
 

 

Py++ Project Report
 

 
COMS-E6998-3 Advanced Programming Languages and Compilers

Fall 2012
 

Team Members:-
Abhas Bodas (ab3599@columbia.edu)
Jared Pochtar (jrp2181@columbia.edu)

 
Submitted By:-

Abhas Bodas (ab3599@columbia.edu)
 

Project Guide:-
Prof. Alfred Aho (aho@cs.columbia.edu)

 
 
 
 
 
 
 

 

Page 1

mailto:ab3599@columbia.edu
mailto:ab3599@columbia.edu
mailto:ab3599@columbia.edu
mailto:ab3599@columbia.edu
mailto:ab3599@columbia.edu
mailto:jrp2181@columbia.edu
mailto:jrp2181@columbia.edu
mailto:jrp2181@columbia.edu
mailto:jrp2181@columbia.edu
mailto:jrp2181@columbia.edu
mailto:ab3599@columbia.edu
mailto:ab3599@columbia.edu
mailto:ab3599@columbia.edu
mailto:ab3599@columbia.edu
mailto:ab3599@columbia.edu
mailto:aho@cs.columbia.edu
mailto:aho@cs.columbia.edu
mailto:aho@cs.columbia.edu
mailto:aho@cs.columbia.edu
mailto:aho@cs.columbia.edu
mailto:aho@cs.columbia.edu
mailto:aho@cs.columbia.edu


Contents
 
 

1. Overview …...................…...................…...................…...................…....................... 3
 

2. Background Work …...................…...................…...................…..............…............... 4
 

3. Architecture …...................…...................…...................…...................…..............….. 5
 

4. Implementation …...................…...................…...................…...................…................ 6
 

5. Areas of focus / Optimizations …...................…...................…...................…............... 9
 

6. Results / Conclusion …...................…...................…...................…...................…....... 10
 

7. Appendix …...................…...................…...................…...................….................…..... 11
 

Page 2



1. Overview
 
Our project, Py++ paves the way for a compiled Python with speed as the primary focus. Py++ 
aims to generate fast C/C++ from Python code.  We have used the CPython C-API for most of 
the built in types, objects, and functions.  CPython has extensive standard libraries and builtin 
object support.  These objects are quite efficient -- a set, dictionary, or list implementation 
written in pure C shouldn’t care whether it’s called in an interpreted or compiled environment, 
and thus are both optimized extensively for their usage in Python and would not benefit from 
compilation.  By using libpython, and compiling unoptimizable code as CPython would interpret 
it, Py++ can optimize common case scenarios while maintaining semantic equivalency for all 
Python programs.
 
Py++ focuses on optimizing common-case Python code based on whole code analysis.  Many 
aspects of Python have overhead because many edge cases, often which would be impossible 
in statically typed languages, need to be tested and handled.  By performing whole code 
analysis, we can determine facts about given source code and make optimizations that remove 
the corresponding overhead.
 
Py++ is written in Python.  Python has a built in `ast` module, which parses Python code with 
the native parser and produces a walkable AST.  We chose Python for a few reasons, namely:
 

○ We could run our compiler through our compiler, and use it as a large-size test case
○ Python is a good language to write in, for all the reasons we want to write a compiler for 

it
○ A complex compiler can push the limits of the implementing language; in writing a 

compiler in python, we expect to learn more about the edge cases of the language and 
thus know how to handle them correctly in our own compiler
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2. Background work
 
For design and implementation of Py++, we studied the following works:
 
Cython enables writing C extensions for Python. The idea of our project is similar to Cython 
and we considered extending Cython. However, Cython appears to rely on explicit static typing 
for significant performance boosts.  This makes it significantly different from our project, which 
aims to compile unmodified Python code for significant performance increases, and do so using 
various analyses to determine the viability of optimizations, rather than additional annotations to 
the source code.
 
Shed-skin can translate pure but implicitly, statically typed Python to C++. It uses a restricted 
approach, and the Python standard library cannot be used freely. About 25 common modules 
are supported however. We are not interested in this approach as it compiles only a subset of 
the language, instead of full-featured Python.
 
PyPy is the closest to our project; it’s written in Python, works on unmodified Python code, 
does some optimization, and compiles it.  However, PyPy, unlike our project, compiles code 
using a JIT mechanism, rather than building an executable.  By instead compiling into a native 
executable, we are making one key assumption that PyPy does not: that we are not going to 
load any new code at runtime.  Because of this, we can do whole code analyses that PyPy 
cannot.
 
Jython is the implementation of Python written in Java. It is not focussed at speedup, and 
execution is commonly slower that CPython.
 
We also considered implementation strategies related to each of these, which are discussed in 
the following sections.
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3. Architecture
 
Py++ follows a traditional compiler architecture. It links to P3Lib, which wraps components of 
the CPython, as well as custom mechanisms, such as the function call mechanism.
We heavily rely on CPython till the production of the abstract syntax tree. The architecture is 
fairly straightforward, and is shown in the figure below:
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4. Implementation
 
Keeping performance as the prime focus, we considered the several implementation strategies 
for the project. This section discusses the pros, cons and trade-offs that we calculated for each 
of the strategies we considered. Following are the options we considered:
 
● Extend shed-skin

A drawback of going with this option is not being able to use the Python standard library 
freely, about 25 common modules are supported however. It compiles only a subset of Python.
 
● Extend PyPy

Unlike our project, PyPy compiles code using a Just-In-Time mechanism. For this 
project, we were not planning to be able to load any new code at runtime, so this strategy was 
not the optimal choice. Also, we planned to perform whole code analyses that PyPy cannot.

 
● Extend Cython

Our project aimed to compile unmodified Python code for significant performance 
increases. We aimed to do so using various analyses to determine the viability of optimization, 
without the requirement for any additional annotations to the source code.
 
● Write our own compiler from the ground up

This was one of the most demanding and time consuming options, and considering the 
time frame we had for the project, this option was not viable. Also, since we planned to perform 
optimizations at the IR level, this option would mean a lot of unrequired effort, which could be 
easily eliminated by leveraging CPython for a significant chunk of the process.
 
● Use python’s ast or dis modules to leverage CPython’s parser, or parser+compiler, and write 

it in Python
 
● Hack parts from CPython to generate C/C++, and write it in C
 
For the last two stategies, we’d have to generate C/C++ from scratch. Python has extensive 
standard libraries, extensive built in object support. These objects are efficient -- a set, 
dictionary, or list implementation written in pure C shouldn’t care whether it’s called in an 
interpreted or compiled environment as these are aspects of the interpreter which can be made 
efficient when other, more fundamental things are not. Likewise, we recommend linking against 
CPython’s libpython, and using these objects/data structures, so there is no need to write our 
own. This also means allowing compilation of unoptimizable code as if we were just interpreting 
it, and optimizing common case scenarios while maintaining semantic equivalency.
 
 
 
Furthermore, we considered a number of levels for our compiler to work with CPython:
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● Not at all
We would have the benefit of writing in any language
 

● Use CPython till generation of the Abstract Syntax Tree
We could write in C/C++ or Python. This would be a relatively high-level viewpoint, 
and we could leverage the CPython compiler to do some of the work that does not 
necessarily require any deviation from CPython.

 
● Bytecode

We would have to write in C/C++. Hypothetically, we could parse the .pyc files and write 
in any language, and Python’s dis module makes this even more of a possibility. If going with 
this strategy, most of the work is already done, and we could probably hack something out of 
CPython’s eval, which would generate what we want from the bytecode, instead of just running 
it. An advantage would be that ceval.c is really well documented. However, this loses some of 
the intent of code, and steps may be necessary to undo some of the optimizations, namely, the 
explicit stack.
 
During the design and implementation process, there were some significant issues about which 
we were considered:
 
● Garbage collection

We decided to use CPython’s memory management throughout the process, since we 
did not need anything eccentric in this department.

 
● Multithreading

The main concern was that implementation of multithreading requires a lot of time, as 
well as careful attention. Although we have not taken multithreading into account for this 
project, it’s not incompatible with what we have done. Since most python code doesn’t 
explicitly use multithreading, this decision fits with our project philosophy of common-
case optimization.
Furthermore, Python uses the Global Interpreter Lock, so multithreading usually isn’t 
a significant win. Our work, however, paves the way for a GIL-less compiled python, 
which would be a huge multithreading win. Implementation of multi-threading would 
also require more research into GIL, and this is also an area where the time constraint 
kicks in. Also, as it is, we should avoid the GIL as much as possible, assume anything 
generated from python is happening single-threaded.
 

● Definitions at code level
To exemplify the problem we faced, consider a function named foo. foo cannot be called 

before foo() is defined. What complicates things further, is that foo can of course be called in 
code above the definition of foo(), as long as that code isn’t called before the definition of foo(). 
The same applies to local variables, and is also true when there is a global variable of the same 
name one would think it refers to. A plausible solution we figured out was the accompaniment 
of definitions with booleans where possible. These booleans should be false initially, and 
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set to true when the entity is defined. When the entity is used, the boolean is checked. If this 
technique is implemented correctly, C++ compilers on -O3 should be able to eliminate the 
booleans when they are used correctly.
 
● Complex function-call routines

For function pointers, 3 different functions are used (assuming no type specializations):
○ Normal - arguments are passed normally with C++/native ABI
○ PositionalArgs - argument list passed
○ kwArgs - passed with keyword arguments
PositionalArgs should usually be called instead of normal, but we can’t be sure the 
function’s being called with correct number of args, as there could be an error in the 
code or some arguments may be left unspecified (default values). PositionalArgs and 
kwArgs need to check this and use the default values. What happens is that kwArgs and 
PositionalArgs unwrap what’s passed, and however the interface works, they call normal
But PositionalArgs, specifically, can be optimized at the ASM level, as it relates closely 
to the ABI
 

● Exception handling
It is a good approach to use C++ exceptions to avoid manual exception handling + 

overhead, as these can be implemented very efficiently. However, if there’s a performance hit 
due to them I think we should ignore it as if we wrote exception handling routines in assembly, 
they would be super fast.
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5. Areas of Focus / Optimizations
 
One of the primary areas of focus of this project has been the elimination of lookups. This 
results in the performance/speed boost that Py++ can offer. Optimizations Py++ performs for 
this purpose are:
● Keep a dictionary of names (of globals, ivars, etc)

This dictionary can be used directly, and if dynamic lookups (or sometimes setters) are 
needed, we can send them through this table, so they can access the directly-defined 
things

 
● Type inference for objects

Many traditional efficient algorithms for understanding type can’t be used in the context 
of this project, because python lets the user shoot themselves in the foot in all kinds of 
creative ways. A very basic example of this would be a typo. Also, even if it is deduced 
that code definitely produces a TypeError, it would normally be raised at runtime, and 
there could be side effects that happen before the error is raised. It is probable that the 
exception would be caught (intentionally or unintentionally), and fixing it one way or 
another at compile time can potentially change program behavior. Therefore, given type 
A with no non-erroneous addition operator and an object B which at some point is used 
with the addition operator, we can make no assumptions that B is not of type A. Given 
this, the best we can do is to generate additional copies of functions which are specific to 
given types, and optimize appropriately.
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6. Results / Conclusion:
 
Since speedup was the prime objective of the project, we quantified the results of the project in 
terms of it’s performance/speedup as compared to other related work. We used fibonacci series 
as a benchmark the performance results of our project. The specifications of the computer used 
are as follows:
○ Intel Core i5 dual core 2.5 GHz
○ 8GB RAM

For fib(0) + ... + fib(35), the results are as follows:
○ Py++ took 5.8 seconds without optimizations (-O) enabled.
○ Py++ took  4.2 seconds with optimizations (-O) enabled.
○ When we tested on several systems, we realized that CPython performance is highly 

machine dependent, so unoptimized Py++ speedup vs CPython ranged from about -1.5x to 
+1.5x for testing on different computers.

 
We were consistently able to achieve and optimized speedup of about 28% (1.5x), which is 
in the same ballpark as Cython. Jython is also consistently slower than Py++. Our work also 
paves way for a big future improvement. We have provided a flag “-ints” when executing Py++. 
When this flag is enabled, the compiler assumes everything to be an integer, and the generated 
C code from the IR creates all variables as integers instead of PyObjects. The results were 
significantly faster for the fibonacci test, with an execution time of a mere 0.04 seconds, which is 
a 95x+ speedup. This goes on to show that if we are able to determine data types beforehand, 
the speedup can be phenomenal. Because of the semester’s time constraints, this part of the 
project is still on the to-do list for the future.
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7. Appendix: 
 
The source code can be found at the following Github repository: https://github.com/jaredp/
PythonCompiler
 
As a team, both members worked together on the project for several tasks including 
optimizations, but the tasks were mainly broke down as follows:

○ Generation of the IR and Optimized IR: Jared Pochtar
○ Generation of pure C code from the IR: Abhas Bodas
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