
Analysis of the Go runtime scheduler

Neil Deshpande
Columbia University

nad2135@columbia.edu

Erica Sponsler
Columbia University

es3094@columbia.edu

Nathaniel Weiss
Columbia University

ndw2114@columbia.edu

ABSTRACT
The Go runtime, as well as the most recently proposed
changes to it, draw from previous work to improve scalability
and performance. In this paper we explore several examples
of previous research, some that have actively influenced the
Go runtime, and others that are based on similar guiding
principles. We propose additional extensions to the runtime
based on contention aware scheduling techniques. We also
discuss how such changes would not only leverage the pro-
posed improvements currently in the works, but how they
can potentially improve the effectiveness of the runtime’s
scheduling algorithm.

1. INTRODUCTION
The model of computation used by the Go language is based
upon the idea of communicating sequential processes put
forth by C.A.R. Hoare in his seminal paper published in
1978 [10]. Go is a high level language with many of the con-
structs proposed in Hoare’s paper, which are not found in
the C family of languages, and are easier to reason about
than locks and semaphores protecting shared memory. Go
provides support for concurrency through goroutines, which
are extremely lightweight in comparison to threads, but can
also execute independently. These goroutines communicate
through a construct known as channels, which are essentially
synchronized message queues. The use of channels for com-
munication, as well as first class support for closures, are
powerful tools that can be utilized to solve complex prob-
lems in a straightforward manner.

Go is a relatively young language, and its first stable version
was released recently[8]. It is still under development, and
many improvements are still being made to the language,
especially to its compilers and infrastructure. In addition
to the contributions of Hoare and the languages that have
preceded Go, there is a wealth of other information and
research that could be beneficial if applied to the Go run-
time. During the course of our research we have come across
many papers that share similarities with the implementation
of Go, as well as some papers detailing algorithms and so-
lutions that could easily be applied to Go. Based on this
research, we have formulated an extension to the Go run-
time that we believe could improve the implementation that
has been proposed by Dmitry Vyukov [13].

In this paper, we are mainly concerned with exploring Go’s
runtime scheduler. We are interested in Go’s runtime in part
because we believe that relatively simple modifications to

this module can result in significant performance gains. The
contributions of this paper are an explanation and analysis
of the Go runtime scheduler, a brief overview of existing
research that relates to the Go runtime scheduler, and a
proposal for an extension to the scheduler.

Section 2 presents a brief history of the Go language. We
then explore the implementation of the runtime scheduler
in section 3, as well as some of its current limitations in
section 4. The changes that have been proposed to address
the scheduler’s limitations are detailed in section 5. Section
6 then describes several research papers that are applicable
to the Go runtime. We then discuss the persistence of good
ideas in section 7 and offer a proposal for the extension of
the Go runtime in section 8. The paper concludes in section
9.

2. A BRIEF HISTORY OF GO
Hoare’s paper, entitled“Communicating Sequential Processes”
[10] was published before multiple processors in a single
machine were commonplace. Many researchers, including
Hoare, saw the precursors to this trend and tackled research
questions that would need to be answered before multi-core
processors could become ubiquitous. Hoare saw potential
problems with communication between processes executing
concurrently on separate processors. The model at the time
for communication included many of the same primitives
for thread communication today; namely, modifying shared
memory with the assistance of locking mechanisms to pro-
tect critical regions. This model is difficult to reason about,
and therefore, is prone to bugs and errors. Hoare’s proposed
solution included a separate set of primitives to foster mes-
sage passing between processes, instead of altering shared
memory.

Many of the primitives used in Go can find their origin
in Hoare’s CSP paper. For example, the use of Gorou-
tines, channel communication, and even the select statement
were described by Hoare (although referred to by different
names). The CSP paper details many common computer
science and logic problems, as well as their solutions using
communicating processes. Some of the problems explored in
the paper include computing factorials, the bounded buffer
problem, dining philosophers, and matrix multiplication. Al-
though Hoare’s notation is vastly different, the implementa-
tion of the solutions is very much the same as it would be
in Go. At the time, Hoare’s proposal of CSP primitives was
purely theoretical, but now that technology has advanced,

1

Figure 1: Diagram of the relationships between the
runtime, OS, and programmer defined code

we can see that his ideas for concurrent processing were valu-
able and continue to be relevant almost 35 years later.

Newsqueak,a prominent member in the long line-up of CSP
based languages developed at Bell Labs [4], had an impor-
tant influence on Go. Rob Pike worked on several of these
languages, and Newsqueak was the first in that family (Pan,
Promela, Squeak) to have first class channels. This enabled
the elegant composition of channels and functions to develop
more complex communication structures. The study of the
Newsqueak and its derivatives, such as Alef and Limbo, pro-
vides a fascinating view of language evolution, and one can
trace the lineage of many of Go’s elegant constructs.

3. DISCUSSION OF THE GO RUNTIME
The Go Runtime manages scheduling, garbage collection,
and the runtime environment for goroutines among other
things. We will focus mainly on the scheduler, but in order
to do that, a basic understanding of the runtime is needed.
First we will discuss what the runtime is, especially in the
context of how it relates to the underlying operating system
and the Go code written by the programmer.

Go programs are compiled into machine code by the Go
compiler infrastructure. Since Go provides high level con-
structs such as goroutines, channels and garbage collection,
a runtime infrastructure is required to support these fea-
tures. This runtime is C code that is statically linked to
the compiled user code during the linking phase. Thus, a
Go program appears as a standalone executable in the user
space to the operating system. However, for the purpose
of this paper, we can think of a Go program in execution
as comprised of two discrete layers: the user code and the
runtime, which interface through function calls to manage
goroutines, channels and other high level constructs. Any
calls the user code makes to the operating system’s APIs
are intercepted by the runtime layer to facilitate scheduling,
as well as garbage collection [9]. Figure 1 shows the rela-
tionship between a Go program, the Go runtime, and the
underlying operating system.

struct G
{
byte∗ stackguard; // stack guard information
byte∗ stackbase; // base of stack
byte∗ stack0; // current stack pointer
byte∗ entry; // initial function
void∗ param; // passed parameter on wakeup
int16 status ; // status
int32 goid; // unique id
M∗ lockedm; // used for locking M’s and G’s
...

};

Figure 2: Relevant fields of the G struct

Arguably, one of the more important aspects of the Go run-
time is the goroutine scheduler. The runtime keeps track
of each goroutine, and will schedule them to run in turn
on a pool of threads belonging to the process. Goroutines
are separate from threads but rely upon them to run, and
scheduling goroutines onto threads effectively is crucial for
the efficient performance of Go programs. The idea behind
goroutines is that they are capable of running concurrently,
like threads, but are also extremely lightweight in compar-
ison. So, while there might be multiple threads created for
a process running a Go program, the ratio of goroutines to
threads should be much higher than 1-to-1. Multiple threads
are often necessary to ensure that goroutines are not unnec-
essarily blocked. When one goroutine makes a blocking call,
the thread running it must block. Therefore, at least one
more thread should be created by the runtime to continue
the execution of other goroutines that are not in blocking
calls. Multiple threads are allowed to run in parallel up
to a programmer defined maximum, which is stored in the
variable GOMAXPROCS[6].

It is important to keep in mind that all the OS sees is a single
user level process requesting and running multiple threads.
The concept of scheduling goroutines onto these threads is
merely a construct in the virtual environment of the runtime.
When we refer to the Go runtime and scheduler in this pa-
per we are referring to these higher level entities, which are
completely separate from the operating system.

In the Go runtime, there are three main C-structs that help
keep track of everything and support the runtime and sched-
uler:

THE G STRUCT
A G struct represents a single goroutine[9]. It contains the
fields necessary to keep track of its stack and current status.
It also contains references to the code that it is responsible
for running. See figure 2.

THE M STRUCT
The M struct is the Go runtime’s representation of an OS
thread[9]. It has pointers to fields such as the global queue
of G’s, the G that it is currently running, its own cache, and
a handle to the scheduler. See figure 3.

THE SCHED STRUCT
The Sched struct is a single, global struct[9] that keeps track
of the different queues of G’s and M’s and some other infor-

2

struct M
{
G∗ curg; // current running goroutine
int32 id ; // unique id
int32 locks ; // locks held by this M
MCache ∗mcache; // cache for this thread
G∗ lockedg; // used for locking M’s and G’s
uintptr createstack [32]; // Stack that created this thread
M∗ nextwaitm; // next M waiting for lock
...

};

Figure 3: Relevant fields of the M struct

struct Sched {
Lock; // global sched lock .

// must be held to edit G or M queues

G ∗gfree; // available g’s (status == Gdead)
G ∗ghead; // g’s waiting to run queue
G ∗gtail ; // tail of g’s waiting to run queue
int32 gwait; // number of g’s waiting to run
int32 gcount; // number of g’s that are alive
int32 grunning; // number of g’s running on cpu

// or in syscall

M ∗mhead; // m’s waiting for work
int32 mwait; // number of m’s waiting for work
int32 mcount; // number of m’s that have been created
...

};

Figure 4: Relevant fields of the Sched struct

mation the scheduler needs in order to run, such as the global
Sched lock. There are two queues containing G structs, one
is the runnable queue where M’s can find work, and the other
is a free list of G’s. There is only one queue pertaining to
M’s that the scheduler maintains; the M’s in this queue are
idle and waiting for work. In order to modify these queues,
the global Sched lock must be held. See figure 4.

The runtime starts out with several G’s. One is in charge of
garbage collection, another is in charge of scheduling, and
one represents the user’s Go code. Initially, one M is cre-
ated to kick off the runtime. As the program progresses,
more G’s may be created by the user’s Go program, and
more M’s may become necessary to run all the G’s. As this
happens, the runtime may provision additional threads up
to GOMAXPROCS. Hence at any given time, there are at
most GOMAXPROCS active M’s.

Since M’s represent threads, an M is required to run a gor-
outine. An M without a currently associated G will pick up
a G from the global runnable queue and run the Go code
belonging to that G. If the Go code requires the M to block,
for instance by invoking a system call, then another M will
be woken up from the global queue of idle M’s. This is done
to ensure that goroutines, still capable of running, are not
blocked from running by the lack of an available M.

System calls force the calling thread to trap to the kernel,
causing it to block for the duration of the system call ex-
ecution. If the code associated with a G makes a blocking

system call, the M running it will be unable to run it or any
other G until the system call returns. M’s do not exhibit the
same blocking behavior for channel communication, even
though goroutines block on channel communication. The
operating system does not know about channel communica-
tion, and the intricacies of channels are handled purely by
the runtime. If a goroutine makes a channel call, it may
need to block, but there is no reason that the M running
that G should be forced to block as well. In a case such as
this, the G’s status is set to waiting and the M that was
previously running it continues running other G’s until the
channel communication is complete. At that point the G’s
status is set back to runnable and will be run as soon as
there is an M capable of running it.

4. OPPORTUNITIES FOR IMPROVEMENT
The current runtime scheduler is relatively simplistic. The
Go language itself is young, which means there has not been
enough time for the implementation of the language to ma-
ture past the first release. The current scheduler gets the
job done, but it’s simplicity lends it to performance prob-
lems. Four major problems with the current scheduler are
addressed by Dmitry Vyukov in his design document[13]
containing proposed improvements to the scheduler.

One problem is the scheduler’s excessive reliance on the
global Sched lock. In order to modify the queues of M’s and
G’s, or any other global Sched field for that matter, this
single lock must be held. This creates some problems when
dealing with larger systems, particularly “high throughput
servers and parallel computational programs” [13], which
causes the scheduler to not scale well.

Further problems rest with the M struct. Even when an M
is not executing Go code, it is given an MCache of up to
2MB, which is often unnecessary, especially if that M is not
currently executing a goroutine. If the number of idle M’s
becomes too large it can cause significant performance loss
due to“excessive resource loss ... and poor data locality”[13].
A third problem is that syscalls are not handled cleanly,
which results in excessive blocking and unblocking of the
M’s, further wasting CPU time. Lastly, there are currently
too many instances where an M will pass a G off to another
M for execution instead of running the G itself. This can
lead to unnecessary overhead and additional latency.

5. VYUKOV’S PROPOSED CHANGES
Dmitry Vyokov is an employee at Google. He published a
document detailing some of the failings of the current run-
time scheduler, as well as outlined future improvements to
Go’s runtime scheduler [13]. This section contains a sum-
mary of his proposed changes.

One of Vyukov’s plans is to create a layer of abstraction. He
proposes to include another struct, P, to simulate processors.
An M would still represent an OS thread, and a G would
still portray a goroutine. There are exactly GOMAXPROCS
P’s, and a P would be another required resource for an M
in order for that M to execute Go code.

The new P struct would steal many members of the previous
M and Sched structs. For instance, the MCache is moved
to the P struct, and each P would have a local queue of

3

runnable G’s instead of there being a single global queue.
Establishing these local queues helps with the earlier prob-
lem of the single global Sched lock, and moving the cache
from M to P reduces the issue of space being unnecessarily
wasted. Whenever a new G is created, it is placed at the
back of the queue of the P on which it was created, thus
ensuring that the new G will eventually run. Additionally,
a work stealing algorithm is implemented on top of the P’s.
When a P does not have any G’s in its queue, it will ran-
domly pick a victim P and steal half of the G’s from the
back of the victim’s queue. If, while searching for a G to
run, an M encounters a G that is locked to an idle M, it will
wake up the idle M and hand off its associated G and P to
the previously idle M.

Another problem that Vyukov addresses is that of M’s con-
tinuously blocking and unblocking, which incurs a lot of
overhead. Vyukov aims to reduce this overhead by employ-
ing spinning instead of blocking. He proposes two kinds of
spinning [13]:

1. an idle M with an associated P spins looking
for new G’s,

2. an M without an associated P spins waiting
for available P’s.

There area at most GOMAXPROCS spinning
M’s [at any given time]

Furthermore, any idle M’s that have associated P’s cannot
block while there are idle M’s that do not hold P’s. There
are three main events that can cause an M to be temporarily
incapable of running Go code. These events are when a new
G is spawned, an M enters a syscall, or an M transitions
from idle to busy. Before becoming blocked for any of these
reasons, the M must first ensure that there is at least one
spinning M, unless all P’s are busy. This helps to solve the
problem of the continuous blocking and unblocking and also
makes sure that every P is currently involved with a running
G, if there are runnable G’s available. Thus, the overhead
involved in the syscalls is also reduced by employing spin-
ning.

Vyukov also suggests not allocating the G and stack for a
new goroutine unless they are really required. He notes that
we require just six words for the creation of a goroutine that
runs to completion without making function calls or allo-
cating memory. This will significantly reduce the memory
overhead for this class of goroutines. The other improve-
ment suggested is to have better locality of G’s to P’s, since
the P on which the G was last run will already have its
MCache warmed up. Similarly, it would be beneficial to
have better locality of G’s to M’s since that would result in
better affinity between the G’s and the physical processors.
We must remember that P’s are an abstraction created by
the runtime that the OS knows nothing about, whereas M’s
represent kernel threads. Most modern kernels will provide
for affinity between threads and physical processors. Hence,
better G to M locality will give us better cache performance.

6. RELATED WORK
During the course of our research, we came across several
papers that contain solutions we believe could be useful if

Figure 5: Each Pi represents a P in the Go run-
time. Each cell represents a single process, with
similarly-numbered cells being processes in the same
task force. When possible, processes in the same
row will be scheduled to run at the same time.

applied to the Go runtime. In this section we provide a brief
overview of these papers, and describe how we envision those
solutions could be leveraged.

6.1 Co-scheduling
Scheduling Techniques for Concurrent Systems, written by
John K. Ousterhout in 1982 [11], introduces the idea of co-
scheduling, or scheduling processes that communicate heav-
ily during the same time slice. The paper discusses three
different algorithms for scheduling process task forces, which
are groups of processes that communicate heavily. The al-
gorithm that can most readily be applied to the Go runtime
is the paper’s matrix algorithm.

The matrix algorithm arranges the processors in an array,
similar to the proposed global array of P’s in Go. A matrix
is then created with a column corresponding to each P, as
seen in figure 5. The number of rows is not specified by the
paper, but we can assume that there will be sufficient rows
to accommodate the algorithm. When a new process task
force is created, the algorithm attempts to find the first row
that will fit the entire task force such that each process is in
its own cell. As seen in figure 5, task forces 1 and 2 fit into
row 0. Task force 3 was too large to fit into the remaining
space in row 0 and was consequently stored in row 1. Task
force 4 was sufficiently small to fit into row 0 along with
1 and 2. The algorithm places processes in this matrix to
better facilitate scheduling entire task forces at the same
time. Assuming there are n rows, at time slice k, processes
located in row (k%n) will be scheduled on the associated
processors. If a processor is idle, whether because there is
no process in the current task force for that processor or
the currently running process has blocked, then a different
process in that processor’s column in scheduled to run.

If Go’s P structs were used, instead of processors, this idea
could work to schedule multiple goroutines that use the same
channels simultaneously. This has the potential to reduce
the time spent blocking M’s and G’s, however, this may
require significant changes to the channel infrastructure.

6.2 Contention Aware Scheduling
6.2.1 Cache Conflicts and Processes

Threads executing on the same processor share cache space.
Depending on the cache usage of each thread this sharing
could be harmonious, or it could cause significant perfor-
mance degradation. The idea presented by Blagodurov et al
in [12] is to schedule threads so as to minimize cache con-
tention on each processor. There are two main elements to

4

such a system: the first is an algorithm to estimate the con-
tention between threads, and the second is an algorithm to
then schedule them effectively across processors.

Several algorithms were proposed in the paper to determine
which threads were contentious. The most effective algo-
rithm was one in which a profile of the cache was kept for
each thread, and every cache access as well as cache miss
was tracked. Picking threads to run on the same processor
was accomplished by minimizing the overlap between cache
usage among grouped threads. While this was the most ef-
fective solution it was also one of the most expensive. Cache
miss rate was identified as a relatively effective and very ef-
ficient alternate measurement to predict cache contention
between threads, and it could easily be monitored through-
out the runtime of each process. The scheduling algorithm
grouped threads so as to minimize the sum of cache miss
rates on each processor, and assigned threads to a processor
by manipulating the run queue.

6.2.2 Contention aware multithreading for Java
Xian et al[7] suggest an approach where the runtime sched-
uler proactively tries to reduce contention for locks between
threads by clustering threads that compete for the same
locks and then creating a linear schedule for each cluster.
Each schedule can then be run on a separate processor.
Their contention aware scheduler also gives higher priorities
and execution quanta to threads holding locks, thus solving
the problem of priority inversion.

The implementation of this contention aware scheduler is
carried out by modifying the JVM as well as the Linux ker-
nel. The JVM modifications include changes to record syn-
chronization events, in the so called synchornization event
vectors (or seVector’s for short). The seVector’s are then
used to create the contention vectors (or conVector’s), which
are a measure of the contention for each shared lock. The
threads are grouped into clusters based on the similarity
of their conVector’s, which is calculated based on a heuris-
tic. The clustering algorithm also classifies the clusters into
strong-contention or weak-contention clusters. Finally, the
clusters are mapped to physical CPUs by their mapping al-
gorithm, which attempts to balance the load across multiple
CPUs by merging or splitting the weak contention clusters.

The kernel modifications include the addition of system calls
to register Java threads, and to map them to CPUs. A sepa-
rate contention aware scheduler which is used for scheduling
Java threads is also added to the kernel. The scheduler
uses a Critical Section First policy, which is an augmented
priority based round robin policy, wherein thread priority
is increased based on the number of locks that the thread
holds, and higher priority threads get longer time quanta.

6.3 Occam π
The Occam π language is based on formalisms proposed in
Milner’s π calculus and the communicating sequential pro-
cesses proposed by Hoare. Ritson et al[3] implemented mul-
ticore scheduling for lightweight communicating processes
in the Occam language back in 2009. They utilize run-
time heuristics to group communicating processes into cache
affine work units, which are then distributed among physical
processors using wait free work stealing algorithms.

Figure 6: Schematic of a logical processor as pro-
posed by Ritson et al. in [3]

The state of a process is stored in its process descriptor.
The model that they use for scheduling is as follows: Each
physical processor has a one-to-one mapping with a logical
processor. As defined by Ritson et al. in [3]:

The logical processor has a run queue, which is
a linked list of batches. A batch is a linked list
of process descriptors. The logical processor exe-
cutes a batch by moving it to its active queue. A
dispatch count is calculated based on the number
of processes in a batch (multiplied by a constant)
and bounded by the batch dispatch limit. The
dispatch count is decremented each time a pro-
cess is scheduled. When the dispatch count hits
zero, any processes leftover in the active queue
are moved to a new batch, which is added to the
end of the run queue.

Batches are essentially groups of processes which are likely
to access similar memory locations because they communi-
cate or synchronize with each other. As discussed in section
6.2.2, threads (analogous to processes in this case) are con-
sidered highly contentious when they compete for the same
locks. This contention manifests itself in the form of mutual
exclusion or blocking on some communication primitive. We
can form groups of processes which meet the condition that
only one process in its group can be active at any given time.
We also note that these groups are dynamic in nature and
that their composition may change over time. Ritson et al
postulate that if a batch can meet the condition of only one
process capable of being active, it is probably optimal. Con-
versely, batches that do not satisfy this condition should be
split, which can be implemented in constant time by putting
the head process of the active queue in a new batch, and the
remainder in a different one. The second claim made by
Ritson et al is that repeated execution and split cycles will
reduce large, unrelated batches into small, related batches.

The final feature that we will discuss about this paper is pro-
cess migration: A process which blocks on communication
or synchronization on one logical processor, A, can be wo-
ken up by a process running on a different logical processor,
B. Unless prohibited by affinity settings, the woken up pro-
cess continues execution on processor B. A logical processor
which runs out of batches to execute may steal batches from
other logical processors. However, the run queue is private
to each logical processor. Hence, to allow work stealing, a

5

fixed size migration window allows visibility and access to
the end of each run queue. The fixed size of the window al-
lows the system to leverage wait free algorithms that provide
freedom from starvation and bounded wait times, improving
scalability over locks.

7. PERSISTENCE OF GOOD IDEAS
Go can trace many of it’s core concepts back to ideas pre-
sented in Hoare’s CSP paper[10], proving that a really good
idea can stand the test of time. In addition to the direct lin-
eage, aspects of additional research can be seen reflected in
Go. Portions of the Emerald language[1] resurfaced in Go,
though the creators of Go were not familiar with Emerald
at the time[5]. It appears, in this case, that two separate
groups of researchers happened to come up with the same
great idea in isolation from each other. Though, given that
Emerald had been around for quite some time prior to the
creation of Go, it is possible that the ideas had an indi-
rect influence on Go’s creators. Either way, the fact that
the same idea appeared in different languages separated by
decades, and on extremely different technology bases, shows
just how powerful a really good idea can be.

Developed in the early 1980’s, Emerald lists among its goals
as they relate to types: “A type system that was used for
classification by behavior rather than implementation, or
naming.”[1]

Consequently, Emerald supported both parametric as well as
inclusion polymorphism, as defined by Cardelli and Wegner
in [2]:

inclusion polymorphism - An object can be
viewed as belonging to many different types that
need not be disjoint.
parametric polymorphism - A function has
an implicit or explicit type parameter which de-
termines the type of the argument for each ap-
plication of the function.

This is similar to the concept of a type implementing an
interface in Go merely by defining the methods included in
the interface rather than declaring this a priori as in Java
or C++. The resemblance between the implementations of
this concept in the two languages is uncanny.

We have already explored the influence that CSP has had,
not only on Go, but on the entire lineage of similar pro-
gramming languages developed by Rob Pike and his col-
leagues at Bell Labs[4],[8]. It bears repeating that the use
of Hoare’s CSP primitives, in essentially unchanged form
several decades after the ideas were initially presented, is
a real testament to their strength and continued applicabil-
ity. Even more astounding is that these ideas were originally
presented when the hardware to support such processes was
still largely theoretical.

The Go language has been greatly influenced by previous
work in Computer Science. Hence, we believe that when
looking to improve parts of the language, such as the runtime
scheduler, many great ideas can still be found by examining

past research and applying those techniques to current work.
Our additions to the changes proposed by Dmitry Vyukov
center around this thought.

8. OUR PROPOSAL
Dmitry Vyukov’s proposed updates[13] to the Go runtime
stand to introduce significant performance improvements to
the current scheduler. We think that there is still room for
improvement, though, specifically with regards to reducing
contention between G’s. In our initial assessment of the run-
time we identified several possible improvements, however,
upon discovering Dmitry Vyokov’s design document we re-
alized that many of our ideas, as well as some additional im-
provements, were already being implemented. Upon review-
ing the proposed changes as well as doing some additional
research we determined that we can apply several techniques
that are found in the literature to introduce additional per-
formance gains. These include contention aware scheduling
as discussed in section 6.2 in conjunction with the approach
implemented by the Occam π runtime as described in section
6.3.

The proposed changes to the Go runtime actually set the
stage quite well for the inclusion of contention aware schedul-
ing. The concept of processors, or P’s, allows us to design
an algorithm for intelligently grouping G’s to run on spe-
cific P’s. We decided that the contention aware scheduling
algorithm that takes locks into consideration, as described
in section 6.2.2, is a better model for us to emulate than try-
ing to implement a solution similar to the one discussed in
section 6.2.1. Although the P structs (previously M structs)
contain a cache, there is no straightforward way of measuring
cache contention, and the issue is even further complicated
by the new work-stealing algorithm, which could potentially
introduce additional overhead to our analysis. This may be
an area for future research, as it will be significantly more
viable once the proposed changes are implemented and ex-
perimentation can be conducted to determine an effective
cache contention measurement.

We can leverage an alternate contention aware scheduling
technique by taking synchronization into account. Channels
in Go work similarly to locks in other languages, in that
they facilitate communication between concurrently execut-
ing code while also providing a means of synchronization.
Reading from or writing to a channel is usually a blocking
operation, since channels in Go are not buffered by default.
Goroutines that communicate with each other on the same
channel may not be able to run in parallel without excessive
blocking due to, hence we can run such groups of gorou-
tines serially on the same processor to reduce the overhead
of blocking. This may also improve cache locality as related
goroutines may be more likely to access the same memory lo-
cations. Therefore, we believe that the techniques proposed
by Xian et al[7] are applicable to the Go runtime.

Goroutines have to call into the runtime to interact with
channels, in part because depending on the state of the chan-
nel these interactions could have scheduling implications.
Therefore, it would be relatively straightforward to record
these requests from goroutines and maintain a mapping in
the runtime between goroutines and the channels they have
used for communication. Goroutines which communicate on

6

Figure 7: Schematic of our proposed structure for
P’s

the same channels should then be grouped together and run
on the same processor. If necessary, the groups could evolve
over time based on changes to their communication patterns.
Once groups are established, contention aware scheduling
could be integrated with the work-stealing algorithm. When
a P picks a processor to steal G’s from, it would need to en-
sure that it is stealing whole groups of related G’s, much like
the batches of related processes as discussed in section 6.3.

The modifications to the runtime that have been suggested
above are extremely similar to the implementation of the
Occam π[3] scheduler as discussed in section 6.3. We deal
with essentially the same concerns, namely, trying to group
related goroutines into clusters, mapping clusters to phys-
ical processors and scheduling each cluster serially on its
assigned processor.

A big difference between the Occam π runtime and a solu-
tion for the Go scheduler is the mapping of P’s to physical
processors. In Occam π the mapping of physical processors
to logical processors is known, and definite. However, as was
discussed in section 5, that is not the case in Go. Therefore,
maintaining high G to P affinity is not completely sufficient
as we have no way to ensure that the G’s are actually running
on the processors that we intended. Our plan to mitigate
this is to ensure a high M to P affinity by attaching a pool of
M’s to each P. Furthermore, we need to pin the kernel level
threads that these M’s represent to the respective physical
processors that are represented by the P’s. For each proces-
sor up to GOMAXPROCS we can create an M pool where
each M in the pool is bound to the same processor. Schedul-
ing a group of G’s across this pool of M’s will ensure that
the G’s are running on the same physical processor. A key
difference between this implementation and Vyukov’s pro-
posal[13] is that M’s can no longer be attached to different
P’s.

Due to the introduction of M pools, each M must now ensure
that there is at least one spinning M in its pool, before it
can block. If this condition is not met, it must spawn a new
M and add it to the pool. If an M is spinning and it observes
that all batches of G’s attached to its P are blocked, then it
must notify its P to initiate the work stealing algorithm.

As discussed earlier, our proposed changes are based on the
implementation of the Occam π[3] runtime, and the similar-
ity can be seen in figure 7. An important difference is the
addition of the pool of M’s assigned to a P. Since we plan to
leverage the wait free algorithms proposed by Ritson et al[3].
for drawing related G’s into batches and for work stealing,
we have modified the structure of a P to conform to that of
the logical processor in section 6.3.

There are several obvious gains to this approach. The main
benefit is that we now have good affinity between G’s and
P’s, and between M’s and P’s. The pinning of the M’s to
the physical processors ensures that we get good cache per-
formance, since we now have a good affinity between G’s
and physical processors. The downside of this approach is
that we are now much more susceptible to the operating sys-
tem scheduling decisions because the Go runtime is proba-
bly not the only process running, and M’s are no longer
portable across processors. Some processors may be heavily
loaded with computationally intensive tasks (external to the
Go program), which will cause the M’s pinned to those pro-
cessors to run much slower. However, if some processors are
heavily loaded, the lightly loaded processors will steal groups
of G’s and should mitigate the adverse effects of unfavorable
scheduling decisions made by the operating system.

One scenario in which the work stealing algorithm may not
be able to correct processor imbalance is when GOMAX-
PROCS is less than the number of physical processors, and
we are unlucky enough that the M’s the runtime has pro-
visioned are pinned to the more heavily loaded processors.
Another edge case in which our scheduling algorithm will
perform poorly is when we are given many G’s that are
locked to certain M’s by the user. This will cause both the
clustering and the work stealing algorithms to break down.
One way of mitigating this may be to switch to the old sched-
uler when the number of locked goroutines exceeds a given
threshold which can be determined experimentally.

In summary, our major addition to enhance the scheduler
is the inclusion of contention aware scheduling. This is ac-
complished by leveraging the batching algorithm from the
Occam π implementation[3], and the pinning of M’s to phys-
ical processors. We achieve the grouping of G’s into con-
tention aware batches by tracking communications through
channels, and then schedule G’s that communicate with
each other serially on the same processor. Threads are
pinned to processors, and the M’s representing these threads
are grouped into processor-specific M pools. This solidifies
the association between P’s and physical processors. By
scheduling G’s accross the M pools, we increase the affin-
ity of G’s to physical processors. Our model for many of
these improvements is Occam π, as the implementations are
extremely similar.

9. CONCLUSION
In this paper we explored the Go runtime, specifically focus-
ing on the scheduling module. We presented a brief history
and overview of Go’s scheduler, and highlighted some poten-
tial areas for improvement. Some of these areas have been
addressed by Dmitry Vyukov, who is in the process of up-
dating the runtime. Based on these proposed changes, as
well as a brief examination of several systems that relate to

7

the Go scheduler, we have identified parts of his proposal
which we believe can be further improved. These improve-
ments require relatively minor changes to the runtime, and
we expect that they will result in significant performance
gains. In the last section we outlined our suggestions for
extending the Go scheduler, and analyzed some of the im-
plications this would have on the current system including
its pending improvements.

Go’s model of computation is very powerful, and much of
this power comes from the implementation of the runtime,
including the scheduling module. Improvements in this area
can further the development of Go, thereby increasing its
staying power. It takes time for a language to evolve, and
even the languages that have been popular for decades are
still improving. We hope that the ideas expressed in this
paper will be a small step in helping Go become a popular,
Go-to language.

10. REFERENCES
[1] Eric Jul Andrew P. Black, Norman C. Hutchinson and

Henry M. Levy. The development of the emerald
programming language. In SIGPLAN conference on
History of programming languages, pages 11–1–11–51.
ACM, June 2007.

[2] Luca Cardelli and Peter Wegner. On understanding
types, data abstraction, and polymorphism.
Computing Surveys, 17(4):471–522, December 1985.

[3] Adam T. Sampson Carl G. Ritson and Frederick
R. M. Barnes. Multicore scheduling for lightweight
communicating processes. Lecture Notes in Computer
Science, 5521:163–183, 2009.

[4] Russ Cox. Bell labs and csp threads.
http://swtch.com/ rsc/thread/.

[5] Russ Cox. Go data structures: Interfaces.
http://research.swtch.com/interfaces.

[6] Dmitry Vyukov et al. Scalable go scheduler design doc
discussion forum.
https://groups.google.com/forum/#!msg/golang-
dev/ H9nXe7jG2U/QEjSCEVB3SMJ.

[7] Witawas Srisa-an Feng Xian and Hong Jiang.
Contention-aware scheduler: unlocking execution
parallelism in multithreaded java programs. In
SIGPLAN conference on Object-oriented programming
systems languages and applications, pages 163–180.
ACM, 2008.

[8] Google. Go documentation. http://www.golang.org.

[9] Google. Go source code.
http://code.google.com/p/downloads/list.

[10] C.A.R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666–677, August
1978.

[11] John Ousterhout. Scheduling techniques for
concurrent systems. In 3rd International Conference
on Distributed Computing Systems, pages 22–30.
IEEE, 1982.

[12] Sergey Zhuravlev Sergey Blagodurov and Alexandra
Fedorova. Contention-aware scheduling on multicore
systems. ACM Transactions on Computer Systems,
28(4), December 2010.

[13] Dmitry Vyukov. Scalable go scheduler design doc.
https://docs.google.com/document/d/1TTj4T2JO
42uD5ID9e89oa0sLKhJYD0Y kqxDv3I3XMw/edit.

8

