COMS E6998-3 Term Project Report
Advanced Topics in Programming Languages and Compilers, Fall 2012
MIPLex: Adapting Dynamic Code Modification to the MIPL Language

YoungHoon Jung
Dept. of Computer Science
Columbia University
New York, NY, 10027
Email: jung @cs.columbia.edu

I. INTRODUCTION

In this project, we extend MIPL, a Prolog-compatible
programming language with distributed computational fea-
tures, to evaluate how adapting a dynamic code modification
technique will affect the extended programming language,
MIPLex, focusing on the execution performance and the
program development convenience of the language. The
experiments will shed a light on the possible benefits of
dynamic code modification in languages targeted at Java Vir-
tual Machines, from the performance and the development
convenience perspectives.

A. Contributions

In order to address the possibility of utilizing dynamic
code modification in programming languages that have a
Java Virtual Machine (JVM)-based backend, we developed
MIPLex and experimented the extended MIPLex compiler.
The main contribution of this project is to provide the proof
of concept that testifies to the benefits of using the dynamic
code modification technique for compiler implementations.
In doing so, we first propose frontend expansions of the
language to offer to its users a way to benefit from the
dynamic nature of these expansions. Second, we implement
a representative subset of the proposed frontend expansions
using the dynamic code modification technique. Finally, it is
also intended in this project to understand how this concept
plays a role from the performance perspective so that we
possibly get the idea to which direction this concepts can
be utilized further.

B. Scope

The scope of this project includes the development and
the extension of the language syntax (frontend) as well as
the target language generation part (backend). On top of that,
experiments will be conducted to figure out whether these
extensions help to gain the performance improvement or the
ease of development.

We pursue, by comparing the results between executions
using the implemented extensions and the ones without

them, the insights how the dynamic code modification fea-
ture can be utilized for a various purposes in the language
designs or compiler implementations and the future direction
of this project.

C. The MIPL language

MIPL (Mining-Integrated Programming Language) is
originally designed for large matrix computations through
automated matrices and their computations distribution over
a cluster through the MapReduce framework.

Its syntax is compatible to Prolog so that any Prolog
programmers can also easily write a MIPL program, with
a bit of learning for the MIPL job that supports distributed
matrix operations. A job is a function-like sub routine that
can return multiple number of return values and facts are
converted to matrices when they are given to a job as
arguments.

For the types, it adopts a dynamic and weak typing system
so that the MIPL programmer can write a MIPL program
easily and quickly.

D. Code Repository

As the git repository used when the MIPL language and its
compiler has been developed [2], the MIPLex compiler and
materials for its experiments is developed on and uploaded
to a public git repository [1], hosted by github.com. The
repository can be accessed by a git command, “git clone
https://github.com/jcybha/MIPLex.git”.

II. PROJECT PROCESS
A. Milestones

Performance Improvement. As dynamic code modifi-
cation may bring performance improvements to the certain
programming languages, a grammatical extension will be
devised to adopt dynamic code modification for initializa-
tion, status changes, and matrix loading. Experiments will
verify that these adaptations for each case actually bring
performance increases.

Development Support. For the better development ex-
periences to the users, dynamic code debugging suggestion
will be proposed, developed, and verified.



B. Action Plan

The process of this project has followed the action plan
in Table 1.

Date ‘ Plan
~ Oct 23 | Project Initialization
Repository Creation
~ Oct 24 | Proposal
~ Oct 31 | Performance Improvement
- Front/Backend Design
- Implementation & Experiments
~ Nov 09 | Development Support
- Feature Design
- Implementation & Experiments
~ Nov 13 | Demo Scenario & Presentation
~ Nov 20 | Experiments & Analysis
~ Dec 6 | Final Report

Table 1. Time-lined Action Plan

III. MOTIVATIONS

Since many algorithms need operations like making vari-
ables proper initial values and doing one-time computations,
a feature supported by the language will help its program-
mers conveniently write programs with this operations. In
particular, it is very common for programmers to use a
boolean variable and an if-clause to handle initializations
or one-time computations in a loop or a function called
repeatedly. For example, a Java programmer may use the
boolean-and-if solution as shown in Listing 1.

Listing 1: The boolean-and-if Solution

boolean initialized = false;

if (linitialized) {

initialized = true;

This solution can be applied to MIPL codes in the
same principle. However, this solution causes performance
degradation when this code is in a loop as the example in
Listing 2. Even though the evaluation of the if-clause is
required only once, the loop makes the evaluation happen at
every iteration.

Listing 2: An Example of the boolean-and-if Solution in a

Loop
job some_algorithm (A, B, C, D, E) {

I = 0.
while (I < 1000) {

A =B + C.
if (I == 0)

A += E.

I += 1.

One can avoid the performance degradation of the
boolean-and-if solution by splitting the first iteration from
the loop as show in Listing 3.

Listing 3: An Example of Manual Optimization for a Loop

job some_algorithm (A, B, C, D, E) {
I = 0.

while (I < 999) {

A =B + C.

A += E.
I += 1.

Again, despite the fact that this manual splitting over-
comes the performance degradation it significantly decreases
developability, readability, or maintainability of the code
since basically it duplicates the code in the loop.

IV. THE NEEDS FOR LANGUAGE EXTENSIONS

As described in Section III, there is a need for a feature
that solves the performance degradation problem without
decreasing engineering efficiency, i.e. readability, developa-
bility, and maintainability. The code in Listing 4 shows how
the keyword once solve the problem without aforementioned
disadvantages.

Listing 4: An Example of the Keyword once

job some_algorithm (A, B, C, D, E) {
I = 0.
while (I < 1000) {

A =B + C.

once {
A x= D.
}
A += E.
I += 1.



V. SYNTAX EXTENSION FOR DYNAMIC CODE
MODIFICATION

A. once Keyword for One-Time Executions

Here, we introduce the keyword once for the one-time
execution of the statement! that follows the once keyword.
There are two distinct flavor of the once keyword; Anony-
mous Once and Named Once.

1) Anonymous Once: Anonymous Once, or Spot-Scope
Once, is a feature that allows programmers to make a
location-bound code so that the specific code will be ex-
ecuted only once throughout the process lifetime. This type
of once keyword is distinguished by its location in the
source code only, in other words each of once keywords is
always considered distinctly. Thus, the one-time execution
of a statement with once keyword is never affected by other
once keywords.

Listing 5 shows two jobs, each of which contains a once
keyword. In this example, there are two Anonymous Onces.
During the first call of the job ‘do_some_job’ the statement
with the once keyword will be executed. From the second
call, the statement will not be executed as the once keyword
is designed. Then, if the job ‘do_another_job’ is called, the
sentence associated with the once keyword in the job is
executed once only at the first iteration of the loop during
the first call. In other words, for the rest iterations of the
loop or during the subsequent calls, the sentence is ignored.

Listing 5: An Example Use of Anonymous Once

job do_some_job(A, B, C) {
once {
do some
}

do rest jobs.

initialization .

}

job do_another_job (A, B, C) {
while (A < 100) once do some.
do rest jobs.

2) Named Once: Named Once, or Global-Scope Once, is
a feature that allows programmers to make a name-bound
code so that only one of the codes associated with the given
name will be executed once throughout the process lifetime.

The example in Listing 6 presents three Named Onces,
two of which are associated with the same name, “Init A”
while the other Named Once has a distinct name, “Init B”.
If the ‘do_some_job’ job is called first, both initializations

IThe term statement in MIPLex is used identically to the same term
statement in the C language

under the two once keywords will be executed. After then,
if the job ’do_another_job’ is called, the initialization under
the once keyword in the job will not be executed because
the name “Init A” is considered already executed.

Listing 6: An Example Use of Named Once

job do_some_job(A, B, C) {
once (”Init A7) {
do some initialization.
}

once (”Init B”) {
do some initialization.

}

job do_another_job (A, B, C) {
once (”Init A”) {
do some initialization.
}

}

B. Generalizations of Once Keyword

Since the once keyword is a specialized feature that
executes a specific code at a specific condition, two possible
generalization can be developed from the once keyword; the
state and times keywords.

1) state Keyword: The state keyword allows a program-
mer to conveniently build a finite state machine (FSM).
Like the once keyword is a solution for a boolean-and-if
implementation, the state keyword works as a int-and-switch
implementation, which uses an integer variable to store the
state and checks the state and execute statement according to
the state value. Similarly, the state keyword; i) executes the
statement associated to the particular state is executed, and
ii) updates the state value as designated after the statement.

Listing 7: An Example Use of state Keyword

job do_some_job(A, B, C) {
status (Named_state) ["init_state™] {
some work.
} [”statel ]
[”statel ”] {
some work.
} [7state2”]

}

job do_another_job(A, B, C) {
status (Named_state) [”state2”] {
some work.
next_state = "state2”.
if (cond_for_state3)
next_state = “state3 ”.
} [next_state]



["state3”] {
some work.
} [”finish”]

2) times Keyword: The times keyword is another gen-
eralization of the once keyword. Instead of executing the
statement once, the times keyword takes a positive integer
n to executed the statement for the first n times. In the
example shown in Listing 8, the statement associated to the
times keyword will be executed for the first 10 times.

Listing 9: Naive Approach for once

class SomeClass {
boolean initialized =
void someMethod (.) {
if (linitialized) {

false ;

do some initialization;
initialized = true;
rest of operations;

}
}

Listing 8: An Example Use of fimes Keyword
B. Impl-2: Two Classes Approach

job do_some_job(A, B, C) {
times (10) {
statement .
}

C. Synchronization

The semantics of each keyword assume synchronization.
For instance, the definition of the once keyword allows only
first reach to the once will be actually executed. There are
two synchronization issues with regard to its semantic; 1)
if two or more thread are reaching to the same once, only
one of them will be execute the associated statement, and
ii) while once thread is executing the once, the other threads
should be blocked until the thread finishes the execution of
the once.

VI. IMPLEMENTATION ISSUES

In this Section, we address the challenges and four dif-
ferent approaches in implementing the compiler’s backend
for the proposed once keyword using the dynamic code
modification technique. The key issue that occurs in the
implementation of the once keyword is that a JVM does
not support the code modification in the memory but we
try to achieve the same effects using roundabout ways, i.e.
creating a new class and loading the class.

Since the MIPLex language’s backend generates Java
Bytecode that runs on JVMs, the implementations discussed
in this Section is about Java Bytecode. The examples in this
Section, however, will be presented in Java source codes to
help readers understand.

A. Impl-1: Naive Approach

The easiest way to implement the once keyword is using
a boolean and an if clause as Java programmers do III,
as shown in Listing 9. This approach ensures the simplest
compiler backend implementation, however as mentioned
it degrade the performance since the conditional branch is
evaluated in every iteration of a loop or in a job call.

To reduce the performance degradation from the approach
in Section VI-A, this approach generates two class files, one
with the condition checking and the statement to execute
once and another one without them as shown in Listing 10.
This approach follows these steps: i) the implementation
class with the conditional statement is loaded as other usual
class, ii) after the conditional statement is executed, it loads
the target class with the second implemented class without
the conditional statement, and replace the original class with
newly loaded class, and iii) when the job is called again, now
the method in the newly implemented class will be called
instead of the method in the first class.

Listing 10: Two-class Approach for once

class SomeClass {
void someMethod (.) {
do some initialization ;
rest of operations;
reload this class;

}

class SomeClassWOInit {
void someMethod (.) {
rest of operations;
}

This approach is, however, impractical for the implemen-
tation because it statically generate the class files during the
compile time. Since a class can have more than one once
keywords in a class file, some of which may be considered
executed previously if they are Named Once and a once
with the same name could have been executed in another
method. For handling each combination, this approach will
at compile time create 2" class files where k is the number
of distinct once keywords in the class file.

C. Impl-3: Dynamic Code Modification Approach

This approach solves the aforementioned problems by
adopting the dynamic code modification technique, which



generates modified class files at runtime. The compiler
generates class files from jobs with the once keywords and
thus need to be modified at runtime, with i) the initialization
code, ii) the modification code, and iii) the class reloading
code, as shown in Listing 11. When this code is executed,
the initialization is executed once and it creates a new class
based on this class, but removing the instructions from the
initialization code to the class reloading code, as illustrated
in Listing 12. Finally, the class reloading code is executed,
replacing the class instance with an instance of the new
class so that the initialization, the modification, and the class
reloading code will not be executed again, from the next
execution of the job.

Listing 11: Dynamic Code Modification - Old Class

class SomeClass {
void someMethod (.) {
do some initialization ;
modify codes;
reload affected classes;

rest of operations;

Listing 12: Dynamic Code Modification - New Class

class SomeClass {
void someMethod (.) {
rest of operations;
}

This approach, however, still have a drawback; even after
the class reloading, the code currently being executed will
not be changed, which we call a non-immediate effectiveness
problem.

Non-immediate Effectiveness. As the old code currently
being executed in the memory remains the same even after
the compiled code reloads the class and replaces the class
instance, continuation of the execution may result in the un-
intended consequences. Two possible problematic examples
are presented in Listing 13 and 14.

Listing 13: An Example of Non-immediate Effectiveness

job a_job () {

I = 0.
while (I < 100) {
once {
initialization .
}
I =1+ 1.

Listing 14: Another Example of Non-immediate Effective-

ness

job a_job () {
once (.A.) {
initialization .
}

once (.A.) {
initialization .
}

-

D. Impl-4: Dynamic Code Modification Approach with Im-
mediate Effectiveness

To resolve the non-immediate effectiveness problem, this
approach adopts an intermediate step to correctly complete
the first execution of the job. This approach is based on
the previous approach in Section VI-C. In addition, this
approach i) generates an intermediate class in Listing 16,
which is basically the same class with the newly created
class in Listing 17, but with a feature that reveals its own
code address in the memory. After the old class finishes the
class reloading, it jumps to the corresponding offset of the
intermediate class. In this way it can successfully completes
its first execution with an immediate effectiveness of the
class modification.

Listing 15: Immediate Effectiveness - Old Class

class SomeClass {
void someMethod (.) {

do some initialization;
modify codes;
reload affected classes;
get the address by call;
jump to the rest part;
rest of operations;

—
—

Listing 16: Immediate Effectiveness - Intermediate Class

class SomeClass {
void someMethod (.) {
get address;
return ;

rest of operations;

Listing 17: Immediate Effectiveness - New Class

—
—

class SomeClass {
void someMethod (.) {



Performance
Gain

0.1

0 -

1075 1076 1077 1078

Number of Loops

-0.1 -

-0.2 -

-0.3 -

0.4

-0.5 -

-0.6

-0.7

Figure 1. Performance Gain from Impl-1 over Impl-4.

rest of operations;

Address Manipulation. Getting an address of a code is
restricted in a JVM by design. However, there is only one
possible chance that a JVM reveals a code address. JSR is
a Java Bytecode instruction that jumps to the target label
and places the address of the target label. By inserting a
JSR instruction and its target right after the JSR to the
beginning of the intermediated class, the old class can get the
corresponding target code address in the memory. Likewise,
the old class jumps to the target code address with the RET
Java Bytecode instruction, which continues execution from
address taken from a local variable.

VII. PROACTIVE DEBUGGING

Along with the once keyword family, the proactive de-
bugging support is also one possible use case that utilizes
the dynamic code modification technique for the compiler’s
backend. With the proactive debugging feature, the compiled
code can suggest the possible modification of the compiled
code when a runtime error occurs, for the debugging pur-
poses. If the programmer accepts the modification sugges-
tion, the code modifies itself so that from the next execution
the code will follow the fixed routine.

For example, if a MIPLex program tries to multiply two
matrices, both of which has a dimension of (m x n), it first
shows an Non-compatible Matrix Size Error and suggests
the user to change the code to an addition or a subtraction.
If the user accepts the suggestion, the class file is modified
accordingly. Applicable MIPLex runtime errors include:
Non-compatible Matrix Size Error, Non-matched Number
of Return Variables Error, Operand Type Mismatches, and
SO on.

Time (sec) ——DynCode

---Branch

10000

1000 /
100

10 /
1 B

Number
of Loops

”—/M $ SN $ e e
S $ S S s s

Q O N
% S O
N S
0.1 N

Figure 2. Execution Time Comparison between Impl-1 and Impl-4.

VIII. EXPERIMENTS

In this section, we evaluate the performance benefit
from utilizing the dynamic code modification technique
to implement the once keyword to the MIPLex language.
To compare the implementations, we refer in this section
the implementation of the naive approach in Section VI-A
as Impl-1 and the implementation of the dynamic code
modification with immediate effectiveness in Section VI-D
as Impl-4.

A. Performance Gain

Figure 1 shows that the performance gain (X-axis) from
Impl-4 over Impl-1 with regard to the number of iterations in
a loop (Y-axis) that contains the once keyword. The perfor-
mance gain grows from -60% to 10% as the number of loops
increase. Note that the performance gain is below zero for
the execution of the loops less than 10* due to the overheads
from the class modification and the class reloading. The
performance gain increases and converges approximately to
10% as the number of loop increases, compensating the
overheads from the dynamic code modification.

B. Execution Time Comparison

Figure 2 is the plotting of the execution time of Impl-1
and Impl-4 with regard to the number of loops. Both lines
grow proportionally to the number of loops, with Impl-4
slightly less inclined. This means that Impl-4 shows better
performance as the once keyword is more repeated in the
loops, which effectively hides the overheads of the dynamic
code modification.

IX. CONCLUSIONS

In this project, we proposed a language extension, im-
plemented the compiler backend, and experimented the
compiled code, in order to evaluate the feasibility and ben-
efits of utilizing the dynamic code modification technique.



The extended language feature, through the keyword once,
provided a convenient notion for the one-time execution
of a specified code. Its implementation in the compiler
backend actualized a feasible solution of the concept. The
experimental results showed the proposed extension and the
implemented compiler backend can bring an advantage over
the naive implementation in terms of the performance.

REFERENCES

[1] “MIPL (https://github.com/jinhyung/mipl).”
[2] “MIPLex (https://github.com/jcybha/miplex).”



