Bindings, Initialization, Scope, and Lifetime

by: Maria Taku & Eric Powders
(mat2185@columbia.edu)
(ejp2127 @columbia.edu)

Columbia University
COMS E6998 — Advanced Topics in Programming Languages & Compilers
Fall 2012

Table of Contents

1.

2.

3.

Declarations and DEfiNItiONSc...eiiieiiiiiie ettt sttt s e e be e st s b e bt e st e s neesaes 3

1.1 2 Tod 4= oYU [T [S 3
1.2 Declarations and Definitions iN ClasSes........c.eocerierierieniee et 4
Yoo o TR T Lo I 1= o o 1TSS 5
INTEIATIZATION 1.ttt b e bttt a e s bt e bt et e e st e s bt e s b e e bt ebe s e eatesaeesheenbeennesaee e 7
3.1 2T 1ol {0 TV [o T IR U PUUR 7
3.2 Initialization of Class Data MEMDEIS.cc.iiiiiiieieet ettt ettt ettt s bt e b e be e 7
33 Initialization with MUltiple INheritanCecocueieiie e e 9
34 Static Data Member INItializationoooeeriiiiii e st 10
L2310 [T Y= I =] g =SS 11
(0] oY [=Tot fl X1 =Y a1 o= PR 12
5.1 2 ol 4= o 10 o T ISR UPSSROUROt 12
5.2 STAtiC MEMOIY AlIOCATION ...ttt e et e et e e e be e e e e te e e eeabaeeesabaeaeentaeseenssaeessseeaenssesesnns 13
5.3) = Tol Y/ L= g oY YA A Lo Yot u o o PSR SUPRROt 14
5.4 [LT Y (=T g oY oV Ay A Lo Yot d o] o PPN 15
5.4.1 Heap Memory Management — Fre@ LiStS.....ccuiiiiiiiiiiiiieiiiee et 16
5.4.2 Heap Memory Management — Garbage ColleCtioNnsScoouiirieriiiiiieniie et 18

-Page 2 -

1. Declarations and Definitions
1.1 Background

A declaration makes known to the world the type and name of a variable. A definition, on the
other hand, allocates storage for the variable and might also specify its initial value. A definition is what
makes the variable "usable." If something has been declared but not yet defined then we can't yet use
that variable because storage hasn't yet been allocated for it. In many languages a declaration, by
default, is also a definition. Often it is acceptable to have many declarations for the same variable,
although typically only one definition is permitted; of course, all declarations must agree on the
variable's type in a strongly-typed language. The same thing can apply to functions; it is often
permissible to declare a function numerous times so long as the number and types of its arguments, and
its return type, remain the same. Typically, however, it is only permissible to define a function once in
the same scope, otherwise the compiler wouldn't know which definition to use. Function overloading
is, of course, an exception, in which case it is permissible to both declare and define a function with the
same name yet with different parameters than previously seen; of course, this creates an entirely new

function altogether, which is why it is permitted.

In some languages, you can declare a variable without yet defining it, such as by preceding the
declaration with the keyword extern in C++. This is valuable, for example, when you wish to reference
a variable whose definition will appear later (such as further down in the current translation unit, or
perhaps in another translation unit). Additionally, some languages permit function declarations to
appear inside other functions, in which case the scope of the inner function is typically constrained to be

only while inside the outer function.

- Page 3 -

1.2 Declarations and Definitions in Classes

When developing a language with classes, the language creator must make decisions about
bindings, scope, and lifetime within a class. For example, when defining a class member function,
should the user be permitted to reference any name in the class, even names that haven't yet been
seen? In C++, this is permitted; it is ok to reference any other name in the class, even if its declaration
and/or definition appear textually after this function's definition. This is accommodated because first a
class's member declarations are compiled in their entirety, and only then are the definitions compiled;
therefore, it is even okay for class member functions' definitions to cross-reference each other. Ina
nested class in C++, the member declarations of the outer class and the member declarations of all of
the nested classes are first compiled, then all of the definitions are compiled. This, again, prevents

compilation errors when referencing names not yet textually seen.

Another question for the language designer is when a class name can be used. For example, is a
class considered declared once the class name has been introduced, or not until the class has been
defined? For example, in C++, a class is considered declared once the name has been seen, but a class
isn't considered defined until the entire class body is complete. One implication of this is that the class
can't have data members of its own type, but can have data members that are references or pointers to
its own type. This is important, for example, when creating a linked list class. Each node needs to be
able to hold one (or more) pointers to other node(s), which are typically objects of its same type. We
wouldn't expect a class to be able to hold data members of its own type, as this becomes an infinitely
recursive class definition. Of course, a class can have static data members of its own type, because
static data members aren't part of the instantiated class objects themselves; they are stored separately
in static memory. Therefore, a class object holding a static data member of its own type merely

references one static address in memory, which isn't a recursive definition.

-Page 4 -

Another question that language designers must consider is whether or not class functions can
utilize other class members as default function arguments. In C++, for example, class functions may only
utilize, as default function arguments, static class members, because static class members will have
already been defined before the class object itself has been instantiated. Using a non-static class
member as a default function argument leads to the possibility that this class member may not yet have

been defined.

One additional item worth mentioning is that, in C++, when defining a namespace the user
cannot, in fact, reference any other name in the namespace whose declaration or definition hasn't yet
appeared. Therefore, a known technique is for the user to first declare all of the names inside the
namespace definition, and then to later define all of the names outside of the namespace definition; this

permits access to all of the namespace names when writing such definitions.

2. Scope and Lifetime

When designing a language, the designer must decide when names come into existence and
how long a name is valid for; this is known as a name's scope and lifetime. Programs often have a
number of different scopes for the language designer to consider, such as local scope, global scope,
statement scope, class scope, and namespace scope. Additionally, there are a number of different areas
of memory in which to store variables and objects, such as the stack, heap (free store), and static
memory. Typically items stored in the stack and heap are more directly under the programmer's
control, while items stored in static memory might be created once at the start of execution and exist
for the duration of execution. Static memory is often used to hold things such as global variables, static

variables, and constants.

Order of execution is often an important concept when designing a language. For example, can

it be assumed that memory allocation will be performed in the order in which variables are encountered

- Page 5 -

in a program? What about allocation in static memory that occurs at the start of execution? Can we
make any guarantees about the order of variable allocation within a translation unit? What about
between different translation units? In C++, for example, a local static object is created and initialized
only once, the first time that its definition is encountered during program execution; it then lives until
program termination. C++ does guarantee that local static objects are created in the order in which they
are encountered, and destroyed in reverse order; exactly when this happens, however, is unspecified by
the language. Additionally, there are no guarantees about the order in which this might happen across
different translation units. Because of this, subsequent definitions in a translation unit can reference
variables previously defined in that translation unit; of course, definitions must not reference variables
defined in other translation units, as there is no ordering guarantee across translation units. Thus

coders must ensure that they do not create dependencies across translation units.

Another scope and lifetime question that language designers face is how to accommodate for
the scope and lifetime of composite variables, such as array elements and class data members. In C++,
for example, the lifetime of such variables is determined by the object of which they're a part. So, for
example, if an array is declared as a global object (in static memory), and a class object is instantiated as
a static variable (again, in static memory), then all elements of that array and all data elements of that
class will be stored in static memory, and all will be instantiated in accordance with the rules of static

memory.

Language designers must also create rules for the scope and lifetime of temporary variables and
objects. In C++, for example, a temporary variable that is created as part of the evaluation of an

expression will persist until the end of the evaluation of the full expression in which it occurs.

- Page 6 -

3. Initialization
3.1 Background

Language designers must create rules for initialization; these rules must answer questions such
as: When are variables initialized? To what value are variables initialized if the user doesn't specify an
initialization value? In order to address such questions and the issues surrounding them, let's take a look

at how C++ handles things.

In C++, built-in types and enums in static memory without an initializer specified by the user are
initialized to zero. Objects of user-defined types created in static memory will have the default
constructor for that object type invoked. Variables not created in static memory (so, variables allocated
on the stack or the heap), however, will not be initialized to well-defined values unless the user specifies
an initialization value. The exception to this rule are variables that are part of an array or class that itself
is stored in static memory, in which case it will be initialized. Objects of user-defined types will have
their default constructors invoked; if the class doesn't have a default constructor, a compiler error will
occur. In such cases, the user must either add a default constructor to the class, or supply appropriate
arguments to the object's instantiation such that an existing constructor may be invoked by the

compiler.

In C++, users can force default initialization via a technique known as value-initialization. Rather
than saying "int* a = new int;" which will allocate uninitialized memory on the heap, the user can instead
say "int* a = new int();". The addition of the trailing parentheses are an instruction to the compiler to

force-initialize a to the default initialization value for an integer, which is zero.

3.2 Initialization of Class Data Members

The same rules apply to class data members. If a class data member isn't specifically initialized

at the time the object is instantiated, then it will be default-initialized if the object is in static memory, or

-Page 7 -

it will be left uninitialized if the object is not allocated in static memory. Thus, if a class data member is
itself a user-defined type, then the default constructor for it shall be invoked; if a class data member is
an array of user-defined types, then its default constructor shall be invoked for each element of the
array. In general, class data members are initialized (or left uninitialized) only when the constructor is

called, because an object doesn’t have an address until then.

This leads to some interesting consequences. If, for example, a class in C++ contains a constant,
objects of this class type cannot be default-initialized because constants must be initialized when they
are allocated. If a user tries to instantiate an object of this type, without providing an initializer for the
object (such as by calling an appropriate constructor), the user will get a compiler error that the object
cannot be initialized. The same thing applies for references. C++ requires that references be initialized
when they are created; thus, a default constructor cannot be invoked on a class that contains one or
more references. Finally, a class that contains a data member that is itself of a user-defined type
without a default constructor cannot itself be default-initialized. The reason is that the inner data
member cannot be default-initialized; thus, the containing class itself cannot be default initialized

because the compiler will be unable to initialize the inner data member.

Language designers must decide when objects (and their embedded data members) of user-
defined type are initialized. In C++, for example, a class's data members are constructed and initialized
at the time of object instantiation but before the body of the class constructor is executed. For derived
classes, all of the base classes are first constructed and initialized, and then the derived class portion of
the object is constructed. Data members are constructed and initialized in the order in which the
members are declared in the class definition, regardless of the order the user specifies them in the
constructor initializer list. All of this must be accounted for by the user when writing code! For example,

inside the constructor code, the user can reference any data member in the class (including data

- Page 8 -

members inherited from the base classes), because all data members are constructed and initialized
before the constructor code is run. Additionally, as part of the member initialization list, the user can
initialize data members from other data members that have already been initialized; the user, of course,
must be careful to ensure that only already-initialized data members are used to initialize other data
members. The compiler will not report this type of misstep. Finally, in C++, data members are
destroyed in reverse order after the body of the class's destructor has run; as the final step in the
destruction process, the object's memory is released. In objects such as an array or container, the
elements are destroyed in reverse order. Thus, the last element in an array is destroyed first, then the

next-to-last element, etc, until the first element in the array is finally destroyed.

There is another interesting consequence to the decision by the C++ language designers that all
of an object's data members are initialized before the body of the constructor is run. A lot of
newcomers to C++ provide default values for data members inside the class constructor's body. What
these newcomers don't realize is that the data members have already been initialized before the
constructor body is run! The proper method for data member initialization in C++ is to initialize data
members as part of the constructor's member initializer list, which occurs before the body of the
constructor is run. In the best case, this prevents dual initialization, as the compiler would default-
initialize all of the class data members prior to running the body of the constructor, and then "re-
initialize" them in the body of the constructor, per the user's code. In the worst case, the class won't
compile if some of the class data members cannot be default-initialized (such as constants or references,
as previously mentioned), in which case a C++ newcomer would be confounded as to why he is getting

seemingly-incorrect compiler errors.

3.3 Initialization with Multiple Inheritance

If languages permit multiple inheritance, the language designer must think through the

consequences of the order of construction and initialization of all of the base class hierarchies. In C++,

- Page 9 -

for example, there are very precise rules for this. When instantiating an object that is inherited from
multiple base classes, the first step the compiler takes is to instantiate all virtual base classes (and their
base classes), and initialize all of their data members. The compiler next instantiates all non-virtual base
classes (and their base classes) and initializes all of their data members. Thus, the user can know for
certain that all virtual bases will be constructed and initialized before non-virtual bases are constructed
and initialized. Of course, all of this happens before the derived class is constructed and initialized. An
additional decision of consequence made by the C++ designers is that classes are permitted to inherit
from the same non-virtual base class multiple times. Thus, the user must recognize that all data
members in the non-virtual base classes will be replicated n times, where n is the number of times that
the derived class has inherited from this base. Finally, object destruction (when the object loses scope)
occurs in the precise reverse order of object construction and initialization. C++ is very precise about its
definition and enforcement of these rules for object initialization involving multiple inheritance, which
can cause confusion for new C++ developers but can prove valuable to advanced C++ developers who

can leverage these features.

3.4 Static Data Member Initialization

Static variables in classes (known as static data members) are not part of an instantiated object;
instead, static data members are allocated ahead of time at a static address in static memory. All
instantiated objects of this class type will share this static data member. This creates an interesting
issue: When and how should such static data members be initialized? C++, for example, requires that
static data members be defined somewhere. A declaration alone won't suffice for static data members.
This ensures that space is properly allocated for the static data member by the compiler, since such
action will not happen at time of object instantiation (at which point the other, non-static data members

will be allocated).

- Page 10 -

L. Binding Lifetime

In the most general sense, name binding deals with binding the name of an entity with that
entity itself. For example, this can represent an identifier that is bound to a particular object variable or

function. Similarly, the binding time deals with the period of time in which this binding is valid.

The binding time for a particular entity can occur at different times in an entity's life; and the
choices for binding times not only vary greatly among different programming languages, but can also
vary a lot within a particular language itself. For example, names can be bound as early as the language
design time (e.g., binding of keywords such as FOR and WHILE), to compile time (e.g, statically defined

data), and all the way up until runtime (e.g,. dynamic binding).

In general, earlier binding times results in greater efficiency, since various computations can be
performed before runtime of a program. In contrast, later binding times can be associated with greater
flexibility and use of the code. For example, the following Java pseudocode illustrates dynamic binding

and its flexibility:

abstract class Shape {
protected float length;
public abstract float area();

}

public class Circle extends Shape {
Circle(float radius){
length = radius;

}
public float area (){

return 3.14*(length”2);
}

}

public class Square extends Shape {
Square(float side){
length = side;
}
public float area (){
return (length”2);

- Page 11 -

public class DynamicBinding{

public void useMyShape(Shape s){
s.area(); //dynamic binding!

As shown by this example, the exact area() function that is called in the useMyShape method
will not be known until runtime. Whether this calls a function to calculate a circle's area or a square's
area will depend on whether an object of the Circle subclass (e.g., declared via Shape circ = new
Circle(1); or such) or an object of the Square subclass (e.g., declared via Shape squ = new Square(1); or
such) is passed as an argument into useMyShape respectively. As such, although such dynamic binding
may not run as efficiently due to extra runtime processing, it can allow for much greater flexibility and

code re-use for a programmer.

5. Object Lifetime
5.1 Background

A concept similar to that of binding lifetime is object lifetime. Specifically, this refers to the
period of time between an object's creation and its subsequent destruction. This can be compared to
the definition of a binding lifetime, which refers to the period of time between a name-to-object's

construction and destruction.

At times, the object lifetime and binding lifetime of an entity can directly overlap. However, this
is not always the case. For example, this is illustrated by the following Java pseudocode in which

variables are passed by reference:

- Page 12 -

foo(Object oRef){
...perform various operations via oRef...

Object myObject = new Object();
foo(myObject);

As can be seen from this example, during the scope of the method foo, the identifier oRef has a
name-to-object binding to myObject. However, once foo has completed, this name-to-object binding is

destroyed, although myObject continues to exist.

The above illustrated a situation where the object itself last longer than the name-to-object
binding. However, situations may also occur where the name-to-object binding lasts longer than the
object. For example, this may occur when a heap variable is destroyed while still having references or
pointers to it. These are referred to as dangling references and oftentimes indicate an error on the part

of the programmer.

As is described in more detail in the following sections, an object's lifetime generally
corresponds to its allocation in memory space, whether this is static memory allocation, stack memory

allocation, or heap memory allocation.

5.2 Static Memory Allocation

Static memory allocation generally refers to memory that is allocated at compile-time, before
the actual execution of a program. Specifically, once a program begins to execute, there should be
specific blocks of memory that are set aside to ensure the proper operation of the program; this
memory should not be trespassed upon by another program, by the system, or even by the program
itself. The addresses and the size of static memory allocations are definitively set during compilation.
The term "static" memory allocation receives its name from this feature, since such data does not vary

in size or location during the lifetime of the program.

- Page 13 -

Objects stored in static memory are thus alive and accessible throughout the entire life of a
program. Static variables defined within a class also have the added flexibility that a single copy of that

data can be shared between all objects of that class.

Examples of items that are placed in static memory include global variables, string and numeric
constants, and a variety of compiler-produced tables used in runtime support processes such as garbage

collection, dynamic-type checking, exception handling, etc.

5.3 Stack Memory Allocation

The stack region of memory refers to an area of memory where data is added and removed in a
Last-In-First-Out manner. In general, when a function executes, it adds relevant material to the stack.
The area of the stack in which this "relevant material" is stored is known as that function's activation
record, and can contain various data such as return addresses, arguments, local variables, bookkeeping

information etc. Once the function exits, it is responsible for removing its data from the stack.

Due to its Last-In-First-Out nature, the memory stack is a prime candidate for use in recursive
functions. In fact, static memory allocation for recursive functions would not even be an option, since
the number of recursive calls is unknown at compile time. The natural nesting of subroutines in

recursive calls is easily handled by a stack, however.

As hinted at above, a natural benefit of stack memory is the fact that memory is automatically,
and efficiently, reclaimed whenever a function exits. Some languages, such as C++ allow a programmer
to manually determine whether objects are allocated to the memory stack or to the memory heap. For

example, in C++ a programmer may either declare a new object via:

Object c1; // Stack allocation. c1 will automatically delete when it
// goes out of scope

Object * c2 = new Object(); // Heap allocation. Regardless of scope, c2 will not be
// deleted until "delete c2;" in specifically invoked

- Page 14 -

In the example above, c1 will automatically be deleted once the function exits. This frees the
programmer from needing to manually manage the memory allocation of the object. In fact, even if the
method containing c1 is unnaturally aborted, c1 will still be automatically de-allocated from memory.
Especially in the case of recursive functions (e.g., which might re-create Object c1 every time the
function is recursively called), placing objects on the memory stack in this manner may help to reduce
destructive memory or resource leaks. In contrast, objects stored in the memory heap must be

manually deleted.

Not all languages allow a programmer to determine whether objects are placed on the memory
stack or the memory heap, however. In Java, for example, all objects are always and only placed on the
memory heap. Since, unlike C++, Java has automatic garbage collection, however, the potential extra

memory wastage of placing all objects on the heap is not so severe.

5.4 Heap Memory Allocation

As mentioned above, the heap is an area of memory used for dynamic memory allocation; for
example, data such as lists, sets, linked data structures, or other objects whose size may change during

runtime can be stored in the heap.

In the heap, memory is allocated and de-allocated in an arbitrary order. Due to this nature of
heaps, there generally must be some system in place in order to manage the space within the heap. For
example, consider Figure 1 showing a heap and an allocation request. As shown by this figure, although
there is enough total free space to fit the requested data segment, due to the fragmented nature of the
free space, the data segment cannot actually be put onto the heap (when data is allocated to the heap,

it is generally not split into smaller chunks — the entire segment remains in one contiguous piece).

- Page 15 -

Heap
1 H Nl

- Data Segment requested
for alloccaton

Figure 1: Fragmented heap memory and allocation request.
Gray: Used Memory. White: Free Memory

Figure 1 illustrates a case of external fragmentation, in which the objects stored in the heap
have been scattered in such a way that the remaining free space is widely interspersed and essentially
unusable — although there might be enough total free space to fit a new object, there is no single piece
of free space large enough to actually accept it. Accordingly, there are several ways of dealing with

performing heap memory management in order to prevent such fragmentation scenarios.

5.4.1 Heap Memory Management - Free Lists

One method of managing the storage allocation in heap memory deals with using a singly-linked
list known as a free list. The free list basically keeps track of all blocks of free space within the heap.
Thus, when the heap is initially created, the free list merely consists of a single linked-list entry that
comprises the entire heap itself. As memory is allocated to the heap, and the free space is divided into
multiple, smaller chunks of memory, the free list is updated such that each linked-list entry indicates

one of these free blocks of memory.

In order to allocate a requested chunk of data to the heap, one of two algorithms can be used:

the first fit algorithm or the best fit algorithm.

As the name implies, the first fit algorithm simply selects the first free block of memory in the
heap that is large enough to hold the requested data. In other words, the free list is traversed until the

first linked-list entry is found that references a free block of data of suitable size. After the data is

- Page 16 -

placed into the heap, if the chosen block is significantly larger than required, then the free block is
divided into its remaining free blocks, and the free list is updated accordingly. However, it's worthwhile
to note that if the free block is below some minimum threshold in size, then the entire block (even
though it is slightly too large) is allocated to the requested data. This can resultin a type of
fragmentation known as internal fragmentation, where larger-than-necessary blocks of heap memory

are allocated to data, thus resulting in wasted space.

The best fit algorithm, on the other hand, looks through the entire heap memory and chooses a
free block that "best fits" the requested data. In other words, the best fit algorithm chooses the
smallest block of free data that is large enough to satisfy the data allocation request. Thus, the best fit
algorithm sacrifices speed (since the entire free list must be traversed during each allocation request) in

order to locate free blocks of memory which are most suitable for the requested data allocation.

One interesting question is whether the first fit algorithm or the best fit algorithm results in less
fragmentation of the heap memory. At first glance, it may seem that the best fit algorithm will do a
better job at managing the heap memory, since it always strives to find the "best fit," whereas the first
fit algorithm may somewhat arbitrarily choose free memory blocks in which to insert its data. However,
since the best fit algorithm always finds the smallest possible free blocks of memory to store its data, it
can result in a lot of very small, leftover free blocks. This can thus hurt the performance of the best fit
algorithm in the long run, as it resulting in a lot of tiny free blocks of memory which may be unsuitable
for storing data. In general, whether the first fit algorithm or the best fit algorithm works better can
vary drastically from case to case — which one results in less fragmentation of the heap can actually

depend on the distribution of size requests.

- Page 17 -

5.4.2 Heap Memory Management - Garbage Collection

Heap memory is not infinite, and at some point data from the heap must be removed in order to
make room for new data. In some languages, this erasure of heap memory is done manually. For
example, in C the command free can be invoked and in C++ the command delete can be invoked in order
to manually remove data from the memory heap. However, many languages now include an automatic
garbage collection process that will automatically remove unnecessary data from the heap for the

programmer.

The benefits of automatic garbage are, most obviously, the convenience for the programmer.
Keeping track of the heap memory and remembering to properly delete unnecessary data can be a large
chore for the programmer. Freeing the programmer of this housekeeping allows them to concentrate
more on the logic and actual meaning of their programs. Moreover, manually removing unnecessary
data from the heap can be extremely error prone, oftentimes resulting in dangling references (e.g., from
deleting an object to soon) or memory leaks (e.g., failing to de-allocate data) that can cause costly and
dangerous bugs in a program. For example, since data is re-used in the memory heap, dangling
references may now have the power to read or write bits to an object that was originally not its
intended target. The dangling reference may now unintentionally modify those objects or, if the
dangling reference is now pointing to bookkeeping information, it may even corrupt the structure of the

heap itself.

On the other hand, automatic garbage collection has the disadvantage that it can greatly
sacrifice execution speed. When garbage collection is invoked, it can consume non-insignificant
amounts of processing power. Moreover, languages like Java do not allow a programmer to control
when garbage collection is actually invoked. Although there are methods like System.gc () and
Runtime.gc () which can request of Garbage collection, it’s not guaranteed that garbage collection will

actually happen. This can be especially harmful in time-sensitive program, such as high frequency

- Page 18 -

trading programs, where garbage collection invoking at the wrong moment could drastically hurt the
program's performance and effectiveness. Nonetheless, despite these faults, garbage-collection
algorithms are steadily improving and their run-time overhead is reducing, thus slowing dissolving these

disadvantages of automatic garbage collection.

But how does a garbage collector know that data in a heap can be reclaimed? Most simply we
know an object is no longer needed when there are no more pointers to that object. Thus, one method
of finding reclaimable data is to place a counter in each object that keeps track of the number of
pointers to it. If this counter is set to O, then that object is a candidate for garbage collection. However,
such counters may fail to locate circular structures, where two or more objects all point to each other in
a circle, yet none of them can be viably reached by the program. One way of locating such circular
structures is to start from a valid identifier, and then determining which objects can actually be reached
by this identifier. For example, the garbage collector may start outside of the heap, and follow the chain
of valid pointers into the heap, keeping track of which objects are actually reachable. Since circular

structures will never be reached in such a traversal, they can be successfully marked as reclaimable data.

A brief example of the Java Automatic Garbage Collector is now described. Java's automatic
garbage collectors run on the premise that older data is less likely to be unnecessary and reclaimable.
As such, the heap is divided into three generations known as the Young Generation, Tenured
Generation, and PermGen. The Young Generation is furthered divided into three parts known as Eden,
Survivor 1, and Survivor 2. When an object is first created, it is put into the "youngest" heap area
possible — Eden of the Young Generation. A process known as Minor Garbage Collection is run in this
area. If an object in Eden survives Minor Garbage Collection, then it is moved to Survivor 1. If the

object survives Minor Garbage Collection a 2" time, then it is moved to Survivor 2. Once in this area,

- Page 19 -

Major Garbage Collection is performed. If an object survives Major Garbage Collection, then it is moved

to the Tenured Generation. Major Garbage Collection alone is performed on the Tenured Generation.

The benefit of dividing the garbage collection in this manner is that the garbage collection
pauses can potentially be shortened. For example, when garbage collection is triggered (e.g., by the
heap reaches a sufficient capacity threshold), then the Minor Garbage Collection is first executed. Since
many Eden/Survivor 1 objects are often already dead, Minor Garbage Collection pauses can be short
and can also free up a significant portion of heap memory. If enough heap memory is freed, Major
Garbage Collection does not even need to be run, and the program can continue immediately. Even
though there may be unreachable objects in the Tenured Generation, as long as Minor Garbage
Collection has freed up enough heap memory, then there is no reason to reclaim the Tenured

Generation space.

Lastly, the PermGem area of the heap memory stores "permanent" information such as
metadata about classes and methods that have been loaded, String pool, and class level detail. Garbage

collection can occur in this area, but the exact implementation can vary from JVM to JVM.

- Page 20 -

	1. Declarations and Definitions
	1.1 Background
	1.2 Declarations and Definitions in Classes

	2. Scope and Lifetime
	3. Initialization
	3.1 Background
	3.2 Initialization of Class Data Members
	3.3 Initialization with Multiple Inheritance
	3.4 Static Data Member Initialization

	4. Binding Lifetime
	5. Object Lifetime
	5.1 Background
	5.2 Static Memory Allocation
	5.3 Stack Memory Allocation
	5.4 Heap Memory Allocation
	5.4.1 Heap Memory Management – Free Lists
	5.4.2 Heap Memory Management – Garbage Collection

