
The Rise of OOP: Part 1
[The Early Years]

Dina Lamdany

The Java Tutorials
“If you've never used an object-oriented programming language
before, you'll need to learn a few basic concepts before you can
begin writing any code.

This lesson will introduce you to objects, classes, inheritance,
interfaces, and packages.

Each discussion focuses on how these concepts relate to the
real world, while simultaneously providing an introduction to the
syntax of the Java programming language.”

How did we get here?

C.A.R Hoare, “Record Handling,”
1966
“The most valuable feature of a programming
language is that it provides the programmer
with a conceptual framework which enables
him to think more clearly about his
problems and about effective methods for
their solution, and a notational technique
which enables him to express his thoughts
clearly.”

“A fundamental feature of our understanding of the world
is that we organize our experience as a number of
distinct objects (tables and chairs, bank loans and
algebraic expressions, polynomials and persons,
transistors and triangles, etc.); and our thought language,
and actions are based on the designation, description, and
manipulation of these objects, either individually or in
relationship with other objects. When we wish to solve a
problem on a computer, we often need to construct
within the computer a model of that aspect of the real
or conceptual world to which the solution of the
problem will be applied.”

Sketchpad (~1963) Ivan Edward Sutherland,
Dissertation Thesis

“Sketchpad has shown the most usefulness as an aid to the
understanding of processes, such as the notion of linkages, which
can be described with pictures.”

“The sketchpad system, by eliminating typed statements (except for
legends) in favor of line drawings, opens up a new area of man-machine
communication...The knowledge of the facilities which would prove
useful could only be obtained by actually drawing them.

Examples?

“A subpicture capability for including arbitrary
symbols on a drawing, a constraint capability
for relating the parts of a drawing in any
computable way, and a definition copying
capability for building complex
relationships from combinations of simple
atomic constraints.”

SIMULA I (~1965)
“The language itself must be such that users
were invited to make efficient programs”
“The writing of the SIMULA program was
almost always useful, since the development of
this program (regarded as a system
description) resulted in a better understanding
of the system.”

“The Development of the Simula Languages” by Kristen Nygaard & Ole-
Johan Dahl

SIMULA I → SIMULA 67 (~1967)
“We had observed that processes often shared a number of
common properties, both in data attributes and actions, but
were structurally different in other respects so that they had to be
described by separate declarations.”
“We needed subclasses of processes with own actions and
local data stacks, not only of pure data records...group
together common process properties in such a way that they
could be applied later, in a variety of different situations not
necessarily known in advance...the subclass idea of Hoare
was a natural starting point”
“The basic concept should be classes of objects”

Why all of this philosophizing?

“Software Engineering” Conference by
NATO Science Committee in
Garmisch, Germany, October 1968

In Europe alone had 10,000 computers, growing 25 – 50% per
year
OS/360 cost IBM over $50 million dollars a year, 5000 man
hours
“In 1958, a European general purpose computer manufacturer
often had less than 50 software programmers, now they probably
number 1000 – 2000 people; what will be needed in 1978?”

“The basic problem is that certain classes of systems are placing
demands on us which are beyond our capabilities and our
theories and methods of design and production at this time.
There are many areas where there is no such thing as a crisis—
sort routines, payroll applications, for example. It is large
systems that are encountering great difficulties.”

“The research, development, and production phases are often
telescoped into one process...In the cold light of day, we know
that a step-by-step approach separating research and
development from production is less risky and more likely
to be successful.”

Back to philosophy...

Smalltalk, Alan Kay, ~1972
“Though it has noble ancestors indeed, Smalltalk’s contribution is
a new design paradigm–which I called object-oriented–for
attacking large problems of the professional programmer, and
making small ones possible for the novice user. Object-oriented
design is a successful attempt to qualitatively improve the
efficiency of modeling the ever more complex dynamic
systems and user relationships made possible by the silicon
explosion.”

Alan Kay, “The Early History of Smalltalk”

1. Everything is an object
2. Objects communicate by sending and

receiving messages (in terms of objects)
3. Objects have their own memory (in terms

of objects)
4. Every object is an instance of a class

(which must be an object)
5. The class holds the shared behavior for

its instances (in the form of objects in a
program list

“What Sketchpad called masters and instances, Simula called activities
and processes. Moreover, Simula was a procedural language for
controlling Sketchpad-like objects, thus having considerably more flexibility
than constraints (though at some cost in elegance) This was the big hit, and I’
ve not been the same since.
I think the reason the hit had such impact was that I had seen the idea enough
times in enough different forms that the final recognition was in such general
terms to have the quality of an epiphany. My math major had centered on
abstract algebras with their few operations generally applying to many
structures. My biology manor had focused on both cell metabolism and larger
scale morphogenesis with its notions of simple mechanisms controlling
complex processes and one kind of building block able to differentiate into all
needed building blocks. The 220 file system, the B5000, Sketchpad, and
finally Simula, all used the same idea for different purposes. Bob Barton,
the main designer of the B5000 and a professor at Utah had said in one of
his talks a few days earlier: “The basic principle of recursive design is to
make the parts have the same power as the whole.”

...1979, Bjarne Stroustroup starts
working on “C with Classes”

A taste of what is to come...
“Object oriented to most people meant ‘good’...you will notice
there is no mention of object-oriented programming in the first
book”
-Bjarne Stroustroup, Interview

“Its main purpose was to make writing good programs easier and
more pleasant for the individual programmer. There never was a
C++ paper design; design, documentation, and implementation
went on simultaneously”
-The C++ Programming Language, Bjarne Stroustrup, 1986

Some things to look forward to

C/C++ and how they incorporate these new
ideas

Java and its rise to dominance

Resources
SOFTWARE ENGINEERING: Report on a conference sponsored by the
NATO SCIENCE COMMITTEE (Garmisch, Germany, 7th to 11th October
1968)
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

Sketchpad: A man-machine graphical communication system. http://www.cl.
cam.ac.uk/techreports/UCAM-CL-TR-574.pdf

“The Development of the Simula Languages” by Kristen Nygaard, Ole-Johan
Dahl http://phobos.ramapo.edu/~ldant/datascope/simula%20history.pdf

Great book on the history of computing, OOP, etc: “Histories of Computing” by
Michael Mahoney

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf
http://phobos.ramapo.edu/~ldant/datascope/simula%20history.pdf

“Smalltalk’s design–and existence–is due to the insight that everything
we can describe can be represented by the recursive composition of a
single kind of behavioral building block that hides its combination of
state and process inside itself and can be dealt with only through the
exchange of messages. Philosophically, Smalltalk’s objects have much
in common with the monads of Leibniz and the notions of 20th century
physics and biology. Its way of making objects is quite Platonic in that
some of them act as idealisations of concepts–Ideas–from which
manifestations can be created. That the Ideas are themselves
manifestations (of the Idea-Idea) and that the Idea-Idea is a-kind-of
Manifestation-Idea–which is a-kind-of itself, so that the system is
completely self-describing– would have been appreciated by Plato as
an extremely practical joke [Plato].”

A joke, courtesy of Alan Kay:

