
An Introduction to Type

Inference

Sebastian Zimmeck

Professor Alfred V. Aho - COMS E6998-2

Advanced Topics in Programming

Languages and Compilers

November 29, 2011

Presentation Overview

1. Introduction

2. Lambda Calculus

3. Hindley-Milner Type Inference

4. Object-oriented Type Inference

5. Concluding Thoughts

1. Introduction

• Type Inference / Type Reconstruction: Determining the

Type of an Expression in a Programming Language

• Duck Typing: Determining the Type of an Expression

from the Way it is used

• For Type-checked Languages that do not require

Declaration of Names

• Object-oriented Languages: E.g., C# (version 3.0), C++

(C++11)

• Functional Languages: E.g., ML, OCaml, Haskell

2. Lambda Calculus

• Lambda Calculus: Small Turing complete

Programming Language [1]

• x = Variable

EE’ = Application

λx.E = Lambda Abstraction

• Grammar: E ::= x | EE’ | λx.E

• λ = Binding Operator

(In λx.xy, Variable x is bound, Variable y is free)

2. Lambda Calculus

• Axioms of Lambda Calculus

– α-Equivalence: Change of bound Variable Name,
e.g., λx.E = λy.E[y/x]

– β-Equivalence: Application of Function to
Arguments, e.g., (λx.E)y = E[y/x]

– η-Equivalence: Elimination of Redundant Lambda
Abstractions, e.g., if x is bound in E, λx.(Ex) = E

• Substitution

– Process of replacing all free Occurrences of a
Variable by an Expression

3. Hindley-Milner Type Inference

• Hindley-Milner Type System [2,3,4] is based on

Lambda Calculus

• Extension: Let-clause (only syntactic sugar)

let x = E in E’

(let x = E) in E’

(λx.E’)E

• Hindley-Milner Type Inference =

Type Inference Rules + Unification

3. Hindley-Milner Type Inference

1. For Variables

Hindley-Milner Type Inference Rules [5]

2. For Applications

3. Hindley-Milner Type Inference

3. For Lambda Abstractions

Hindley-Milner Type Inference Rules [5]

4. For Let-Clauses

3. Hindley-Milner Type Inference

• Unification can be used for Equalizing Type

Expressions (or find that they cannot be

equalized) [2]

• Examples of Unification [6]

– U(Knows(John,x), Knows(John, Jane)) = {x/Jane}

– U(Knows(John,x), Knows(y, Mother(y))) =

{y/John, x/Mother(John)}

– U(Knows(John,x), Knows(x, Elizabeth)) = fail

4. Object-oriented Type Inference

• Polymorphism: Polymorphic code Fragments can be

executed with Arguments of different Types

• Basic Type Inference Algorithm: Early Type

Inference Algorithm for Object-oriented Languages

[7]

• Cartesian Product Algorithm: Improves Precision and

Efficiency over Previous Algorithms and deals

directly with Inheritance [8]

4. Object-oriented Type Inference

Basic Type Inference Algorithm [7]

• Builds a directed Graph with Nodes

representing Type Variables and Edges

representing Constraints

• Whenever an Edge is added to the Graph,

Type Information is propagated to the next

higher Program Level

4. Object-oriented Type Inference

Basic Type Inference Algorithm [7]

• Example
x := y

• As it holds that type(y)⊆ type (x), it is ensured

that only valid Types are inferred

4. Object-oriented Type Inference

Cartesian Product Algorithm [8]

• Example

rcvr max: arg

R = type(rcvr)

A = type(arg)

R = {r_1, r_2, …, r_s}

A = {a_1, a_2, …, a_t}

4. Object-oriented Type Inference

Cartesian Product Algorithm [8]

1. The Cartesian Product Algorithm computes
the Cartesian Product of the Types
R * A = {(r_1,a_1), …, (r_1,a_t), …,

(r_s,a_1), …, (r_s,a_t)}

2. Then the Algorithm propagates each (r_i,a_j)
into a separate max-template (if such already
exists for a given pair, it is reused)

3. All Templates are unioned

4. Object-oriented Type Inference

Cartesian Product Algorithm [8]

5. Concluding Thoughts

• Lambda Calculus provides a fundamental Type
Inference Environment, particularly, for Functional
Languages

• Popularity of object-oriented Programming
Languages gradually lead to new Type Inference
Algorithms and Environments

• Type Inference is at the Core of Programming
Language Design, making it desirable to fully work it
out in the early Stages of Language Development

• Parallelism between Type Checking and Type
Inference may provide further Insights

References

[1] A. Church. A set of postulates for the foundation of logic.
Annals of Mathematics, 33:346-366, 1932.

[2] J. R. Hindley. The principal type-scheme of an object in
combinatory logic. Transactions of the American
Mathematical Society, 146:29-60, 1969.

[3] R. Milner. A theory of type polymorphism in programming.
Journal of Computer and System Science, 17:348-374, 1978.

[4] L. Damas and R. Milner. Principal type-schemes for
functional programs. In POPL '82: Proceedings of the 9th
ACM SIGAPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 207-212. ACM, 1982.

References
[5] B. Heeren, J. Hage, and D. Swierstra. Generalizing hindley-

milner type inference algorithms. Technical Report UU-CS-
2001-031, Institute of Information and Computing Sciences,
Utrecht University, 2002.

[6] S. J. Russell and P. Norvig. Artificial Intelligence: A modern
Approach. Prentice Hall Series in Artificial Intelligence.
Pearson Education, 2nd edition, 2003.

[7] J. Palsberg and M. I. Schwartzbach. Objected-oriented type
inference. In Proceedings of OOPSLA'91, ACM SIGPLAN
Sixth Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, pages 146-161,
October 1991.

[8] O. Agesen. The cartesian product algorithm: Simple and
precise type inference of parametric polymorphism. In
ECOOP '95 Conference Proceedings, Aarhus, Denmark,
August 1995.

Thank You Very Much!

