
Garbage Collection
Weiyuan Li

Why GC exactly?

- Laziness
- Performance

- free is not free
- combats memory fragmentation

- More flame wars

Basic concepts

- Type Safety
- Safe: ML, Java (not really)
- Unsafe: C/C++

- Reachability
- Root set

http://www.cis.upenn.edu/~bcpierce/courses/629/papers/Saraswat-javabug.html

Reference Counting GC

- Identifies garbage as an object changes from
reachable to unreachable.

- Each object keeps a count. Once the count falls
to zero, the object can be freed

Reference Counting GC (cont.)

- High overhead
- additional operations
- extra space
- not evenly-distributed (so is manual memory

management)
- Cannot handle self-referencing structures

- no TSP for Perl
- cycle detection (Python)

Reference Counting GC (cont.)

- Simple enough, works in most situations
- Cyclic data structures are not that common

- One huge benefit
- No more close/closedir

Trace-Based GC

- Runs periodically
- Starting from the root set, find all reachable

objects and reclaim the rest
- Stop-the-world style

Mark-and-sweep

- Chunks are presumed unreachable, unless
proven reachable by tracing

- Marking phase
- Sweeping phase

Free, Unreached, Unscanned, Scanned

Mutator runs:

Marking:

Sweeping:

Free Unreached

Scanned

UnscannedScanned

Free Unreached

UnreachedFree

Baker’s mark-and-sweep GC

- Avoids examining the entire heap by
maintaining a list of allocated objects
(Unreached)

- Returns modified Free and Unreached lists

Mark-and-compact

- Moves reachable objects around to eliminate
fragmentation

- Allocation is fast
- Better locality

Copying collector

- Divide the heap into two semispaces.
- Marking phase: find reachable objects
- Copy phase: copy all reachables the other

semispace
- Improved: Cheney’s collector

Comparison

Basic Mark-and-sweep # of memory chunks in heap

Baker’s algorithm # of reached objects

Basic Mark-and-copy # of chunks + reached objects

Cheney’s collector # of reached objects

More...

- Adaptive collector
- Incremental garbage collection
- Partial-collection

- Objects “die young”
- Generational collector (copying partial-collection)

- The Train Algorithm
- handles mature objects better

Boehm Garbage Collection

- A conservative GC for C/C++
- Why special?

- Not type safe
- Uncooperative: no good way to tell pointer from plain

data
- Memory layout restriction

- <gc_cpp.h>
- overloads operator new for POD (plain old data) and

classes without destructors
- class gc overrides new and delete for classes with

destructors

Boehm Garbage Collection (cont.)

- Metadata
- Boehm GC stores objects in special memory “chunks”
- Chunks store metadata in their headers
- Objects are metadata-free
- GC also maintains a list of allocated chunks
- All chunks are aligned in memory

Boehm Garbage Collection (cont.)

- Simple heuristics to identify
pointers

- Rule out: integers greater
than the largest heap
memory address and
smaller than the smallest
one

- Metadata contains pointer
to the entry in the chunk
list

- Use size info to check if
pointer is valid

Boehm Garbage Collection (cont.)

- Not perfect (duh!)
- Likely to leak memory
- Cannot handle fragmentation

- Acceptable overhead
- Still has marking and sweeping phases

- Can be used as a leak detector

Go Lang 1.0
● mark-and-sweep (parallel implementation)
● non-generational
● non-compacting
● mostly precise
● stop-the-world
● bitmap-based representation
● zero-cost when the program is not allocating memory (that is:

shuffling pointers around is as fast as in C, although in practice this
runs somewhat slower than C because the Go compiler is not as
advanced as C compilers such as GCC)

● supports finalizers on objects
● there is no support for weak references

Go Lang 1.4 (expected)
● hybrid stop-the-world/concurrent collector
● stop-the-world part limited by a 10ms deadline
● CPU cores dedicated to running the concurrent collector
● tri-color mark-and-sweep algorithm
● non-generational
● non-compacting
● fully precise
● incurs a small cost if the program is moving pointers around
● lower latency, but most likely also lower throughput, than Go 1.3 GC

OCaml

- Functional programming style involve large
amount of small allocation
- Generational GC

- Minor heap: small, fixed-size
- Major heap: larger, variable-size
- Heap compaction cycles

References
1. Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman

 Compilers: Principles, Techniques, and Tools, Second Edition
Pearson Addison-Wesley, 2007, ISBN 0-321-48681-1

2. Hickey, Yaron Minsky. Anil Madhavapeddy. Jason.
Real World OCaml; O'Reilly Media, Inc., 2013.

3. Brian Goetz
Java theory and practice: A brief history of garbage collection http://www.ibm.
com/developerworks/library/j-jtp10283/index.html

4. Jez Ng
How the Boehm Garbage Collector Works
http://discontinuously.com/2012/02/How-the-Boehm-Garbage-Collector-Works/

5. Vijay Saraswat
Java is not type-safe
http://www.cis.upenn.edu/~bcpierce/courses/629/papers/Saraswat-javabug.html

6. An Introduction to Garbage Collection by Richard Gillam
http://icu-project.org/docs/papers/cpp_report/an_introduction_to_garbage_collection_part_i.html

http://www.ibm.com/developerworks/library/j-jtp10283/index.html
http://www.ibm.com/developerworks/library/j-jtp10283/index.html
http://www.ibm.com/developerworks/library/j-jtp10283/index.html
http://discontinuously.com/2012/02/How-the-Boehm-Garbage-Collector-Works/
http://discontinuously.com/2012/02/How-the-Boehm-Garbage-Collector-Works/
http://www.cis.upenn.edu/~bcpierce/courses/629/papers/Saraswat-javabug.html
http://icu-project.org/docs/papers/cpp_report/an_introduction_to_garbage_collection_part_i.html
http://icu-project.org/docs/papers/cpp_report/an_introduction_to_garbage_collection_part_i.html

