COLUMBIA UNIVERSITY
PROGRAMMING LANGUAGES AND TRANSLATORS
COMS W4115

SOUND LANGUAGE

DEVELOPERS

Andrew Goldin Cindy Long Matt Kim Kevin Walters

Project Manager System Architect System Integrator Language Guru
adg2160@columbia.edu x12253@columbia.edu mjk2189@columbia.edu kmw2168@columbia.edu

SUPERVISOR DATE
Professor Alfred Aho May 16, 2013

WHAT IS Soul?

e Sound Language
e Soul is for musicians ;"m_"-[

O From amateur to expert

O From hobbyist to professional

e Soul was born out of a lack of an easier standard
way to do MIDI-based music programming

e Some languages such as Java support MID|
functionality, but are not very intuitive

SoulL IS SIMPLE

e Playing a note in Java:

import javax.sound.midi.¥;
public class PlayD {

public static veoid main(String([] args) throws Exception {

Sequence segquence = new Sequence (Sequence. PP, 1&);

Track track = sequence.createTrack();

track.add(new MidiEvent (new ShortMessage (ShortMessage.NOTE_ON, 0, &2, 127), 0));
track.add(new MidiEvent (new ShortMessage (ShortMessage.NOTE_OFF, 0, &2, 0), ©4));

Sequencer sequencer = MidiSystem.getSequencer();

sequencer.cpen();

sequencer.setSequence (sequence) ;

sequencer.addMetaEventListener (new MetaEventListenexr() ({
public void meta (MetaMessage m) {

if (m.getTypel) == 47) { System.exit(0); }

}):

sequencer._start();

e Playing a note in Soul:
play(Note('D4', 127, WHOLE));

S

SOUND LANGUAGE

DEMOS

e [winkle Twinkle Little Star

| |
| |

H
%‘: P J) :

- -
Twin-kle, twin-kle, lit - tle star, how 1 won-der what you are!

e [winkle Twinkle Little Star 2.0

TS U » » [,

LD

%)= z o = = 7 =
[. e [

SYNTAX / MIDI STRUCTURE
’m ‘ Chords 1 { e ’ {m Note n = Note('C4', 80, WHOLE);

Chord ¢ = Chord(('C4', 'G4'), 80, WHOLE);

‘ — ’ ‘ 1 { .] Track t = Track();
rac Gl t.add(n); t.add(C);

___ / Seque
e

nce
s.add(t);

s = Sequence();

Midi m = Midi("MyFile.mid");
m.write(s);

MIDI file

e A Soul program revolves around manipulating these
elements.

SOUND LANGUAGE

SYNTAX

® There are 33 kEYWOI'dS (i.e.pitch, duration, decimal,
play, print, WHOLE)
O They can be types or the names of functions
O They can represent note durations

O true, false, etc

pitch p = '"C#5';
decimal d = 4.5;
instrument 1 = 40;

Midi m = Midi("test.mid") ;
duration wh = WHOLE;

while (p <= 'C#6') {
play (Note(p, 127, wh));
p = 2;

SYNTAX

® Java-like syntax, simplified:
O Semicolons to end statements
O (Construction and manipulation of objects
O Support of control-flow and arithmetic
O (bjects within objects
® There are currently 9 built-in functions that allow manipulation of
objects
o This is where Soul shines

® Alook back at a Soul program - Twinkle Twinkle Little Star

PROJECT MANAGEMENT

e Met early to decide language and roles

e [acebook and WhatsApp for online discussion,
planning meetings

e Met once a week, more when deadlines approached

e Used Google Drive to keep all documents in one

place, for real-time group editing

e Kept a meetings log to record weekly progress

PROJECT MANAGEMENT

e |[terative and mcremental development

]]]]]]]] =
RO

e First meetings: build grammar
e [ater: group time for design and testing, busywork
done individually

SOUND LANGUAGE

PROJECT MANAGEMENT

Volume of GitHub commits by date

Commits

Date

PROJECT MANAGEMENT

Monda o o e o
4
(@b
G;-) o ® o6 0o 00 o0
(@b
_|_C_J nesda ® ...0
Y
o
>\"rr3 i g
(qU]
()

Friday . @ o o e O o . ® . ' @ L] o

Saturday c0Q0o00PoO0 - - o .

12a 1a 2a 3a 43 Sa 6a 7a 2a 9a 10a 11a 12p 1p 2p 3p 4p Sp 6p 7p ap Sp 10p 11p

SOUND LANGUAGE ?

Time of day

TRANSLATOR ARCHITECTURE

Block diagram of the Soul compiler:

soulflex —>»| JFlex |—> Yylex.java =5 | Soul program
—_— —_— ' (e.g. test.soul)
r— R ’ y ™ ;
»| BYacc/J » Parser Java - >[Java compiler l
\ (\ Parser
~——» Parser Valjava — (create/traverse AST)

Java Virtual Machine Tra | t dJ
[VD]4—‘ jq—(Java compiler]4_|]

TRANSLATOR ARCHITECTURE

Soul code

print (Nete('D4', 127, WHOLE));

|
(7 < .
[[ERINT, "princ”], ['(', "("]1, [NOTE, "Note"], [(empty)] [SISO O | ' I
|

(', "("1, [PITCENAME, "'D4'"1, ['.', "»"1,

[NMBER_INT, "127°1, ('.,', ","1, [WHOLE, "WHOLE"],
(D IPEES heb PR &5 PR Bab PR AP AP l PlayStatement]

[PLAY ‘ (| intialization l '.
Parser // \)
Expression ' . | I Expression ’ I [E)@ressicn

NUMBER_INT [Duration l

WHOLE

[StatementBlock]

e

StatementBlock y [FullStatement J

/—a—b

Parse Tree

!

Semantic Analyzer]

!

Abstract Syntax Tree

[print H Note H D4]

NOTEN AME

— Java code

l WHOLE] System.cut.println(new Nete("D4", 127, Note.WHCLE));

S

SOUND LANGUAGE

THE SOFTWARE WE USED

RUNTIME ENVIRONMENT

e Works on any UNIX system with proper tools
Installed

® [Execution
o ./soul filename.soul
m Prints all errors to user - both compile-time (type-
checking) and runtime errors (divide by 0)

o ./soul twinkle.soul - constructs an AST, translated into
Soul.java, compiled into Soul.class with javac, and run with
Java call

SOUND LANGUAGE

COMPILER-GENERATOR TOOLS

. JFlex - implementation of lex for Java
- Jflex lexer.flex
- Yylexjava
. BYacc/J - implementation of yacc for Java
- yace -J grammar.y
. Parser.java
. ParserVal.java
. Makefile
- make clean
- make

TESTING

® test_suite.sh: Two tests
o Same translated Java code
o Same output
m Output for playing not possible, so user has to check that
the notes are the same as expected when running the
test suite.

Test Framework

' SoulL program | | Expected target program l ‘ Expected program output]

Y Y Y
[SouL compiler]——p(Java verification HOutput verification}—p[Test passes]
A 4 L 4

|Trans|ationfailure I | Execution failure ’

FUTURE UPDATES

Extracting tracks from Sequence objects
Overlapping Note and Chord objects at different ticks

More complex data structures
o Lists, Arrays, Hashtables

User-defined functions

Simplify syntax to make Soul less Java-like

CONCLUSION

e What worked well
o Version Control
o jsoul
e What we would've done differently
o More regular meetings with mentors
o Start with Java instead of lex/yacc
o Schedule weekly goals and deadlines more often
e |essons learned
o Start early!
o Research tools thoroughly before implementation
o Create regression tests from the beginning
e Why to use Soul
o Simple way to programmatically write music
o Very few lines of Soul translate into many lines of Java

THANK YOU!

play ("NeverGonnaGiveYouUp.m1d") ;

