Sebastian Zimmeck

An Introduction to Type
Inference

Professor Alfred V. Aho - COMS E6998-2
Advanced Topics in Programming
Languages and Compilers

November 29, 2011

Presentation Overview

SRR =

Introduction

Lambda Calculus
Hindley-Milner Type Inference
Object-oriented Type Inference
Concluding Thoughts

1. Introduction

Type Inference / Type Reconstruction: Determining the
Type of an Expression in a Programming Language

Duck Typing: Determining the Type of an Expression
from the Way 1t 1s used

For Type-checked Languages that do not require
Declaration of Names

Object-oriented Languages: E.g., C# (version 3.0), C++
(C++11)

Functional Languages: E.g., ML, OCaml, Haskell

2. LLambda Calculus

e Lambda Calculus: Small Turing complete
Programming Language [1]

e x = Variable
EE’ = Application
/x.E = Lambda Abstraction
e Grammar: E::=x| EE’ | Ax.E

e 4 = Binding Operator
(In Ax.xy, Variable x is bound, Variable y is free)

2. LLambda Calculus

e Axioms of LLambda Calculus

— a-Equivalence: Change of bound Variable Name,
e.g., Ax.E = Ay.E[y/x]

— B-Equivalence: Application of Function to
Arguments, e.g., (Ax.E)y = E[y/x]

— n-Equivalence: Elimination of Redundant Lambda
Abstractions, e.g., if x is bound in E, Ax.(Ex) = E

e Substitution

— Process of replacing all free Occurrences of a
Variable by an Expression

3. Hindley-Milner Type Inference

e Hindley-Milner Type System [2,3,4] 1s based on
Lambda Calculus

e Extension: Let-clause (only syntactic sugar)
letx=EinE’
(letx=FE)in £’
(/x.E’)E

e Hindley-Milner Type Inference =
Type Inference Rules + Unification

3. Hindley-Milner Type Inference

Hindley-Milner Type Inference Rules [3]
1. For Variables

T — 1'(z)
1 }*“”_'” ! i

2. For Applications

'Fum Ei:mi— 1 Dlpym B2 i1
I'Fpn BaBEo i 1o

3. Hindley-Milner Type Inference

Hindley-Milner Type Inference Rules [3]

3. For Lambda Abstractions

rl,/.t' L {.t' : T|} Faar B To
B |—”_.” Axr — E T1 — T

4. For Let-Clauses

I'pam B1 i1 I'/xU {z : generalize(I',71)} Frun Eo : T

' Fgar letx = EyinEs :

3. Hindley-Milner Type Inference

e Unification can be used for Equalizing Type
Expressions (or find that they cannot be
equalized) [2]

e Examples of Unification [6]
— U(Knows(John,x), Knows(John, Jane)) = {x/Jane}

— U(Knows(John,x), Knows(y, Mother(y))) =
{y/John, x/Mother(John)}

— U(Knows(John,x), Knows(x, Elizabeth)) = fail

4. Object-oriented Type Inference

e Polymorphism: Polymorphic code Fragments can be
executed with Arguments of different Types

e Basic Type Inference Algorithm: Early Type
Inference Algorithm for Object-oriented Languages

[7]

e Cartesian Product Algorithm: Improves Precision and
Efficiency over Previous Algorithms and deals
directly with Inheritance [§]

4. Object-oriented Type Inference

Basic Type Inference Algorithm [7]

e Builds a directed Graph with Nodes
representing Type Variables and Edges
representing Constraints

 Whenever an Edge 1s added to the Graph,
Type Information 1s propagated to the next
higher Program Level

4. Object-oriented Type Inference

Basic Type Inference Algorithm [7]

e Example

x Y % b 4

O ® GO

Before > - After

e As it holds that type(y) & type (X), 1t 1s ensured
that only valid Types are inferred

4. Object-oriented Type Inference

Cartesian Product Algorithm [8]

 Example

ICVr max: arg

R = type(rcvr)
A = type(arg)

4. Object-oriented Type Inference

Cartesian Product Algorithm [8]

l.

The Cartesian Product Algorithm computes

the Cartesian Product of the Types

R*A={(_l,a_1),...,(r_l,a_t), ...,
(r_s,a_l), ..., (r_s,a_t)}

Then the Algorithm propagates each (r_1,a_j)
into a separate max-template (if such already
exists for a given pair, it 1s reused)

All Templates are unioned

4. Object-oriented Type Inference

Cartesian Product Algorithm [8]

B =type(rovr) = {int. Elocat}
A=type(arg) = {int,biglnt)

B »A={{Int.int). 11?1:-1319 Int). (Ilcat.int). (Elocat.biglnt)}
' \ \ I \
|I | II

fint, Tlcat. bigInt}

S. Concluding Thoughts

Lambda Calculus provides a fundamental Type
Inference Environment, particularly, for Functional
Languages

Popularity of object-oriented Programming
Languages gradually lead to new Type Inference
Algorithms and Environments

Type Inference 1s at the Core of Programming
Language Design, making it desirable to fully work it
out in the early Stages of Language Development

Parallelism between Type Checking and Type
Inference may provide further Insights

References

[1] A. Church. A set of postulates for the foundation of logic.
Annals of Mathematics, 33:346-366, 1932.

[2] J. R. Hindley. The principal type-scheme of an object in
combinatory logic. Transactions of the American
Mathematical Society, 146:29-60, 1969.

[3] R. Milner. A theory of type polymorphism in programming.
Journal of Computer and System Science, 17:348-374, 1978.

[4] L. Damas and R. Milner. Principal type-schemes for
functional programs. In POPL '82: Proceedings of the 9th

ACM SIGAPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 207-212. ACM, 1982.

References

[5] B. Heeren, J. Hage, and D. Swierstra. Generalizing hindley-
milner type inference algorithms. Technical Report UU-CS-
2001-031, Institute of Information and Computing Sciences,
Utrecht University, 2002.

[6] S. J. Russell and P. Norvig. Artificial Intelligence: A modern
Approach. Prentice Hall Series in Artificial Intelligence.
Pearson Education, 2nd edition, 2003.

[7] J. Palsberg and M. 1. Schwartzbach. Objected-oriented type
inference. In Proceedings of OOPSLA'91, ACM SIGPLAN
Sixth Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, pages 146-161,

October 1991.

[8] O. Agesen. The cartesian product algorithm: Simple and
precise type inference of parametric polymorphism. In
ECOOQOP '95 Conference Proceedings, Aarhus, Denmark,
August 1995.

N

Thank You Very Much!

