit, it can be
flushed for the next compiled section of the code.

3.2 Simulation and binary translation

Four generations of early simulators were identified.
The first generation consisted of plain interpreters,
while the second generation dynamically translated
the source instructions into target instructions one at
a time. The third generation translated entire blocks
of the source code dynamically while the fourth gen-
eration improved on the third by isolating a few key
paths and translating them. Third generation simu-
lators are similar in principle to method-based JITs
while the fourth generation is similar to trace based
JITs as discussed in section 4.3. The main consid-
erations of both fourth generation simulators as well
as trace-based JITs include, profiling execution, de-
tecting hot-paths, generating and optimizing code
and incorporating exit mechanisms. These features
are explained in detail for trace-based JITs in the
sections below
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Figure 1: Generic Java-based JIT Compiler

4 A Generic Trace-based JIT
Compiler

This section explains the working of a simple just-
in-time compiler. For the purpose of this section
and most of the rest of the paper, unless stated, we
would be talking about a Java-based JIT compiler.
The choice to work with a Java JIT is because Java is
one of the interpreted languages that benefits signifi-
cantly by the use of a just-in-time compiler. Further,
as Java is one of the most widely used languages that
is being used today [20], studies in optimization of
the Java runtime has greater relevance to speeding
up most commonly available systems.

4.1 Run-time environment with a JIT
compiler

Figure 1 above provides a general schematic of a
Java-based just-in-time compiler. The major compo-
nents include the Java compiler and the class loader
as well as the byte-code verifier in addition to the in-
terpreter and a native code generator. The .java files
are first compiled down to .class files and then they
are bundled as jar files. This is all done at compile
time.

At runtime, the class loader first loads all these
class files on to the Java virtual machine. Then the
byte-code verifier performs type checking to ensure
that typing information is maintained constantly. In
addition to these steps, depending on the exact im-
plementation of the JIT, in some earlier stage, the
potential hot-paths are detected and marked accord-
ingly. Then, during runtime, the system keeps track
of the number of times these potential hot-paths
are run. When execution count of that particular
hot-path hits a particular threshold, it is then com-
piled to native code. JIT compilers also differ in

Figure 2: JIT Compiler Internals

the manner in which the compiled binary is main-
tained. Most times, they are stored in a cache-like
data structure that is designed to store system con-
figurations.

4.2 Inside a JIT compiler

Figure 2 depicts the internals for a general just-
in-time compiler block that is seen as a black-box
named the JIT code generator, in Figure 1. As we
can see from the figure, the code is aggressively op-
timized and checked multiple times to ensure that
there is no change in the semantics with respect to
the original interpreted code. Starting with the byte
code, it is first translated to a carefully chosen inter-
mediate language. The intermediate representation
must have the properties that allow it to be trans-
lated to a tree-like structure that allows for better
optimizations [2][12][14]. Then data and/or control
flow analysis is performed on this IR to ensure that
there is consistency between the compiled version
and the original code. The most common representa-
tion that is used is the static single assignment form
[7]. The SSA form is most amenable to optimizations
like constant propagation, code motion and elimina-
tion of partial redundancies. After all the optimiza-
tions are performed, the code is then translated out
of the SSA form and back to the original interme-
diate representation. This is then fed into a code
generator to produce machine code.

The data structures, optimizations and mainte-
nance of the hot-paths depends on each individual
implementation of the JIT and how closely the sys-
tem is integrated. We will discuss this in slightly
more detail for a few systems in the later sec-
tions. However, most of the JIT compilers follow
the schematic described above.
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4.3 Trace selection and compilation

The optimizations that can be done on a JIT are
greatly dependent on the granularity of the hot-path
detection. The finer the granularity of the hot-path,
greater the optimizations can be done. However this
increases the cost of transitioning between the com-
piled and interpreted modes of execution and neces-
sitates the two units to be integrated more tightly.

Commonly, hot-path detection is done at either
the method level or at the trace (or a string of in-
structions which start with a loop head) level. In
method based JITs, as the name suggests, the poten-
tial hot-paths are marked at the beginning of each
method implementation. However, what is most
prevalent and effective is the trace-based JIT com-
piler, which compiles the sections of the code that
are most likely to be called often. These could in-
clude certain obvious choices like targets of backward
branches [14]. The trace is ended when it forms a cy-
cle in the buffer, executes another backward branch,
calls a native method or throws an exception [15].
These potential traces are profiled with some ad-
ditional meta-data to keep track of their execution
count.

At each stage when the potential trace head is
reached, the counter is incremented. When this
count reaches a predefined threshold value, the trace
is then compiled as described in the previous subsec-
tion. This compiled trace is then stored in a transla-
tion cache like structure. Most modern JIT systems
enable chaining of multiple traces for greater flexi-
bility. This allows the execution to transfer a little
less frequently between the JIT and interpreter.

The above section described the generic JIT com-
piler that is seen in most systems today. For the rest
of this paper, we will talk about what special cor-
ner case optimizations are handled for systems like
smartphones and fast web-browsers.

5 JIT on Smartphones and
Tablets

Handheld devices today are changing the entire com-
puting landscape. This phenomenon has made com-
puting accessible to almost any one. The organiza-
tions that can take credit for making this possible
include the hardware manufacturers and the open
source developers. The hardware manufacturers can
be credited for the System on Chip (SoC) design that
makes it possible to have multiple components on a
single piece of silicon that functions as a single unit.
The open source developers create various applica-
tions for these devices. These applications provide

Figure 3: The Android Application Framework

information and services to the user on-the-go, mak-
ing life more connected. Many open-source develop-
ers have applications for these devices that are avail-
able for free or for a small nominal amount. These
include applications for productivity, news and in-
formation, entertainment and games.

While these developers work on frameworks on the
runtime that are provided by software development
kits (SDKs), the engineers themselves have imple-
mented many optimizations both at the hardware
level as well as at the operating system level. In
particular, the optimizations at the operating sys-
tem level are very complex and worth looking into.
The three major operating systems include Apple’s
iOS that runs the iPhones, iPads family, Google’s
Android that runs various devices that are manu-
factured in accordance to the open-handset alliance,
and the Windows 8 touchscreen OS by Microsoft. In
this paper we will talk about the Android operating
system in particular and how it uses the JIT compi-
lation techniques to improve performance.

5.1 Android Application Framework
and Dalvik

From Figure 3, we see that the Android operating
system runs on the Linux kernel. While the kernel
itself and its many features are abstracted away from
the user, the individual applications are sandboxed
on top of the Dalvik virtual machine. This VM was
developed by Google instead of the regular Java VM.
There were many reasons for this, the foremost being
that Dalvik is more sensitive to the constraints that
are imposed on embedded devices like smartphones,
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Figure 4: The Dalvik Trace JIT Flow

like lower frequency, smaller RAM sizes as well as
battery power [10]. This, along with some core li-
braries that are abstracted from the kernel drivers,
constitutes the main runtime of Android. The appli-
cations themselves, written in Java, are run on top of
a framework which further abstracts some features
and provides for appropriate package managers for
each of the services. In this manner, the kernel and
the lower layers are abstracted from the developer
and the user, providing for both ease of use and de-
velopment

The Dalvik VM is a very lightweight implemen-
tation as each of the different services that are run
on an Android powered device are all run on an in-
dividual instance of the Dalvik VM. Moreover, the
initial system server process, which includes the ac-
tivity manager, libc and other such components, is
also bundled and run on an instance of Dalvik. The
component that provides for forking out an instance
of Dalvik upon request is called the Zygote and it is
crucial to the Android system itself.

Thus, it is clear that any optimizations made to
Dalvik will help speed up the overall runtime. Fur-
ther, many of the applications that are commonly
run on tablets and smartphones are games. Most
games are extremely compute intensive (not exclu-
sively games but other applications as well), running
the same sections of code repeatedly. Thus it is nat-
ural to see an implementation of the JIT compiler
in Dalvik. The next subsection discusses the Dalvik
JIT in more detail.

5.2 Dalvik JIT

The Dalvik JIT is similar to the generic JIT that was
explained in Section 4. As the applications are writ-
ten in Java and run on top of a virtual machine that
replaces the JavaVM, the schematic is very similar to
Figure 1. The only significant change is seen during

compile time. Instead of storing each of the class files
into a separate jar file, there is a tool called the dx
tool which compiles multiple class files into a single
dex file. The dex file format provides for about 5%
improvement in storage as compared to the Jar file
over uncompressed data. This is significant in terms
of the memory savings.

The JIT itself is a generic trace-based JIT whose
flow is depicted in Figure 4. The potential trace
heads are identified in the front-end of the compiler
at the parsing stage after the conversion to bytecode.
The opcodes of the dex byte code instructions are
checked. The front-end analyzes each method from
a high level and marks out sections which may not
be optimized and does other such inspections of the
source code. When the traces are compiled, as in the
generic trace-based JIT in Section 4, they are stored
in the translation cache. This cache is maintained
during run-time when the traces are compiled. There
is provision to chain multiple traces, which decreases
the bouncing between the compiler and interpreter.
The translation cache is designed in such a way that
it integrates the compiler and interpreter tightly, act-
ing as a buffer between the two.

The trace is aggressively optimized before it is
compiled. This is done by converting it into the SSA
notation. Some of the optimizations included are
dead store elimination, variable folding and inlining
of getters and setters. On the whole, the Dalvik JIT
by design itself is highly efficient and is optimized to
be lightweight and take up very little overhead on a
constrained system.

5.3 Similar work

Gal et al. proposed an embedded Java JIT compiler
for resource constrained devices [14]. Similar to the
Dalvik Trace JIT, this JIT compiler also optimized
the traces in the SSA form. The HotpathJIT pro-
posed to merge the trees when they were overlapping
in terms of the traces that they compiled. Further
they supported optimization of invariant code mo-
tion as well. The HotpathVM was a more complex
system that was proposed rather than the Dalvik JIT
which is a production quality compiler.

The above section concludes our discussion on the
JIT compilers in smartphone/tablet or other hand-
held devices. We talked about how they helped to
optimize the runtime and improve the speed and
memory demands on them.

6 JIT on the Internet

With the increase in the data that is available on
the Internet, there is a need to greatly increase the
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efficiency and speed at which webpages and servers
are processed and requested. Most server-side script-
ing languages and front-end design languages are dy-
namic which by nature makes them slower. This has
lead to engineers coming up with innovative solu-
tions to improve performance, while maintaining the
ease of use for developers. For instance, Facebook
has come up with its source translator that compiles
PHP down to C++. Called the HipHop, this trans-
lator uses g++ to run the compiled C++ code [11].

In such a landscape, it is natural that the devel-
opers look towards JIT compilers to increase per-
formance as some of the functions that are imple-
mented while querying webpages or rendering them
are highly regular. Some of the most interesting
implementations of JITs in terms of working with
webpages and servers include the TraceMonkey for
JavaScript in the Firefox and the JIT in the PyPy
implementation of the Python interpreter. These
topics will be covered briefly in the following sub-
sections.

6.1 JavaScript JITs and TraceMon-
key for Firefox

There have been many implementations of JIT com-
pilers for JavaScript, similar to the paper on trace-
based JIT Type Specialization for Dynamic Lan-
guages by Gal et al. [13]. The most popular is the
TraceMonkey JIT that is found in the Firefox web
browsers of versions 3.5 onwards.

This paper proposed an inexpensive and efficient
method for performing type specialization by means
of generating trace trees. The interesting name of
TraceMonkey was proposed because the flow of exe-
cution jumps across the tree depending on the pro-
gram counter in the interpreter. The trace selection
and optimization is similar to the JIT compiler dis-
cussed in Section 4. The major difference between
TraceMonkey and the other implementations is that
additional information has to be incorporated in the
Trace trees, namely the type information. This was
implemented in the SpiderMonkey JavaScript VM in
the Firefox browser and the authors observed an ap-
proximate speed up of 10x overall.

6.2 Some other developments on
JavaScript JITs

Many different implementations of JavaScript JITs
are available currently, the most popular of them be-
ing the dynamic optimization system called Dynamo
[5]. Some other examples of JavaScript engines that
have the interpreters generate native code include
Apple’s SquirrelFish [3]and Google’s V8 JavaScript
engine.

6.3 PyPy

Server-side scripting is a big bottleneck when it
comes to data analysis of the billions of bytes of data.
For instance, most Facebook’s data is estimated at
100 peta bytes stored in a single Hadoop store. Ac-
cessing this data must be done quickly and efficiently
without disturbing the configuration of the system
overall. They are mostly done using shell scripts
or scripting languages like Perl, Python and Awk.
Most scripting languages, like Python are dynamic,
which while making them very easy to use, make
them highly inefficient.

Thus, there have been many attempts to optimize
Python and other such languages for speed-up, in-
cluding implementing JIT compilers for them. One
such implementation is PyPy which is an alterna-
tive implementation of Python 2.7.2 that is fast and
memory efficient [19]. The JIT compiler in PyPy
is not built-in as a separate module but is instead
generated by a JIT compiler generator. The authors
exploit the fact that their interpreter is written in
a high-level language to include this module. They
believe that this will prevent their JIT compiler from
going out of sync with their interpreter at any stage.
Overall, they achieved an average speed-up of around
5.5 times over the regular implementation of Python.
As this is on-going work, it will be extremely inter-
esting to see the speed-ups that they will be able to
get after including additional optimizations to their
interpreter.

This concludes our Section on how JIT compila-
tion helps to improve performance of systems that
are used to power the internet as we know it, both
at the front-end rendering as well as the server-side
scripting.

7 Conclusion

This paper was intended to be an introduction into
some of the recent work in just-in-time compilation
and how this is implemented in some of the tech-
nology that affects our everyday lives. With greater
need for faster and more reliable computing, just-
in-time compilation along with many other enduring
ideas for optimization, has seen a renaissance nearly
three decades after it was first proposed. It will be
interesting to see how just-in-time compilation will
adapt further, with some of the more challenging
problems that are going to rise in computing
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