
Application layer thread migration in Java

 Project report for Advanced Topics in PLT

Nikhil Sarda

ns2847@columbia.edu

1 Introduction

The continued validation of Moore's law has resulted in not just smaller and faster mi-

croprocessors, but also the development of storage devices having large capacities.

The availability of such devices has resulted in a deluge of data being generated and

gathered from various sources. One of the primary challenges of computer science

today is the development of algorithms and systems that can take advantage of the

availability of large and rich datasets.

However, making use of large datasets is easier said than done. Data produced as a

result of scientific investigation typically resides in a single large data warehouse.

Transferring all this information from one place to another is not always possible. For

one, the existing bandwidth constraints on current network infrastructure might render

this approach unfeasible. Besides physical limitations, there is also the issue with the

law. Certain laws such as HIPAA (Health Insurance Portability and Accountability Act)

prevent the sharing certain types of data without the express approval of the source.

These laws essentially prohibit the free sharing of certain kinds of data over public

channels. Another issue is that often times, data is propeitary. Research groups gener-

ally do not share data without some sort of transfer agreement in place that requires the

recipient to adhere to certain constraints with regards to publishing and applying for

grants. Even if all these conditions are met, the data consumer might simply not have

the infrastructure required to store and preserve large datasets.

In the presence of these constraints, it is desirable for a solution that forgoes the

need for data to be present locally in order to operate on it. Instead of moving the data

to the code, it would be a better idea to move the code to the data itself. An immediate

advantage of this scheme is that the controller of the data can put in place various

measures to restrict access of their data which can be completely orthogonal to the pro-

gram logic. These restrictions need only apply at runtime which means that the de-

veloper of the software will not need to concern himself with these matters.

This inverse strategy is not a new idea and has been explored in some depth in the

existing literature. Existing technologies that achieve this include Remote Procedure

Calls (RPCs), CORBA, Mobile Agents and Component Object Models such as EJB.

However, these frameworks are rather heavyweight and difficult to retrofit into a large

codebase. Incorporating these frameworks in existing applications will probably in-

volve a large amount of effort and might introduce bugs and flaws in the existing code.

1

Therefore, we seek to develop an easy to use alternative which is as non-invasive as

possible. Some of the system level solutions that have been actively developed and re-

searched are process migration and thread migration. Some of the well known systems

such as Zap[1] migrate a running process by pausing it, marshalling it and transferring

it to another system over the wire, unmarshalling it and restarting it. In order to accom-

plish the pause/restart, they use a mechanism known as checkpoint-restart. CRAK[2]

is a checkpoint-restart system that has been implemented as a kernel module.

However, process migration is a fairly heavyweight operation. For our application,

it makes more sense to only migrate a part of the process, that is, migrating a thread of

execution. Thread migration has been explored at both the VM level as well as the ap-

plication level. The former involves changes to the underlying VM while the latter in-

volves aspect oriented programming. In the next section we will discuss some of the

approaches to thread migration that have been already explored. The primary reason

that we want to explore application level solutions is that invasive changes to the ker-

nel, VM or any other piece of vendor supported infrastructure is anathema if the pro-

posed solution is intended for real world usage. This is because most system adminis-

trators will be leery of incorporating patches to existing systems in production that will

be unsupported by future releases from the vendor.

In this report, we present two thread migration frameworks; Mobilethreads and Re-

motelocals, that make thread migration a relatively simple feature to integrate into ex-

isting Java programs.

2 Related Work

At the core of any strong migration framework is a mechanism that allows

checkpoint/restart (CR) of a process or a thread. The body of work most related to ours

is in application specific checkpointing. We now discuss application level checkpoint-

ing and userspace CR libraries with a focus on Java. We only consider approaches that

do not involve modifications to the JVM and minimal changes to the standard API.

2.1 Program specialization [7]

This approach involves implementing and embedding certain specific interfaces and

logic as per some heuristics in user level program. While the approach is sound and

complete, this technique requires additional developer effort and assumes that the tar-

get source program is available. This is not always acceptable and is impossible to ac-

complish for non open source programs. While Mobilethreads has been implemented

2

as a library and requires changes to be made to the source, Remotelocals operates only

on the bytecode and does not need access to the program source.

2.2 Incremental checkpointing based on code refactoring [8]

This approach involves incorporating logging code that tracks changes to POJOs

(Plain Old Java Objects) in the course of program execution. The approach involves a

precompilation step where a rule based transformation is applied to the source pro-

gram. When the application is running, deltas to the program state are logged to the

disk and can be referred to when we wish to roll-back. This incremental approach is

somewhat different from the snapshot approach of most CR mechanisms. The reason

why the authors choose to do it this way is because of the requirements of the primary

project; Ptolemy, which is a distributed model execution framework. The implementa-

tion of a Time Warp style distribution execution requires the checkpointing facility.

Since Ptolemy runs on a large distributed system and each of these components have

their own logical state, creating a snapshot of such a setup is not feasible as it involves

large scale synchronization.

Their approach discusses various modifications to operations involving side-effects

such as variable assignment, array assignments and operations involving collections.

For the first two, they introduced a layer of indirection which involves a call to a meth-

od that logs and actually performs the side-effect. For the last, they made changes to

the Java API.

The evaluation is non-existent and it is our opinion that the logging framework is

not very practical at all. Since all assignments need to undergo an extra method call,

source level incremental checkpointing could become very expensive.

2.3 Extending Java [9]

This approach involves adding a source level construct to Java that ensures data in-

tegrity in the face of incremental checkpointing. The basic checkpoint mechanism is

the same as before with added support for exception handling. In the previous work, an

exception caused when rolling back or checkpointing would have caused an inconsist-

ent state. In this work, the added source level construct ensures that exceptions are

handled in a sane manner.

However, as with the previous work there is no detailed evaluation presented for

large programs. Moreover, the addition of unsupported features to the Java compiler is

not a practical approach as these features could be invalidated by changes made to the

3

compiler by the vendor. In contrast, both Mobilethreads and Remotelocals work with

the standard JDK and Java 1.6 compiler.

2.4 Context sensitive Capture and Replay [10]

The idea here is to use record-replay mechanisms for implementing cr efficiently.

Specifically, the work deals with interactions between the program states before and

after the checkpoint. Again, this is a source level approach .

The approach employs the use of static analysis to identify certain points in the pro-

gram where bytecode for checkpointing and bytecode for replaying are inserted. The

bytecode responsible for checkpointing captures heap data, values of static variables

and object graphs. This mechanism is performed without actually modifying the call

stack or the program counter using an approach called backward slicing which essen-

tially removes all code except for the program points. The replaying algorithm restores

the relevant captured values at each program point to force the execution to take the

correct control flow. owever the work here has some serious limitations. One is that

external state is not captured. Thus the states of file descriptors, database connections

and socket connections are not preserved, which is essential for process migration.

Second is that this approach is limited only to single threaded programs and does

not support multithreaded interleaving. Finally, programs that depend on variables

which differ per execution run such as system clock and hash codes cannot be replic-

ated precisely. The record-replay functionality of Remotelocals leverages the Chron-

icler approach which records multithreaded applications but does not guarantee replay

of their interleaving.

2.5 Thread Migration and Checkpointing in Java [11]

This is a RMI based approach for migration and checkpointing. The main contribu-

tion here is a rather mature library called PadMig which can perform thread migration

and checkpointing in Java. Instead of creating new language constructs, it depends

solely on annotations and is thus Java 5 compliant. In order to transmute a non-migrat-

able program to a migratable one, the user merely needs to incorporate PadMig anno-

taitons at certain specific points, similar to InVivo. This makes the library very easy to

use.

For migration to work, the programmer needs to insert migration points into the

program. It is at those points that the thread is migrated. Similarly, the programmer

may insert checkpoints at those locations, the only difference being that the program

execution continues normally. If a method wishes to migrate or call another migratory

4

function, it must be annotated with a PadMig construct. Methods at the bottom of the

call stack need to be migrated with a different keyword. As it can be ascertained, these

annotations may be misused thus necessitating the need for a verification check at

compile time.

When running an application that makes use of PadMig, the environment must also

be running the server which intercepts migration requests. PadMig is used in the Pub-

WEB BSP based web computing infrastructure.

PadMig is essentially a source level checkpoint restart system that has been cleverly

packaged up using Java annotations. It has a non trivial overhead on the code size and

results in significant code bloat when fully compiled. While we have not conducted a

thorough analysis of the code bloat resulting from Remotelocals, a preliminary invest-

igation reveals a 20-30% overhead on the code size against nearly 40% with a fully an-

notated PadMig using application.

3 Mobilethreads

Mobilethreads allows the ability to statefully transfer objects and the classes on

which they are based, from one application or machine to another, as the application is

running.

The destination application or server does not need to contain the classes on which

objects it receives are based. In a similar manner, mobile objects can fetch objects

from the remote application and return them back to the local system. Only a small

server runs on the remote system that receives the objects sent by the Mobilethreads

library. These objects are consumed on the remote side and any results are returned to

the client once the computations have been completed.

Mobilethreads has been designed to be simple and easy to use, without the need to

learn complex APIs, define remote interfaces or to implement the Serializable interface

presented by the Java JDK. It is intended to be seamlessly compatible with existing

Java code without requiring any significant architectural or code modifications. Addi-

tionally, Mobilethreads allows the invocation of arbitrary methods as well as third

party libraries without any additional effort.

3.1 Implementation

The implementation of Mobilethreads is relatively straightforward. The user invokes a

call to the primary API specifying the IP address of the target machine as well as the

resource/object she wishes to transfer to the remote machine. This object is then serial-

5

ized using a high performance custom serializer, which implements a bytecode level

serializer for the Java class. This allows the class being transferred to not have to im-

plement java.io.Serializable.

Once the primary class has been serialized, we also serialize its dependencies and

references and send them to the remote machine. This data is cached for the session

duration for performance reasons. Mobilethreads implements the serialization, byte-

code transfer and caching in a transparent manner using a protocol implemented spe-

cifically for this purpose. This protocol is decoupled from the underlying transport

protocols and is independent of it. The protocol is stateless and connectionless. The

protocol does not require any synchronization or the execution of a start up sequence

in order to operate correctly. Moreover it is also asynchronous and nonblocking. Ma-

chines at either end can both send any type of message to one another in full-duplex.

In order to handle multithreaded applications, Mobilethreads uses UUIDs to multiplex

and interleave requests and responses to and from multiple threads on both machines

over the same connection. The protocol also supports fire and forget semantics.

Apart from straightforward RPC-style behavior, the protocol supports stateful inter-

actions between applications, despite being stateless itself. When client applications

make use of the same session ids, those clients are also able to access the same classes

and data stored in static fields in those classes on the remote machines to which they

send objects. Therefore, any objects they send will be loaded by the same session class

loader on the remote machine. Client applications using different session ids, will have

their mobile objects loaded by separate session class loaders on remote machines, and

as such will be isolated from each other. Even if the applications happen to use the

same classes, the sessions they access on remote machines will each load their own

copy of those classes, and as such data stored in static fields in those classes will not

be shared between sessions. This isolation is reminiscent of class loader isolation of

deployed applications from each other in most Java web servers and application serv-

ers. This constraint however applies to classes loaded from client machines only.

Those belonging to the host application and those on its classpath are shared with all

sessions.

The Mobilethreads protocol was designed with high performance and scalability in

mind. It has currently been tested with the geWorkbench tool and performs well in its

environment.

6

3.2 TCP Implementation

It may be observed that establishing a single multiplexed TCP connection between

a pair of machines is likely to be more efficient than establishing many connections,

however there are still some valid reasons to establish multiple TCP connections. One

reason could be a thread-to-thread connection which maps objects from one thread to

another on a remote machine in a one-to-one manner.

The implementation of the protocol atop TCP is therefore as follows. The library es-

tablishes a single TCP connection to a destination, and multiplexes requests from all

threads via this connection by default. Applications are allowed to send requests via

additional auxiliary connections. The library then routes responses via the same con-

nection from which it receives a request, effectively allowing applications to open

multiple streams to a destination when, and only when necessary.

3.3 Comparison with conventional technologies

Conventional RPC is generally implemented using remote interfaces and proxy ob-

jects; also known as stubs. The server application typically defines an interface con-

taining the signature of a method (or “procedure”) that it wishes to make available

over the network. Internally, the server contains a class which implements the methods

of this interface. The server requests the RPC framework server-side to “bind” its im-

plementation of the interface to a particular port on the server, or to a particular name

in a directory-like structure.

The client application also contains a copy of the interface. The client application

requests the RPC framework client-side to connect to, or “look up” an implementation

of the interface on the specified remote server. The RPC framework creates a proxy

object (or “stub”) implementation of the interface client-side, which when invoked re-

lays method calls across the network to the real implementation on the server.

Mobilethreads takes a completely different approach. Rather than specify which

methods must be made available over the network in advance, the library allows the

client application to transfer a regular Java object from the local JVM into the applica-

tion in the remote JVM. Once in the remote JVM, the object is free to call any meth-

ods in the remote application, and if it wishes, return objects from the remote JVM

back to the client application. This is essentially, weak thread migration, where the

thread-like object is migrated to the remote machine but the context of execution is

not.

7

This aspect of the library comes into play because it does not require the classes

which implement the object to exist in advance in the remote application. The library

automatically loads classes from the client application into the remote application and

caches them there for the duration of the session. Sessions can be short-lived (ad-hoc),

long-lived, or persistent. Given that objects can be transferred back-and-forth statefully

between machines, and interact with remote applications, it becomes possible to im-

plement much more sophisticated applications and design patterns than RPC alone

would allow. This allows the possibility of developing newer, more sophisticated

design patterns as well as architectures for distributed applications.

3.4 Evaluation of Mobilethreads

We used Mobilethreads with geWorkbench and were able to execute code on remote

data. One of the interesting aspects of using Mobilethreads with geWorkbench is that

the developer has to be careful with the object that she is intending on serializing and

sending over. This is an important issue because since the serialization process will at-

tempt to marshall all references held by the object, if that object holds a reference to

the current thread then it will by transitivity, pull in all objects associated with the cur-

rent thread group. This typically results in a buffer overflow on the test machine. Nor-

mally, the classes whose objects are to be sent over should be defined as separate com-

pilation units or they should be static nested classes within the original class, so that

they do not hold any references to any objects in the current context. Apart from this

slight snag, using Mobilethreads simply involved executing a single line of code. We

forsee that if one uses IoC containers to initialize the remoting object, all configuration

and initialization can be accomplished via an XML file. This is left for future research.

4 Remotelocals

Migrating the execution context of a thread typically requires VM support although

it is possible to achieve the same at the application level with bytecode manipulation

(aspect oriented programming). When migrating a Java application, we need to trans-

fer all the components of its state. In Java land, we have that

 object = <program state (bytecode), data state, execution state>

execution state = <program counter (thread unique), java stack>

 java stack = [frames], frame = <locals, operand stack>

The operand stack is the stack we normally manipulate.

8

Strong/transparent migration involves suspending execution of a thread, capturing

its execution state and serializing it while finally sending it to a target location and re-

instating the execution state. If this is done in a general manner, it is strong. If the pro-

grammer is expected to intervene, it is not.

The approach used by Remotelocals is as follows. We use a distributed master-mas-

ter replicated database for distributed memory sharing. This allows us to ensure that

changes made by a thread in a local machine will be visible to threads on remote ma-

chines. The class files are instrumented with recording as well as replaying code and

field variables are instrumented so that when we reconstruct the state, their values are

fetched from the the replicated database. Remotelocals uses Mongodb, a fast nosql

database for memory sharing. Master-master replication is achieved using “mmm”, a

Python application that guarantees eventual consistency in a replicated MongoDB

cluster.

4.1 Implementation

The first step that we need to accomplish is to setup the replicated server for distrib-

uted memory sharing. We note that all the heap data can be referenced by the field

variables in the thread as well as the global data accessible to it. We instrument the

bytecode of the thread object such that it acquires new getters/setters for each of its

fields that allow it to fetch and commit content from the replicated server. The con-

structor is instrumented so that the connection to the replicated server is established

before the thread starts to execute. We replace all instances of the GETFIELD and

PUTFIELD bytecode to calls to the respective getters/setters.

Remotelocals implements thread migration in a non-preemptive manner. That is,

migration only occurs at programmer designated locations. Two primitives that we

need to use are capture() and resume(), methods called when we need to migrate and

when we need to resume execution, respectively. Both of these primitives must be

called from within the context of the thread being executed. So if a thread wants to mi-

grate itself, it calls capture(). When, we wish to resume, the thread controlling the re-

sumption of the paused thread calls resume() on the migrating thread after the migra-

tion has completed. In order to enable state capture, after each INVOKEX bytecode in-

struction, we insert a capturing routine that is executed only if a flag is set. That flag

will be set in the capture() method. This routine inserts a return insn to suspend execu-

tion of the method. For each method on the stack, we save the stack frame before the

INVOKEX insn. The index of the INVOKEX insn is the program counter. Once we hit

9

the return insn, we return from the current method and move on to the next method in

the callstack, which has also been similarly instrumented. This goes on recursively un-

til we reach the end of the call stack and have captured the execution state of the

thread.

Each method has a designated method frame whose fields represent the local vari-

ables of a method. Note that we do not use arrays as the performance cost of the

AASTORE and AALOAD bytecode is higher than a GETFIELD and PUTFIELD.

When saving the state of a method, we store its local variables in a newly initialized

method frame. The frames themselves are stored in a global array that tracks the

frames associated with the current call stack.

In order to minimize the logging overhead of state capture, we perform a MOD ana-

lysis to determine the variables that are going to be modified in a method. If the vari-

ables are merely used as references, then we do not log them as their values can be dir-

ectly fetched from the replicated server. This results in a reduced logging overhead.

Apart from a MOD analysis, we also allow sources of nondeterminism to be logged

for replay. This mirrors the Chronicler approach [15], where the authors have shown

that logging nondeterminism is lightweight and complete. In order to designate a

method as a record-target instead of a state-capture target, we simply annotate it as

such. While recording nondeterminism leads to a lighter logging process, replay can

possibly take a long time. This tradeoff involving lighter logging process vs longer re-

play is a topic we have left for future research. In order to pause we insert artificial re-

turns in the code that allows us to exit the context of the thread in a safe manner.

In order to restore the execution state we need to invoke all the relevant methods in

the same order as they were captured. This is done by inserting a state restoring code

block in the beginning of the method which consists of a switch instruction. The

switch instruction reads the program counter we had stored and jumps to the appropri-

ate case which restores the state as well as jumps to the appropriate INVOKEX insn.

This step requires the insertion of arbitrary GOTOs in the bytecode which is a tricky

endeavor. The library we used to perform bytecode manipulations inserted random IM-

PDEP instructions in the instrumented code. This bytecode is a restricted operation to

be used only by the debugger, if the verifier observes this prior to startup it will throw

a verification error. We had to manually replace those instructions as a post processing

step. We eventually end up in capture() a second time through which we can set the

capturing flag to false. After the flag has been set to false, we continue the recording

process in anticipation of another migration event.

10

4.2 Comparison with existing technologies

The core methodology of thread migration at the bytecode level has not changed

much. Apache JavaFlow is a well known library that allows continuations in Java and

makes use of concepts involving thread migration. These concepts were first enunci-

ated in the Brakes system. Its methodology was significantly improved upon by Kilim,

an actor framework for Java. Kilim allows a programmer to multiplex thousands of

contexts of execution onto a single Java thread. This involves starting and stopping

those contexts of execution. Kilim makes use of all the optimizations we have de-

scribed save a few. Kilim performs live variable analysis in order to minimize the log-

ging process. Remotelocals on the other hand can afford to use the MOD analysis, be-

cause if the value of a variable is unchanged, during replay we can simply fetch it from

the MongoDB server. Secondly, we leverage record-replay for the start-stop mechan-

ism unlike Kilim or Brakes. This results in a lighter logging process albeit a greater re-

play time.

4.3 Evaluation of Remotelocals

No significant evaluation of Remotelocals has been done yet although this is planned

for future research. Since Remotelocals builds on top of Kilim's optimizations, its per-

formance is atleast as good as Kilim's. However, we foresee that that the additional

MOD analysis will lead to greater payoff when experimenting with real world work-

loads such as Dacapo. Additionally, we plan on implementing several design patterns

using the functionality offered by Remotelocals and explore their impact on the way

Java applications are designed and written.

11

5 Conclusions

In this report we presented two systems for application level thread migration. Mo-

bilethreads is a library that allows weak thread migration to be deployed in existing

Java applications without much effort from the developer. Its API requires only the IP

address of the target machine and the Java object that needs to be sent over. This object

is serialized and transferred to the remote machine over the wire using protocol buf-

fers, where it is deserialized and executed. The remote machine needs to have a server

running that can intercept incoming objects, no other demands are made on it. As an

optimization, all the dependencies and requirements of the Java object sent over are

cached on the remote server for the session duration. The protocol used to transfer ob-

jects and receive results has been implemented on top of TCP but is agnostic of the

transport layer. This protocol is fast, scalable and simple to reason about. Mobi-

lethreads has been deployed in the geWorkbench suite of applications.

Remotelocals is a system that makes application level strong thread migration pos-

sible in Java using bytecode manipulation. It makes use of Mongodb to share memory

state and relies on instrumentation inserted at the bytecode level in order to save and

restore state. It uses a mixture of efficient state capture and record-replay techniques in

order to achieve a low logging overhead. Using these two systems, it is very easy to

achieve thread migration of desired strength in existing Java applications.

I

6 Bibliography

[1] ZAP: Transparent Checkpoint-Restart and Migration Using Operating System
Virtualization, Nieh et al , Proceedings of Usenix OSDI 2002

[2] CRAK: Linux Checkpoint/Restart As a Kernel Module, Zhong et al, Techreport
CUCS-014-01

[3] Berkeley Lab Checkpoint/Restart (BLCR) for Linux Clusters
[4] DMTCP: Transparent Checkpointing for Cluster Computations and the Desktop,
[5] Linux cr lwn article: https://ckpt.wiki.kernel.org/index.php/Main_Page
[6] CR survey: http://lwn.net/Articles/412749/
[7] Incremental Checkpointing based on Java Source Code Refactoring, TH Feng

 [8] Julia L. Lawall and Gilles Muller. 2000. Efficient Incremental Checkpointing of
Java Programs. In Proceedings of the 2000 International Conference on Dependable
Systems and Networks (formerly FTCS-30 and DCCA-8)(DSN '00). IEEE Computer
Society, Washington, DC, USA, 61-70.

[9] Extending Java with checkpointing, TH Feng
[10] Guoqing Xu, Atanas Rountev, Yan Tang, and Feng Qin. 2007. Efficient
checkpointing of java software using context-sensitive capture and replay.
In Proceedings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering(ESEC-FSE '07). ACM, New York, NY, USA, 85-94.
DOI=10.1145/1287624.1287638 http://doi.acm.org/10.1145/1287624.1287638

[11] Thread Migration and Checkpointing in Java, T. Gehweiler
[12] Chronicler: Lightweight recording for reproducing field errors, Bell et al.,

ICSE 2013 (To appear)

II

	1 Introduction
	2 Related Work
	2.1 Program specialization [7]
	2.2 Incremental checkpointing based on code refactoring [8]
	2.3 Extending Java [9]
	2.4 Context sensitive Capture and Replay [10]
	2.5 Thread Migration and Checkpointing in Java [11]

	3 Mobilethreads
	3.1 Implementation
	3.2 TCP Implementation
	3.3 Comparison with conventional technologies
	3.4 Evaluation of Mobilethreads

	4 Remotelocals
	4.1 Implementation
	4.2 Comparison with existing technologies
	4.3 Evaluation of Remotelocals

	5 Conclusions
	6 Bibliography

