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1. Introduction

• Type Inference / Type Reconstruction: Determining the 

Type of an Expression in a Programming Language

• Duck Typing: Determining the Type of an Expression 

from the Way it is used

• For Type-checked Languages that do not require 

Declaration of Names

• Object-oriented Languages: E.g., C# (version 3.0), C++

(C++11)

• Functional Languages: E.g., ML, OCaml, Haskell



2. Lambda Calculus

• Lambda Calculus: Small Turing complete 

Programming Language [1]

• x = Variable

EE’ = Application

λx.E = Lambda Abstraction

• Grammar:  E ::= x | EE’ | λx.E

• λ = Binding Operator

(In λx.xy, Variable x is bound, Variable y is free)



2. Lambda Calculus

• Axioms of Lambda Calculus

– α-Equivalence: Change of bound Variable Name, 
e.g., λx.E = λy.E[y/x]

– β-Equivalence: Application of Function to 
Arguments, e.g., (λx.E)y = E[y/x]

– η-Equivalence: Elimination of Redundant Lambda 
Abstractions, e.g., if x is bound in E, λx.(Ex) = E 

• Substitution

– Process of replacing all free Occurrences of a 
Variable by an Expression



3. Hindley-Milner Type Inference

• Hindley-Milner Type System [2,3,4] is based on 

Lambda Calculus

• Extension: Let-clause (only syntactic sugar)

let x = E in E’

(let x = E) in E’

(λx.E’)E

• Hindley-Milner Type Inference = 

Type Inference Rules + Unification



3. Hindley-Milner Type Inference

1.  For Variables

Hindley-Milner Type Inference Rules [5]

2.  For Applications



3. Hindley-Milner Type Inference

3.  For Lambda Abstractions

Hindley-Milner Type Inference Rules [5]

4.  For Let-Clauses



3. Hindley-Milner Type Inference

• Unification can be used for Equalizing Type 

Expressions (or find that they cannot be 

equalized) [2]

• Examples of Unification [6]

– U(Knows(John,x), Knows(John, Jane)) = {x/Jane}

– U(Knows(John,x), Knows(y, Mother(y))) =

{y/John, x/Mother(John)}

– U(Knows(John,x), Knows(x, Elizabeth)) = fail



4. Object-oriented Type Inference

• Polymorphism: Polymorphic code Fragments can be 

executed with Arguments of different Types

• Basic Type Inference Algorithm: Early Type 

Inference Algorithm for Object-oriented Languages 

[7]

• Cartesian Product Algorithm: Improves Precision and 

Efficiency over Previous Algorithms and deals 

directly with Inheritance [8]



4. Object-oriented Type Inference

Basic Type Inference Algorithm [7]

• Builds a directed Graph with Nodes 

representing Type Variables and Edges 

representing Constraints

• Whenever an Edge is added to the Graph, 

Type Information is propagated to the next 

higher Program Level



4. Object-oriented Type Inference

Basic Type Inference Algorithm [7]

• Example
x := y

• As it holds that type(y)⊆ type (x), it is ensured 

that only valid Types are inferred



4. Object-oriented Type Inference

Cartesian Product Algorithm [8]

• Example

rcvr max: arg

R = type(rcvr)

A = type(arg)

R = {r_1, r_2, …, r_s}

A = {a_1, a_2, …, a_t}



4. Object-oriented Type Inference

Cartesian Product Algorithm [8]

1. The Cartesian Product Algorithm computes 
the Cartesian Product of the Types
R * A = {(r_1,a_1), …, (r_1,a_t), …,     

(r_s,a_1), …, (r_s,a_t)}

2. Then the Algorithm propagates each (r_i,a_j) 
into a separate max-template (if such already 
exists for a given pair, it is reused)

3. All Templates are unioned



4. Object-oriented Type Inference

Cartesian Product Algorithm [8]



5. Concluding Thoughts

• Lambda Calculus provides a fundamental Type 
Inference Environment, particularly, for Functional 
Languages

• Popularity of object-oriented Programming 
Languages gradually lead to new Type Inference 
Algorithms and Environments

• Type Inference is at the Core of Programming 
Language Design, making it desirable to fully work it 
out in the early Stages of Language Development

• Parallelism between Type Checking and Type 
Inference may provide further Insights
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Thank You Very Much!


