
JIT through the ages

Evolution of just-in-time compilation from theoretical performance

improvements to smartphone runtime and browser optimizations

Neeraja Ramanan

Abstract

This paper is a study on just-in-time compilation and traces its evolution from being a theoretical
performance optimization to a technology that provides concrete speed-ups for constrained applications
and in dynamic programming languages. Also highlighted are the increase in sophistication of the
techniques used to deal with the complexities that arise in these problem domains and the inherent
trade-offs.

1 Introduction

The advances in software and information technology
today put great demands on the hardware and sys-
tem software of devices. Devices like smart phones
have larger capabilities than an average computer in
the y2k era [16][18]. However, this increase in ca-
pability has also lead to a mind-boggling spectrum
of applications that these devices find. Further, with
the tremendous increase in the number of developers,
the quality of software being written is also varied.

In such a scenario, platform and system engineers
are pushing the boundaries when it comes to increas-
ing the performance of these systems. This process
has lead them to revisit some of the dormant ideas in
computer science and try to apply them from a newer
perspective and in a different computing landscape.
One such idea is just-in-time compilation. Just-in-
time compilers translate byte codes during run time
to the native hardware instruction set of the target
machine [1]. Though this idea was first proposed in
the early seventies, it has seen a renaissance with in-
terpreted languages like Java and dynamic languages
like JavaScript and Python being adopted for large
scale applications. This paper studies this trend and
discusses the evolution of this concept for modern
day computing.

The rest of this paper is organized as follows.
Section 2 gives a brief overview about just-in-time
compilation and talks about the trade-offs involved,
while Section 3 describes some of the earlier imple-
mentation of JIT compilation. Section 4 describes
a generic JIT Compiler, mostly based on the Java
run-time environment. Section 5 describes some of
the basic infrastructure needed for a JIT compiler,
namely in terms of data structures and also . Sec-

tion 6 describes a couple of the embedded Java JIT,
namely the Android Dalvik VM’s JIT compiler and
the HotpathVM and contrasts the two while ex-
plaining why we would require a just-in-time com-
piler for an embedded system. Section 7 describes
a just-in-time compiler for Dynamic Languages like
JavaScript and Python and what features make these
distinctive and provide for such great performance
increases.

2 JIT compilation

Just-in-time compilation attempts to bridge the gap
between the two approaches to program translation:
compilation and interpretation. Generally, compiled
programs run faster as they are translated to ma-
chine code or other such native code. However, they
occupy a larger memory footprint as the binaries are
larger. Further, they also take a longer to optimize
the code. Interpreted code on the other hand takes
up a smaller memory footprint as it is represented
at a higher level and hence can carry more seman-
tic information. Thus, it’s more portable. However,
interpreters need access to the runtime of the sys-
tem and they need to gather much more information
during the runtime to successfully execute the pro-
grams. This makes interpretation more expensive in
terms of time to run and overall complexity of the
application.

2.1 Overview

In the just-in-time compilation process, starting with
the interpreter, some features of a static compiler are
built into the system. Typically, a JIT compiler will
isolate some sections of the code, at run-time, which

1



are accessed more often and then statically compiles
them, aggressively optimizing those sections in the
process. The sections of code that are to be statically
compiled can be identified in many ways, and this is
briefly described in Section 3. These sections of code
are commonly called hot-paths.

2.2 Hot-path detection

Hot-paths could be identified at various granular-
ities. Most JIT compilers that are written for
statically-typed languages like Java, working on
servers and desktops, performed Method-based iden-
tification, where the hot-paths are identified at the
granularity of each method. While this technique
works well in simplifying the design of the JIT and
provides incredible speed-ups, studies have shown
that there’s an additional overhead in terms of mem-
ory and power consumption [6]. This is because at
this coarse granularity, there a different sections of
the code which are compiled even though they are
not hot sections. This includes exceptions and other
such code. To avoid this, a more complex method
of identifying hot-paths, known as trace-based just
in time compilation has been proposed. Here hot-
paths, which are also called traces, are selected based
on various criteria. A trace-based JIT is explained
in detail in Section 4.

2.3 A few considerations

The nature of a JIT system is such that there are
bound to be many trade-offs. The most major con-
sideration to take into account is the fact that having
both a compiler and an interpreter at run-time could
prove expensive. This was the reason this idea did
not catch on in the early stages [4]. Further, con-
stant switching between interpreted and compiled
code could prove for choppy execution. Thus, a
JIT compiler writer must take care to ensure smooth
transitions between the two modes of execution. Dif-
ferent systems do this differently. A few JIT compil-
ers manage this by having an additional data struc-
ture called the translation cache that provides for
quick reference to the compiled code.

3 Chronology

In the purest sense, one of the first ideas for a JIT
compiler can be dated back to McCarthy’s 1960 Lisp
paper [17] where he talks about compiling the source
to machine code. However, more concrete imple-
mentations surfaced about a decade later for various
languages like FORTRAN, Smalltalk, Self, Erlang,
O’Caml and even ML and the ubiquitous C [4].

Some of the early ideas for JIT compilation can be

summarized in terms of mixed-code and throw-away
code compilation. Another interesting paradigm
shift is to view JIT compilers in terms of simulators.

3.1 Mixed code and throw-away code
compilation

Work by Dawson [9] and Dakin and Poole [8] are
the earliest ideas that talk about just-in-time com-
pilation as we know it. Published in 1973 in the
same journal, both papers talk about how perfor-
mance of interpreted code can be improved by com-
piling it down to machine code. In the mixed code
approach in [8], Dakin and Poole propose that in or-
der to achieve the right balance between the poor
space utilization of the direct compilation and the
slower running times of the interpreted mode, a com-
mon approach with data structure that keeps track
of procedure calls in both cases must be used. Sim-
ilarly, in [9], Dawson notes the three classes of in-
structions: very rarely used, occasionally used and
often used and address how we would select which
of these instructions should be compiled. He states
that the cost of compilation is relatively lesser than
that of storing the compiled code and thus, once the
buffer reaches its limit, it can be flushed for the next
compiled section of the code.

3.2 Simulation and binary translation

Early simulators were classified 4 generations. The
first generation were plain interpreters, while the
second generation dynamically translated the source
instructions into target instructions one at a time.
The third generation translated entire blocks of the
source code dynamically while the fourth generation
improved on the third by isolating a few key paths
and translating them. The third generation of simu-
lators are similar in idea to method based JITs while
the fourth generation is similar to trace based JITs
as discussed in section 4.3. The main considerations
of both fourth generation simulators as well as Trace-
based JITs include, profiling of execution, detection
of hot-paths, code generation and optimization and
an exit mechanism. These features are explained in
detail for Trace-based JITs in the sections below

4 A Generic Trace-based JIT
Compiler

This section aims to explain the working of a simple
just-in-time compiler. For the purpose of this section
and most of the rest of the paper, unless stated, we
would be talking about a Java-based JIT compiler.
The choice to work with a Java JIT is because Java is

2



Figure 1: Generic Java-based JIT Compiler

one of the interpreted languages that benefit signifi-
cantly by the use of a just-in-time compiler. Further,
as java is one of the most widely-used languages that
is being used today [20], studies in optimization of
the Java runtime has greater relevance for speeding
up most commonly available systems.

4.1 Run-time environment with a JIT
compiler

Figure 1 above provides a general schematic of a java-
based just-in-time compiler. The major components
include the java compilers and the class loader as
well as the byte-code verifier in addition to the . The
.java files are first compiled down to .class files and
then they are bundled as jar files. This is all done at
compile-time.

At run-time, the class loader first loads all these
class files on to the Java virtual machine. Then
the byte-code verifier then performs type checking
to ensure that typing information is maintained con-
stantly. In addition to these steps, depending on
the exact implementation of the JIT, in some ear-
lier stage, the potential hot-paths are detected and
marked accordingly. Then, during runtime, the run-
time keeps track of the number of times these poten-
tial hot-paths are run. When the count of execution
of that particular hot-path hits a particular thresh-
old, it is then statically compiled. JIT compilers
differ in the manner in which the statically compiled
binary is maintained as well. Most times, they are
stored in a cache-like data structure that is designed
keeping the system configurations in mind.

4.2 Inside a JIT compiler

Figure 2 depicts the internals for a general just-in-
time compiler block that is seen as a black-box in

Figure 2: JIT Compiler Internals

Figure 1. As we can see from the figure, the code is
aggressively optimized and checked multiple times to
ensure that there is no loss in the semantics with re-
spect to the original interpreted code. Starting with
the byte code, it is first translated to a carefully cho-
sen intermediate language. The intermediate repre-
sentation must have the properties that allow it to
be translated to a tree-like structure that allows for
better optimizations [2][12][14]. Then data and/or
control flow analysis is performed on this IR to en-
sure that there is consistency between the compiled
version and the original code. The most common
representation that is used is the static single as-
signment form [7]. The SSA form is most amenable
to optimizations like constant propagation, code mo-
tion and elimination of partial redundancies. After
all optimizations are performed this is then trans-
lated out of the SSA form and back to the original
intermediate representation. This is then fed into a
code generator to produce native machine language
code.

The data structures, optimizations and mainte-
nance of the hot-paths depends on each individual
implementation of the JIT and how closely the sys-
tem is integrated. We will discuss this in slightly
more detail for a few systems in the later sections.
However, the general schematic of most of the JIT
compilers follows the template as described above.

4.3 Trace selection and compilation

The optimizations that can be done on a JIT are
greatly dependent on the granularity of the hot-path
detection. The finer the granularity of the hot-path,
greater the optimizations can be done. However this
increases the cost of transitioning between the com-
piled and interpreted modes of execution and neces-

3



sitates the two units to be integrated more tightly.
Two of the most common hot-path detection is

done at the trace and method based granularity. In
method based JITs, as the name suggests, the poten-
tial hot-paths are marked at the beginning of each
method implementation. However, what is most
prevalent and effective is the Trace-based JIT com-
piler, which compiles certain sections of the code that
are most likely to be called often. These could in-
clude certain obvious choices like targets of backward
branches [14]. The trace is ended when it forms a cy-
cle in the buffer, executes another backward branch,
calls a native method or throws and exception [15].
These potential traces are profiled with some ad-
ditional meta-data keeping track of their execution
count.

At each stage when the potential trace head is
reached, the counter is incremented. When this
count reaches a predefined threshold value, the trace
is then compiled as described in the previous section.
This compiled trace is then stored in a translation
cache like structure. Most modern JIT systems en-
able chaining of multiple traces for greater flexibility.
This allows the execution to transfer a little less be-
tween the JIT and interpreter.

The above section described the generic JIT com-
piler that is seen in most systems today. For the rest
of this paper, we will talk about what special cor-
ner case optimizations are handled for systems like
smartphones and fast web-browsers.

5 JIT on Smartphones and
Tablets

Handheld devices today are changing the entire com-
puting landscape. This phenomenon has made com-
puting accessible to almost any one. The innovations
that can take credit making this possible include the
hardware manufacturers and the open source devel-
opers. The hardware manufacturers can be cred-
ited for the System on Chip (SoC) design that make
it possible to have multiple components on a sin-
gle piece of silicon that functions beautifully as a
single unit. The open source developers drive the
phenomenon for developing various applications for
these devices. These provide information and ser-
vices to the user on-the-go, making life more con-
nected. Many open-source developers have applica-
tions for these devices that are available for free or
for a small nominal amount. These include applica-
tions for productivity, news and information, enter-
tainment and games.

While these developers work on frameworks on the
runtime that are provided by Software development

Figure 3: The Android Application Framework

kits (SDKs), the engineers themselves have imple-
mented tremendous amounts of optimizations both
at the hardware level as well as at the operating sys-
tems. In particular, the optimizations at the operat-
ing system level are very complex and worth looking
into. The three major players in this industry in-
clude Apple’s iOS that runs the iPhones, iPads fam-
ily and Google’s Android that runs various devices
that are manufactured in accordance to the open-
handset alliance and the Windows 8 touchscreen OS
by Microsoft. In this paper we will talk about the
Android operating system in particular and how they
use the JIT compilation techniques to improve per-
formance.

5.1 Android Application Framework
and Dalvik

From Figure 3, we see that the Android operating
system runs on the Linux kernel. While the kernel
itself and it’s many features are abstracted away from
the user, the individual applications are sandboxed
on top of the Dalvik virtual machine. This VM was
developed by Google instead of the regular Java VM.
There were many reasons for this, the foremost being
that Dalvik is more sensitive to the constraints that
are imposed on embedded devices like smartphones,
like lower frequency, smaller RAM sizes as well as
battery power [10]. This, along with some core li-
braries that are abstracted from the kernel drivers,
constitutes the main runtime of Android. The appli-
cations themselves, written in Java, are run on top
of a framework which further abstract some features
and provide for appropriate package managers for

4



Figure 4: The Dalvik Trace JIT Flow

each of the service. In this manner, the kernel and
the lower layers are abstracted from the developer
and the user, providing for both ease of use and de-
velopment

The Dalvik VM is a very lightweight implemen-
tation as each of the different services that are run
on an Android powered device are all run on an in-
dividual instance of the Dalvik VM. More so, the
initial system server process, which includes the ac-
tivity manager, libc and other such components, is
also bundled and run on an instance of Dalvik. The
component that provides for the magic of forking out
an instance of Dalvik upon request is called the Zy-
gote and its a very crucial to the Android system
itself.

Thus, it is clear that any optimizations made to
Dalvik will help speed up the overall runtime. Fur-
ther, many of the applications that are commonly
run tablets and smartphones are games. Most games
are extremely compute intensive (not exclusively
games but other applications as well), running the
same sections of code repeatedly. Thus it is natu-
ral to see an implementation of the JIT compiler in
Dalvik. The next subsection discusses the Dalvik
JIT in slight detail.

5.2 Dalvik JIT

The Dalvik JIT is very similar to the generic JIT that
was explained in Section 4. As the applications are
written in Java and run on top on a virtual machine
that replaces the JavaVM, the schematic is very sim-
ilar to Figure 1. The only significant change is during
compile time, instead of storing each of the class files
into a separate jar file, there is a tool called the dx
tool which compiles multiple class file into a single
dex file. The dex file format provides for about 5%
improvement in storage as compared to the Jar file
over uncompressed data. This is significant in terms

of the memory savings.
The JIT itself is a generic Trace-based JIT whose

flow is depicted in Figure 4. The potential trace
heads are identified in the front-end of the compiler
at the parsing stage after the conversion to bytecode.
The opcodes of the dex byte code instructions are
checked. The front-end analyses each method from
a high level and marks out sections which may not
be optimized and does other such maintenance of
the source code. When the traces are compiled, sim-
ilar to generic trace-based JIT in Section 4, they are
stored in the translation cache. This cache is main-
tained during the run-time as and when the traces
are compiled. There is provision to chain multiple
traces, which decreases the bouncing between the
compiler and interpreter. The translation cache is
designed in such a way that it integrates the com-
piler and interpreter tightly, acting as a buffer be-
tween the two.

The trace is aggressively optimized before it is
compiled. This is done by converting it into the SSA
notation. Some of the optimizations included are
dead store elimination, variable folding and inlining
of getters and setters. On the whole, the Dalvik JIT
by design itself is highly efficient and is optimized to
be lightweight and take up very less overhead on a
constrained system.

5.3 Similar work

Gal et al. proposed an embedded Java JIT com-
piler for resource constrained devices [14]. Similar to
Dalvik Trace JIT, this JIT compiler also optimized
the traces in the SSA form. The HotpathJIT pro-
posed to merge the trees when they were overlapping
in terms of the traces that they compiled. Further
they supported optimization of invariant code mo-
tion as well. The HotpathVM was a more complex
system that was proposed rather than the Dalvik JIT
which is a production quality compiler.

The above section concludes our discussion on the
JIT compilers in smartphone/tablet or other hand-
held devices. We talked about how they helped to
optimize the runtime and improve the speed and
memory demands on them.

6 JIT on the internet

With the increase in the data that is available on
the internet, there is a need to greatly increase the
efficiency and speed at which webpages and servers
are processed and requested. Most server-side script-
ing languages and front-end design languages are dy-
namic which by nature makes them on the slower
side. This had lead to engineers coming up with

5



innovative solutions to improve performance, while
maintaining the ease of use for developers. For in-
stance, Facebook has come up with its source trans-
lator that compiles PHP down to C++. Called the
HipHop, this translator uses g++ to run the com-
piled C++ code [11].

In such a landscape, it is natural that the devel-
opers look towards JIT compilers to increase per-
formance as some of the functions that are imple-
mented while querying webpages or rendering them
are highly regular. Some of the most interesting
implementations of JITs in terms of working with
webpages and servers include the TraceMonkey for
JavaScript in the Firefox and the JIT in the PyPy
implementation of the Python interpreter. These
topics will be covered very briefly in the following
sections.

6.1 JavaScript JITs and TraceMon-
key for Firefox

Based on the paper on Trace-based JIT Type Spe-
cialization for Dynamic Languages by Gal et al. [13],
there have been many implementations of JIT com-
pilers for JavaScript, the most popular of which is
the TraceMonkey JIT that is found in the Firefox
web browsers of versions 3.5 onwards.

This paper proposed an inexpensive and efficient
method for performing type specialization by means
of generating trace trees. The interesting name of
TraceMonkey was proposed because the flow of exe-
cution jumps across the tree depending on the pro-
gram counter in the interpreter. The trace selection
and optimization is similar to the JIT compiler dis-
cussed in Section 4. The major difference that this
has compared to the other implementations is ad-
ditional information has to be incorporated in the
Trace trees, namely the type information. This was
implemented in the SpiderMonkey JavaScript VM in
the Firefox browser and the authors observed an ap-
proximate speed up of 10x overall.

6.2 Some other developments on
JavaScript JITs

Many different implementations of JavaScript JITs
are available currently, the most popular of them be-
ing the dynamic optimization system called Dynamo
[5]. Some other examples of JavaScript engines that
have the interpreters generate native code include
Apple’s SquirrelFish [3]and Google’s V8 JavaScript
engine.

6.3 PyPy

Server-side scripting is a big bottleneck when it
comes to data analysis of the billions of data files that
are present. For instance, most Facebook’s data is
estimated at 100 peta bytes stored in a single Hadoop
store. Accessing this data must be done quickly
and efficiently without disturbing the configuration
of the system overall. Most scripting languages, like
Python are dynamic, which while making them very
easy to use, make them highly inefficient.

Thus there have been many implementations that
attempt to optimize Python and other such lan-
guages for speed-up. One such implementation is
PyPy which is an alternative implementation of
Python 2.7.2 that is fast and memory efficient [19].
The JIT compiler in PyPy is not built-in as a sepa-
rate module but is instead generated by a JIT com-
piler generator. The authors exploit the fact that
their interpreter is written in a high-level language to
include this module. They believe that this will pre-
vent their JIT compiler from going out of sync with
their interpreter at any stage. Overall, the achieved
an average speed-up of around 5.5 times over the
regular implementation of Python. As this is on-
going work, it will be extremely interesting to see
the speed-ups that they will be able to get after in-
cluding additional optimizations to their interpreter.

This concludes our Section on how JIT compila-
tion helps to improve performance of systems that
are used to power the internet as we know it, both
at the front-end rendering as well as the server-side
scripting.

7 Conclusion

This paper was intended to be an introduction into
some of the recent work in just-in-time compilation
and how this is implemented some of the technology
that affects our everyday lives. With greater need
for faster and more reliable computing, just-in-time
compilation along with many other enduring ideas
for optimization, has seen a renaissance nearly three
decades after it was first thought about. It will be
interesting to see how just-in-time compilation will
adapt further, with some of the more challenging
problems that are going to rise in computing

References

[1] Aho, A., Lam, M., Sethi, R., and Ullman,
J. Compilers: principles, techniques, and tools,
vol. 1009. Pearson/Addison Wesley, 2007.

6



[2] Aho, A. V., Ganapathi, M., and Tjiang, S.
W. K. Code generation using tree matching and
dynamic programming. ACM Trans. Program.
Lang. Syst. 11, 4 (Oct. 1989), 491–516.

[3] Apple Inc. Introducing squirrelfish extreme -
http://bit.ly/uzrmu5.

[4] Aycock, J. A brief history of just-in-time.
ACM Comput. Surv. 35, 2 (June 2003), 97–113.

[5] Bala, V., Duesterwald, E., and Banerjia,
S. Dynamo: a transparent dynamic optimiza-
tion system. SIGPLAN Not. 46, 4 (May 2011),
41–52.

[6] Buzbee, B., and Cheng, B. A jit compiler
for android’s dalvik vm - http://bit.ly/uxo02j.

[7] Cytron, R., Ferrante, J., Rosen, B. K.,
Wegman, M. N., and Zadeck, F. K. Effi-
ciently computing static single assignment form
and the control dependence graph. ACM Trans.
Program. Lang. Syst. 13, 4 (Oct. 1991), 451–
490.

[8] Dakin, R., and Poole, P. A mixed code
approach. The Computer Journal 16, 3 (1973),
219–222.

[9] Dawson, J. Combining interpretive code with
machine code. The Computer Journal 16, 3
(1973), 216–219.

[10] Ehringer, D. The dalvik virtual machine ar-
chitecture - http://bitly.com/ewb19v.

[11] Facebook. Hiphop for php -
https://github.com/facebook/hiphop-
php/wiki.

[12] Fraser, C. W., Henry, R. R., and Proeb-
sting, T. A. Burg: fast optimal instruction
selection and tree parsing. SIGPLAN Not. 27,
4 (Apr. 1992), 68–76.

[13] Gal, A., Eich, B., Shaver, M., Anderson,
D., Mandelin, D., Haghighat, M. R., Ka-
plan, B., Hoare, G., Zbarsky, B., Oren-
dorff, J., Ruderman, J., Smith, E. W.,
Reitmaier, R., Bebenita, M., Chang, M.,
and Franz, M. Trace-based just-in-time type
specialization for dynamic languages. SIG-
PLAN Not. 44, 6 (June 2009), 465–478.

[14] Gal, A., Probst, C. W., and Franz,
M. Hotpathvm: an effective jit compiler for
resource-constrained devices. In Proceedings of
the 2nd international conference on Virtual ex-
ecution environments (New York, NY, USA,
2006), VEE ’06, ACM, pp. 144–153.

[15] Inoue, H., Hayashizaki, H., Wu, P., and
Nakatani, T. A trace-based java jit compiler
retrofitted from a method-based compiler. In
Proceedings of the 9th Annual IEEE/ACM In-
ternational Symposium on Code Generation and
Optimization (Washington, DC, USA, 2011),
CGO ’11, IEEE Computer Society, pp. 246–256.

[16] Intel. Pentium-iii processor family -
http://intel.ly/ufjemd.

[17] McCarthy, J. Recursive functions of symbolic
expressions and their computation by machine,
part i. Commun. ACM 3, 4 (Apr. 1960), 184–
195.

[18] Qualcomm Incorporated. Snapdragon pro-
cessors - http://bit.ly/tidhmk.

[19] Rigo et al. Pypy - http://pypy.org/.

[20] Tiobe Software. Tiobe programming
community index for december 2012 -
http://bit.ly/cuwpty.

7


	Introduction
	JIT compilation
	Overview
	Hot-path detection
	A few considerations

	Chronology
	Mixed code and throw-away code compilation
	Simulation and binary translation

	A Generic Trace-based JIT Compiler
	Run-time environment with a JIT compiler
	Inside a JIT compiler
	Trace selection and compilation

	JIT on Smartphones and Tablets
	Android Application Framework and Dalvik
	Dalvik JIT
	Similar work

	JIT on the internet
	JavaScript JITs and TraceMonkey for Firefox
	Some other developments on JavaScript JITs
	PyPy

	Conclusion

