
The PyPy Interpreter Framework

Chris Narrikkattu

Roadmap

• Common issues in implementing dynamic
language VMs

• PyPy Interpreter Framework as a solution

• JIT Generation via the Framework

• Downsides of the Framework

The Issues of Dynamic Language
Implementations

• Dynamic language implementations are
implemented/tied to specific platforms
(CPython vs. Jython vs. IronPython)

• Encodes low-level details and design decisions
directly into implementation (clutter)

• Adding a global implementation feature such
as a JIT is difficult (see Unladen Swallow,
Psyco, Stackless Python), experiments are
costly!

The Idea of the PyPy Framework

• Write your interpreter in a high-level language

• Translate your interpreter to add in platform-
specific features/decisions

• RPython is a subset of Python amenable to
flow and type analysis, thus PyPy could create
a Python interpreter entirely in Python!

Framework Architecture

From "PyPy's Approach to Virtual Machine Construction",
Armin Rigo and Samuele Pedroni

Framework Architecture

Live code objects, not an
AST!

Allows for arbitrary
(normal) Python as a
metaprogramming
language while importing.

Framework Architecture

From "PyPy's Approach to Virtual Machine Construction",
Armin Rigo and Samuele Pedroni

Object Space Architecture

• Bytecode Interpreter for flow control

• Object Space implements operations on objects

• Flow Object Space records flow graph

• Reuse Bytecode Interpreter in flow graphing

Py Bytecode Interpreter

Standard Object Space

Py Bytecode Interpreter

Flow Object Space

PyPy Python Interpreter Flow Annotator

Framework Architecture

Make concrete lower-level
decisions (how to
implement GC? Transform
entire interpreter to have
a JIT?)

Framework Architecture

Generate code for target
platform (C vs. JVM vs.
CLR, etc.)

JIT Compiler Generation

• Writing a decent JIT for your new language
manually is hard (ask the JS implementers..)

• Keeping semantics the same between non-JIT
and JIT is a source of bugs

• Changing your language is harder because you
have to change the JIT as well

• PyPy, in contrast, lets you generate a JIT
automatically for your language

JIT Compiler Generation

 Lua interpreting
Implementation

Implementation
interpreting

MyLang Bytecode

If you write your interpreter in Lua and run with LuaJIT

Input

Output
MyLang

Code

LuaJIT compiles the Lua to
machine code

LuaJIT DOES NOT optimize
your language (the

MyLang code)

JIT Compiler Generation

 Implementation
as machine code

JIT Tracer

If you write your interpreter in RPython and
translate it to C with the JIT option set:

Input

Output
MyLang

Code

Translation turned your
interpreter into C

JIT understands MyLang,
emits specialized code for

MyLang program

 Implementation
as traceable

bytecode

JIT Compiler Generation

• Generates a tracing JIT (trace loops in code)

• JIT is of your interpreter specialized to the
user's code, not just the interpreter itself

• Based on partial evaluation techniques

– Futamura, “Partial Evaluation of Computation
Process - An Approach to a Compiler-Compiler”

JIT Compiler Generation

• Automatically generated

– Added a new bytecode? Just retranslate!

• Small marginal effort to add (a few hints)
from rpython.rlib.jit import JitDriver
jitdriver = JitDriver(greens=['pc', 'program', 'bracket_map'], reds=['tape'])

#top of bytecode loop
 while pc < len(program):
 jitdriver.jit_merge_point(pc=pc, tape=tape, program=program,
 bracket_map=bracket_map)

def jitpolicy(driver):
 from rpython.jit.codewriter.policy import JitPolicy
 return JitPolicy()

"What RPython allows one to do is profoundly different
to the traditional route. In essence, one writes an
interpreter and gets a JIT for free. I suggest rereading
that sentence again: it fundamentally changes the
economics of language implementation for many of us."
- Laurence Tratt,"Fast Enough VMs in Fast Enough Time"

Other PyPy Interpreter Flexibility

• Thunk Object Space

• Taint Object Space

• GC choice (Boehm, generational, etc.)

• Stackless transformation

• Implementation optimizations (such as tagged
pointer for small ints)

Downsides

• RPython is not Python, you do not have full
dynamism

• Translation framework is long and memory
intensive (45 mins/2-4 GB for PyPy Python
interpreter)

• Full retranslate on any change

– You can do tests without translating by running as
(slow) normal Python program

Summary

• Creating a language VM is hard enough work

• RPython is high-level vehicle to allow
translation through a framework

• PyPy Framework allows transforms such as
adding a JIT compiler with very little marginal
cost to implementer

• Concentrate on semantics while getting
acceptable speed for almost free

More Resources

• Main PyPy Site

• http://pypy.org

• Papers and Talks
https://pypy.readthedocs.org/en/latest/extradoc.html

• RPython
http://doc.pypy.org/en/latest/getting-started-dev.html

• “Fast Enough VMs in Fast Enough Time”
http://tratt.net/laurie/tech_articles/articles/fast_enough_vms_in_fast_enough_time

• “Tutorial: Writing an Interpreter with PyPy, Part 1”
http://morepypy.blogspot.com/2011/04/tutorial-writing-interpreter-with-pypy.html

