
Just in Time Compilation
Louis Croce



JIT Compilation: What is it?

“Compilation done during execution of a 
program (at run time) rather than prior to 
execution” -Wikipedia
● Seen in today’s JVMs and elsewhere



Outline

● Traditional Java Compilation and Execution
● What JIT Compilation brings to the table
● Optimization Techniques
● JIT Compilation in JRockit/HotSpot JVMs
● JRockit Breakdown Optimization Example
● JIT Compilation elsewhere



Outline

● Traditional Java Compilation and Execution
● What JIT Compilation brings to the table
● Optimization Techniques
● JIT Compilation in JRockit/HotSpot JVMs
● JRockit Breakdown and Optimization 

Example
● JIT Compilation elsewhere



Traditional Java Compilation and 
Execution
● 2 steps
● A Java Compiler compiles high level Java 

source code to Java bytecode readable by 
JVM

● JVM interprets bytecode to machine 
instructions at runtime



● Advantages
○ platform independence (JVM present on most 

machines)
○ reflection: modification of program at runtime

● Drawbacks
○ need memory
○ not as fast as running pre-compiled machine 

instructions

Traditional Java Compilation and 
Execution



Outline

● Traditional Java Compilation and Execution
● What JIT Compilation brings to the table
● Optimization Techniques
● JIT Compilation in JRockit/HotSpot JVMs
● JRockit Breakdown and Optimization 

Example
● JIT Compilation elsewhere



Goals in JIT Compilation

● combine speed of compiled code w/ 
flexibility of interpretation

Goal: “surpass the performance of static 
compilation, while maintaining the advantages 
of bytecode interpretation” -Wikipedia



JIT Compilation (in JVM)
● Builds off of bytecode idea
● A Java Compiler compiles high level Java 

source code to Java bytecode readable by 
JVM

● JVM compiles bytecode at runtime into 
machine readable instructions as opposed to 
interpretting

● run compiled machine readable code
● Seen in many JVM implementations today



Advantages of JIT Compilation

● Compiling: can perform AOT optimizations
● Compiling bytecode (not high level code) => 

can perform AOT optimizations faster
● can perform runtime optimizations
● executing machine code is faster than 

interpretting bytecode



Drawbacks of JIT Compilation

● Startup Delay
○ must wait to compile bytecode into machine-

readable instructions before running
○ bytecode interpretation may run faster early on

● Limited AOT optimizations b/c of time
● JVM needs compiler packaged in now
● Compilers for different types of arches

○ for some JITs like .net
○ (not for JVM)



Security issues

● Executable space protection
○ Bytecode compiled into machine instructions that are 

stored directly in memory
○ those instructions in memory are run
○ Have to check that memory



Outline

● Traditional Java Compilation and Execution
● What JIT Compilation brings to the table
● Optimization Techniques
● JIT Compilation in JRockit/HotSpot JVMs
● JRockit Breakdown and Optimization 

Example
● JIT Compilation elsewhere



Optimization techniques
● Detect frequently used bytecode instructions 

& optimize
○ # of times a method executed
○ detection of loops

● Combine interpretation with JIT Compilation
○ method used in popular Hotspot JVM incorporated 

as of Java8’s release
● Server & Client specific optimizations
● More useful in longer running programs

○ have time to reap benefits of compiling/optimizing



Outline

● Traditional Java Compilation and Execution
● What JIT Compilation brings to the table
● Optimization Techniques
● JIT Compilation in JRockit/HotSpot JVMs
● JRockit Breakdown and Optimization 

Example
● JIT Compilation elsewhere



A look at a traditional JVM

● HotSpot JVM (pre-Java 8)
○ straight bytecode interpretation
○ limited optimizations



JRockit JVM

● “The industry’s highest performing JVM now 
built into Oracle Fusion Middleware.” -Oracle

● Currently integrated with Sun’s (now Oracle’
s) HotSpot JVM

● Why?
○ JIT



When to use which?
Hotspot

 Desktop application
 UI (swing) based application
 Desktop daemon
 Fast starting JVM

JRockit
 Java application server
 High performance application
 Need of a full monitoring environment



HotSpot’s JRockit Integration

● Launched with Java8
● By default interprets
● Optimizes and compiles hot sections
● runs compiled code for hot sections



Outline

● Traditional Java Compilation and Execution
● What JIT Compilation brings to the table
● Optimization Techniques
● JIT Compilation in JRockit/HotSpot JVMs
● JRockit Breakdown and Optimization 

Example
● JIT Compilation elsewhere



JRockit Breakdown

● NOTE: Compilation and optimizations are 
performed on java BYTEcode in the JVM.



JRockit JVM
byte



JRockit JVM
byte



JRockit JIT Compilation



JRockit Step 1: JIT Compilation

● When section of instructions called
○ compile bytecode into machine code just in time
○ run compiled machine code

● Not fully optimized
● May be slower than bytecode interpretation
● JVM Startup may be slower than execution



JRockit Step 2: Monitor Threads

● Identify which functions merit optimization
● Sampler thread

○ checks status of active threads
● Hot methods are ear-marked for optimization
● Optimization opportunities occur early on



JRockit Step 3: Optimization

In background, run compilation of optimized 
“hot” methods

(Compile optimized bytecode into machine 
readable instructions)



JRockit Optimization Example

● NOTE: Optimizations are performed on java 
BYTEcode in the JVM.

● In the following example from Oracle, the 
code is written in Java so that it is easier to 
read, but the JRockit JVM is performing the 
optimizations on the bytecode instructions



JRockit Optimization Example



Optimization Step 1: Starting Point
public void foo() {

y = b.get();
...do stuff...
z = b.get();
sum = y + z;

}



Step 2: Inline Final Method
public void foo() {

y = b.value;
...do stuff...
z = b.value;
sum = y + z;

}
● swap b.get() with get() method’s contents



Step 3: Remove Redundant Loads
public void foo() {

y = b.value;
...do stuff...
z = y;
sum = y + z;

}
● swap z=b.value(); with z=y; 



Step 4: Copy Propagation
public void foo() {

y = b.value;
...do stuff...
y = y;
sum = y + y;

}
● no use for z 



Step 5: Eliminate Dead Code
public void foo() {

y = b.value;
...do stuff...
// nothing
sum = y + z;

}
● y=y does nothing, delete it 



JRockit Example



Outline

● Traditional Java Compilation and Execution
● What JIT Compilation brings to the table
● Optimization Techniques
● JIT Compilation in JRockit/HotSpot JVMs
● JRockit Breakdown and Optimization 

Example
● JIT Compilation elsewhere



JIT Elsewhere: More bytecode langs

JIT in JVM has been driving force in movement 
of more languages to compile to java byte code
● Jython
● JRuby
● Groovy



JIT Elsewhere: C++ like languages
● by default, C++ uses AOT
● C#

○ MSIL == java bytecode
○ JIT

● *Not certain how these work
● CLANG

○ Uses LLVM on backend
○ can benefit from JIT Compilation of bytecode

● C++/CLI (Common Language Infrastructure)
○ Language from Microsoft



JIT Elsewhere: Web Browsers

● Goal: optimize javascript
● Seen today in

○ Mozilla’s Tamarin
○ safari webkit FTL JIT compiler
○ chrome’s V8
○ all browsers except ie8 and earlier



Questions?



Sources
● Oracle Docs (for JRockit JVM)

○ http://docs.oracle.
com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagno
s/underst_jit.html

● CLANG info
○ http://clang.llvm.org/comparison.html

● JVM comparison
○ http://www.dbi-services.com/index.php/blog/entry/a-

comparison-of-java-virtual-machines-hotspot-jvm-vs-
jrockit-jvm

http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/underst_jit.html
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/underst_jit.html
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/underst_jit.html
http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/underst_jit.html
http://clang.llvm.org/comparison.html
http://clang.llvm.org/comparison.html
http://www.dbi-services.com/index.php/blog/entry/a-comparison-of-java-virtual-machines-hotspot-jvm-vs-jrockit-jvm
http://www.dbi-services.com/index.php/blog/entry/a-comparison-of-java-virtual-machines-hotspot-jvm-vs-jrockit-jvm
http://www.dbi-services.com/index.php/blog/entry/a-comparison-of-java-virtual-machines-hotspot-jvm-vs-jrockit-jvm
http://www.dbi-services.com/index.php/blog/entry/a-comparison-of-java-virtual-machines-hotspot-jvm-vs-jrockit-jvm


Sources
● Wikipedia

http://en.wikipedia.org/wiki/JRockit
http://en.wikipedia.org/wiki/Interpreted_language
http://en.wikipedia.org/wiki/Just-in-time_compilation
http://wingolog.org/archives/2011/06/21/security-

implications-of-jit-compilation

http://en.wikipedia.org/wiki/JRockit
http://en.wikipedia.org/wiki/JRockit
http://en.wikipedia.org/wiki/Interpreted_language#Advantages_of_interpreting_a_language
http://en.wikipedia.org/wiki/Interpreted_language#Advantages_of_interpreting_a_language
http://en.wikipedia.org/wiki/Just-in-time_compilation
http://en.wikipedia.org/wiki/Just-in-time_compilation
http://wingolog.org/archives/2011/06/21/security-implications-of-jit-compilation
http://wingolog.org/archives/2011/06/21/security-implications-of-jit-compilation
http://wingolog.org/archives/2011/06/21/security-implications-of-jit-compilation

