
Concurrency in Hardware
Description Languages

Chae Jubb
27 October 2014

Concurrency in HDLs

● More natural than in conventional
programming languages
○ Because hardware is inherently parallel!

● Data Flow
● “Composition of Components” model

“Composition of Components”

Control Flow Paradigm

● if / goto
● loops
● subroutine
● e.g. C, Python, Haskell

Data Flow Paradigm
● If S depends on A,

updating A automatically
updates S

● Layperson’s example:
spreadsheets

● Hardware Description
Languages (HDLs)

Hardware Description Languages

● Simulate hardware
● Data Flow paradigm
● Explicit notion of time
● Synthesizable subset
● Inherently parallel simulations w.r.t. clock
● e.g. Verilog, VHDL, SystemC

Threaded Concurrency
● Shared memory

○ semaphores
○ waiting

● Multiple threads
○ Start and stop

programmatically
● Thread scheduling not

consistent
● e.g. pthreads in C

pthreads (C)
static pthread_mutex_t mut;

void *body(void *args) {

int *arg_in = (int *) args;

pthread_mutex_lock(&mut);

*arg_in = *arg_in + 5;

pthread_mutex_unlock(&mut);

return NULL;

}

int main() {

pthread_t thread0;

pthread_t thread1;

int *argument = malloc(sizeof(int));

*argument = 0;

pthread_create(&thread0, NULL, body, (void*) argument);

pthread_create(&thread1, NULL, body, (void*) argument);

pthread_join(thread0, NULL);

pthread_join(thread1, NULL);

printf("Output: %d\n", *argument);

}

Inherent Concurrency (Verilog)

● Hardware has multiple components
● These work concurrently
● Consider Content Addressable Memory

(CAM)
○ Used in networking

■ Routers
■ DNS

○ Read, Write, Search simultaneously

Inherent Concurrency (Verilog)
module cam

...

/* write functionality */

decoder write_dec(.inp_i(d.write_index_i), .enable(d.write_i), .out_o(write_reg_enable));

always_comb begin for (int iter = 0; iter < 2**ARRAY_SIZE_LOG2; ++iter) begin cam_i[iter] = d.write_data_i; end end

/* read functionality */

mux #(.SELECT_WIDTH(ARRAY_SIZE_LOG2), .DATA_WIDTH(ARRAY_WIDTH_LOG2)) read_data_mux(.inp_i(cam_o), .selector_i(d.
read_index_i), .out_o(out_value));

mux #(.SELECT_WIDTH(ARRAY_SIZE_LOG2), .DATA_WIDTH(0)) read_valid_mux(.inp_i(cam_v_o), .selector_i(d.read_index_i), .out_o
(written));

/* search functionality */

equality_checker #(.DATA_WIDTH(ARRAY_WIDTH_LOG2), .NUM_COMP(2**ARRAY_SIZE_LOG2)) eq_check_search (.inp_i(cam_o), .
valid_i(cam_v_o), .data_i(d.search_data_i), .out_o(cam_found));

priorityencoder #(.SIZE(ARRAY_WIDTH_LOG2)) search_priorityenc (.inp_i(cam_found), .out_o(out_index), .valid_o(found));

…

endmodule

How SystemC Handles Concurrency

SystemC (Naturally Concurrent)

● C++ Library that emulates HDL
○ C++ style syntax

● Analogues with hardware
○ Classes::Components
○ Class Variables::Inputs/Outputs of Components
○ Thread(s)::(Multiple) functions of component

SystemC Description of Adder
Interface
SC_MODULE(adder) {

 sc_in<bool> clk;

 sc_in<bool> rst;

 sc_in<long int> in_0;

 sc_in<long int> in_1;

 sc_out<long long int> out_data;

 void beh(); /* behavior */

 SC_CTOR(adder) {

 SC_METHOD(beh);

 sensitive << clk.pos() << rst;

 }

};

Functionality
void adder::beh()

{

 if (!rst.read()) {

 RESET:

 out_data.write(0);

 } else if (clk.event()) {

 long int tmpInput0 = in_0.read();

 long int tmpInput1 = in_1.read();

 out_data.write(tmpInput0 + tmpInput1);

 }

}

SystemC and Concurrency

● Methods (seen previously)
● Threads
● CThreads

SystemC Methods

● Run when triggered
○ Triggers set by sensitivity list
○ Similar to function call

● No lasting local storage across invocations
● Each triggering is independent of previous

SystemC (C)Threads

● Correspond to single functionality of
component

● Different than POSIX Thread
○ Can have multiple SC_THREADs, but still have

single threaded program
● Not explicitly called by user

SystemC (C)Threads

● Conventions
○ Infinite Loop
○ Wait

■ Positive clock edge
■ Reset signal

● CTHREADs (Clocked threads)
○ Can only wait on clock signal
○ Jumps to beginning of thread on reset

SystemC Simulation

1. Initialization
2. Eval and repeat
3. “Update Phase”
4. Goto 2 if necessary
5. Increment time and

Goto 2 or terminate

SystemC Features

● Clock and Time
● Signals and Concurrency
● Events and Notifications

Concurrency in HDLs

● Different paradigm than control flow
languages

● Explicit notion of time and a clock
○ HDLs concurrent with respect to this clock

● Easier to model because hardware is
inherently parallel

References

● Michele Petracca. CSEE 6868: System-on-
Chip Platforms. Lecture Notes. Columbia
University, Fall 2014.

● https://www.ida.liu.se/~TDDI08/labs/lab1.pdf
● SystemC 2.0.1 LRM
● Verilog Code: Chae Jubb and Tim Paine

