An Introduction to Applicative Functors

Bocheng Zhou
What Is an Applicative Functor?

● An Applicative functor is a Monoid in the category of endofunctors, what's the problem?

● WAT?!
Functions in Haskell

- Functions in Haskell are first-order citizens
- Functions in Haskell are curried by default
 - $f :: a -> b -> c$ is the curried form of $g :: (a, b) -> c$
 - $f = curry \ g, \ g = uncurry \ f$
- One type declaration, multiple interpretations
 - $f :: a->b->c$
 - $f :: a->(b->c)$
 - $f :: (a->b)->c$
 - Use parentheses when necessary:
 - $\text{>>=} :: \text{Monad} \ m \Rightarrow m \ a \to (a \to m \ b) \to m \ b$
Functors

- A functor is a type of mapping between categories, which is applied in category theory.

- What the heck is category theory?
A category is, in essence, a simple collection. It has three components:
- A collection of **objects**
- A collection of **morphisms**
- A notion of **composition** of these morphisms

Objects: X, Y, Z
Morphisms: f :: X->Y, g :: Y->Z
Composition: g . f :: X->Z
Category Theory 101

- Category laws:
 \[f \circ (g \circ h) = (f \circ g) \circ h \]

\[g \circ \text{id}_A = \text{id}_B \circ g = g \]
Functors Revisited

- Recall that a **functor** is a type of mapping between categories.
- Given categories \mathcal{C} and \mathcal{D}, a functor $F :: \mathcal{C} \to \mathcal{D}$
 - Maps any object A in \mathcal{C} to $F(A)$ in \mathcal{D}
 - Maps morphisms $f :: A \to B$ in \mathcal{C} to $F(f) :: F(A) \to F(B)$ in \mathcal{D}
class Functor f where
fmap :: (a -> b) -> f a -> f b

- Recall that a functor maps morphisms \(f :: A \rightarrow B \) in \(C \) to \(F(f) :: F(A) \rightarrow F(B) \) in \(D \)
- morphisms ~ functions
- \(C \) ~ category of primitive data types like Integer, Char, etc.
- \(D \) ~ category of “functorized types” like Maybe Integer, Maybe Chat, etc.
- fmap actually takes as parameter a function\((g :: a -> b)\), and returns a function\((g' :: f a -> f b)\)
Endofunctors

- A **functor** is a type of mapping between 2 categories.
- What if the 2 categories are the actually the same category? You got endofunctors.
- Functors in Haskell are actually endofunctors.

We have a category **Hask**, which treats ALL Haskell types as objects and Haskell functions as morphisms and uses (.) for composition.
Applicative Functors

class (Functor f) => Applicative f where
 pure :: a -> f a
 <*> :: f (a -> b) -> f a -> f b

-- fmap
 <$> :: (a -> b) -> f a -> f b
Function-in-the-box

- Applicative functors are another mechanism for dealing with programming with effects (values wrapped in a context).
- Applicative functors are more powerful than functors because they are able to deal with functions in a context.
- But how do functions get into a “box” in the first place?
How do functions get into a context?
- Just use `pure :: a -> f a`
- Use `fmap`:
  ```haskell```
  ```
 fmap (+) [1] or (+) <$> [1]
 >> [(+ 1)]
  ```
  ```haskell```
  ```
  (+) <$> [1, 2] <*> [3, 4]
  >> [4, 5, 5, 6]
  ```
data User = User { firstName :: Text,
 LastName :: Text,
 Email :: Text}

buildUser :: Profile -> Maybe User

buildUser p = User
 <$> lookup "first_name" p
 <*> lookup "last_name" p
 <*> lookup "email" p
Why Applicatives?

Q: We already got this Monad dude, who is, like, super awesome. Why do we need to hire you for this task?
A: I’m flexible on salary, and I get shit done faster
Q: Okay, what’s your name again?
A: Applicative Functor
Q: Geez, that’s a mouthful!
Applicatives vs. Monads

● Monads are about...
 ○ Effects
 ○ Composition
 ○ Sequence/Dependency
 ■ parsing context-sensitive grammar
 ■ branching on previous results

● Applicatives are about...
 ○ (less severe) Effects
 ○ Batching and aggregation
 ○ Concurrency/Independency
 ■ parsing context-free grammar
 ■ exploring all branches of computation
Disaster Averted (or Not)

- \texttt{miffy :: Monad m \Rightarrow m \text{Bool} \rightarrow m \text{a} \rightarrow m \text{a} \rightarrow m \text{a}}

 \texttt{miffy \text{mb} \text{mt} \text{me} = do}

 \quad \texttt{b <- mb}

 \quad \texttt{if b then mt else me}

 \texttt{>> miffy (Just True) (Just “Yay!”) Nothing = Just “Yay!”}

- \texttt{iffy :: Applicative f \Rightarrow f \text{Bool} \rightarrow f \text{a} \rightarrow f \text{a} \rightarrow f \text{a}}

 \texttt{iffy \text{fb} \text{ft} \text{fe} = \text{cond} <$> \text{fb} <*> \text{ft} <*> \text{fe} where}

 \quad \texttt{cond \text{b} \text{t} \text{e} = if \text{b} then \text{t} else \text{e}}

 \texttt{>> iffy (Just True) (Just “Yay!”) Nothing = Nothing}
Should It Always Fail Early?

● Monads have this inherent property that they can branch on the results of previous computations, which implies they always fail early (short-circuited).
● What if you want to design a signup page for your website?
● What if you actually don’t really care whether the computation should fail early or not?
Weaker But Sometimes Better

- Applicatives are weaker than Monads, which also means they are more common than Monads
- Applicative code is usually cleaner and shorter than its monadic counterpart, and lends itself to optimization
 - Facebook’s Haxl provides a DSL that expose the monadic interfaces and converts them to applicatives when necessary
- Use the least powerful mechanism to get things done
- When there’s no dependency issues or branching, just use applicatives
Like Father, Like Son

- All monads are applicatives, but not all applicatives are monads
 - ZipList
- Applicative is actually a superclass of monad
- Fun fact: Actually applicatives were discovered later than monads
- Due to historical reasons, applicative is NOT a superclass of monad in Haskell yet (but it soon will be)
Applicative => Monad Proposal (AMP)

- Applicative becomes a superclass of Monad
- Why?
 - lack of unity means there is a lot of duplication of API:
 - \(\text{liftA} :: (\text{Applicative } f) \rightarrow (a \rightarrow b) \rightarrow f\ a \rightarrow f\ b \)
 - \(\text{liftM} :: (\text{Monad } m) \rightarrow (a \rightarrow b) \rightarrow m\ a \rightarrow m\ b \)
 - \(\text{pure} = \text{return}, \ (<*> = \text{ap}) \)
 - \(\text{ap mf ma} = \text{do} \)
 - \(f \leftarrow mf \)
 - \(a \leftarrow ma \)
 - \(\text{return } \$\ f\ a \)
 - Enforce the use of the least restrictive functions
So an Applicative Functor Is...

- A Monoid in the category of endofunctors. That’s it.
- Dammit! What the heck is a Monoid?
 - class Monoid m where
 mempty :: m
 mappend :: m -> m -> m
 - instance Monoid [a] where
 mempty = []
 la mappend lb = (++) <$> la <*> lb
Resources

- Applicative programming with effects
- Applicative Functors: Hidden in plain view
- Haskell/Category Theory
- Introduction to functional programming
- Beginning Haskell: A Project-Based Approach
- Haskell Ryan Gosling