knode

a graph-based language

Project Manager: Krista Kohler
Language Guru: Jon Jia

System Architect: Jonathan Balsano
System Integrator: Maria Moresco
System Tester: Ruby Robinson

\
/’

Akn

Praject

Development

.

. acd

. UTHash \Elgm@ Q
e

Managemen;

[)Ehﬁ{j-T1hﬂE

/

Y

ade program

Testing

—

- Great people, great product

w o ‘e’
<1 8 |
\ Conclusions
The Solution: oy SyNLEX
k d : T « Warking on a group project has its challenges
n O e E i - Cat GIFs make late-night pull requests funt

[

- Knode is highly capable and easy to use
« Low level efficiency, higher level coding
« Manage interrelated data easily

+ Capable, conwenient, and cross-platform

knodae

a graph-based language

Project Manager: Krista Kohler
Language Guru: Jon Jia

System Architect: Jonathan Balsano
System Integrator: Maria Moresco
System Tester: Ruby Robinson

Tha Drahlam

The Problem

- In our world, there is a LOT of data

- This data does not exist in a vacuum

« As our lives becomes more social,
there's a greater need to access,
share, and analyze interrelated data

- But data is not always easy to
manage, especially in large quantities

@:Prezi

Imagine...

- YOu are a non-programmer who

works with lots of data.

- You like the intuitive look of Python,

but you don't like performance issues

- YOou need the speed and efficiency of

C without the headaches of pointers
and memory management

| CAN HAZ ADVIL PLZ?

The Solution:

kKnodae

- Declarative language focused on
convenience

- Pretty syntax, snappy performance

- Speed of C, but memory managed

- Minimal programming experience required

- Built-in graph primitives for easy data
viewing and manipulation

W:Prez

knode is...

user-friendly convenient

fast cross-platform

Derez l

user-friendly

convenlent

fast

cross-platform

knode is...

user-friendly convenient

fast cross-platform

Derez l

Key Syntax

whitespace node

« Twio spaces used o - Modas are

- N node a
denote blocks [omde s o declared with role: *manmal
+ Used far: Jeywnrd ||u-<|t‘1!| ,
_ R m— role: "dogs”
- Function S « Mew block after | nede ¢
definitions rale: “cats’ declaration sets Dol
= Flow control nade data as
= Certain dict
declarations
dictionary edge string concatenation
« Kevs and ::i :[g « 5tring concatenation is done
¥ - Edges set as odge pd = [a-» ith +
values are LA —) pl.typs = * type of * with
separated by moeh elation Lo two g e = & e of + Strings, ints, doubles can be all
colon R e nades concatenated
. Values must - Specified by -, « Create new string or print
be strings <, > directly
- Type of edge set
YF:-'I 8 print {b.role + ° are a° + pl.iype + a.roLe)
print {c.rola + * are a® & p2.type + a.role)
wil fypE print {b.role + p3.type + c. role}

keyword

Memory Management

- "Memaery management's a real bk

whitespace

- Two spaces used to
denote blocks

. Used for:

« Function
definitions

- Flow control

- Certain

declarations

node

- Nodes are
declared with
keyword

- New block after
declaration sets
node data as
dict

dictionary

- Keys and
values are
separated by
colon

- Values must

be strings

edge

- bdges set as
relation to two

nodes

- Specified by ->,

<-, <->

- Type of edge set

with ty

DE

keyword

edge pl =
edge p2
edge p3
pl.type
p2.type

string concatenation

» String concatenation is done
with +

- Strings, ints, doubles can be all
concatenated

- Create new string or print
directly

print (b.role + " are a" + pl.type + a.role)
print (c.role + " are a" + p2.type + a.role)
print (b.role + p3.type + c.role)

@:Prezi

{PR@N

Memory Management

- "Memory management's a real b***=*"

A knode program

main():

node a

role: "mammal"
node b

role: "dogs" Node declarations
node ¢

role: "cats"

edge pl = [a->Db]

edge p2 = [b->c]

edge p3 = [a->c] Edge declarations
pl.type = " type of "

p2.type = " type of "

p3.type = " hate "

print (b.role + " are a" + pl.type + a.role) -

print (c.role + are a" + p2.type + a.role)
print (b.role + p3.type + c.role)

String concatenation

A kKnode program

main():

node a

role: "mammal"
node b

role: "dogs" Node declarations
node C

role: "cats"

edge pl = [a->Db]

edge p2 = [b->cC]
.Efgqf p3 = [a->c. Edge declarations
- .Tvne =

" Yvne nf "

node b

role: "dogs" Node declarations
node cC

role: "cats"

edge pl = [a->b]

edge p2 = [b->cC.

edge p3 = [a->C. Edge declarations
0l.type = " type of "

02.type = " type of "

03.type = " hate "

orint (b.role + " are a" + pl.type + a.role)
orint (c.role + " are a" + p2.type + a.role)
orint (b.role + p3.type + c.role)

A0y
Er—oh
{W):PRrezi
P
KOs

[gl TR I E.

guye pz = |u->C]

edge p3 = [a->C] Edge declarations
pl.type = " type of "

n2.type = " type of "

03.type = " hate "

orint (b.role + " are a" + pl.type + a.role)
orint (c.role + " are a" + p2.type + a.role)
orint (b.role + p3.type + c.role)

String concatenation

DEMO TIME

Project Management

- Traditional, five-phase development process

- Emphasis on collaboration and flexibility

- Weekly meetings: planning and working

- Asana for outline, task management, and deadlines

- "First-come, first-serve" assignment of responsibilities

@:Prezi

Development

« YacC
- UTHash

Translator Architecture

Lexical Organizer :
(whitelex.1) Precompiler (klp)
Lexical Analyzer
(lex.])
Syntactic Analyzer
(vacc.y)
* Type Checker
- (typecheck.c)
Semantic Analyzer Compiler (klc)
(absyn.c)
* Symbol Table
Tree Walker (symbol.c, scope.c)
(walker.c) t
v
Writer Code Generator
(vace.y) (codegen.c)
I
L J
Executab(l;o%enerahon Machine Code Generator (gcc)
a.out Output Executable

{PRQN

Translator Archi
Lexical O ' '
Precompiler
(lex.])

@:proz

Qermrtnntin AvmalcrrAan

(whitelex.])

Lexical Analyzer
(lex.])

Syntactic Analyzer
(yacc.y)

Semantic Analyzer

I 1ClH

Semantic Analyzer
(absyn.c)
Tree Walker |
(walker.c)

Whriter

Type Checker
(typecheck.c)
Symbol Table
(symbol.c, scope.c)
Code Generator
(codegen.c)

Compil

Writer
(yacc.y)

Executable Generation
(gee)

a.out

Ma

Ou

@:Prez

Lexical Organizer

Translator Architecture

(whitelex.] Precompiler (klp)
¥
Lexical Analyzer
(Iex.l)
Syntactic Analyzer
(yacc.y)
‘ Type Checker
- (typecheck.c)
Semantic Analyzer Compiler (klc)
(absyn.c)
* Symbol Table
Tree Walker (symbol.c, scope.c)
(walker.c) t
Writer Code Generator
(vacc.y) (codegen.c)
I
v

Executable Generation

(gee)

!

a.out

Machine Code Generator (gcc)

Output Executable

Runtime Environment

- Output by GCC in machine code

- Just type ./a.out in *nix shell

- Output goes to stdout

- Can be used in combination with shell tools

Testing

Unit Testing

- -Individual elements and types
tested
- Each represented in .kn file
- Different outputs were produced
during each stage of production
depending on the compilation
status of files at that stage

HA
{BliC

i

\E™ 1

Integration
Testing

. After unit tests were verified , .kn
integration test files were written
. Same output methodology as unit
tests

Regression Test Suite

- Shell script file iterated through all files in test suite
. Produced a log, output files, and errors from file
. Printed the status of each file (OK or FAILED)

test-sterstion, . kende.c: In function ‘nain’:

knesde . error: expected '10 before ;' Roken
Enede. warnings retern type of ‘maln’ iz pat fint!
Done testing
o B B FATLED
[=N L T w T test-node... knode,ci In functian ‘ain’s
‘1 krode.cif; warning: return typs of ‘main’ is not Cintt
—1 — L L] L I Dea testing
e [SrE— e ntzdsea b e e wn-ced o -ck K
bz test—op. . kaode.c: In function 'main’:
- P [e H H e warning: return type of ‘main’ is oot fiazt
Done testing
L1 L — | ™
[T —— e mie S es weessn e Lost-pestENpiy. . knode, ci6: creor: experted identitier ar '(* before ‘1’ token
) Done testing
T * LY - - - b FATLED
|] - - test-positix. .. knpge. i In Function ‘naln’:
reme— e b [— BugeuIrEREl Waecmitr rror: stray *\2° in program
ot rrar:s called sbpsct ‘94 is not a funetion

errors called abject '5' i3 ret a function

error: expected ;' pefore numeric constant
ror: lvalue required as increrent oparamd
rar: lvalue required as increment cperand
errori Lvalus required as increnent caerand
1" before ureric constant

[N <noge.ciBs errors stray Cu3° in progras
ode
=

B e "

error: called opject “2° is not a function

error: expectod ';* before nureric constant
+14: wrrar: expected 'Y betore ‘1Y token

knode.ci&: waraing: return type of ‘main’ is Aot ‘iav’

- Shell script file iterated through all Tiles In test sulite
. Produced a log, output files, and errors from file
. Printed the status of each file (OK or FAILED

test-iteration...knode.¢: In function "main’:

knode.c:15: error: expected ')’ before *;° token
knode.c:6: warning: return type of ‘main’ is not 'int’
Done testing
FAILED

b s = N - L - L test-node...knode.c: In function ‘main’
knode.c:6: warning: return type of ‘main’ is net ‘int
Done testing

test-anglistion Lest-assign.kn tast. tesl-booledns. ki nesr-hreak.kn test-cast.kn Test-cand.kn test-dicts.kn oK
basicfun., 5 &n.out & &

test-op...knode.c: In function ‘main’

= - - - - - - - knode.c:6: warning: return type of ‘main’ is not ‘int
Done testing

test-doubles. kn TesI-edoes i best-eq_kn e =8q2 kn test-fizBuz.kn test-fuctions.gn 1est-helio.kn test-

|darnFer ke aut test-postEmpty...knode.c:6: error: expected identifier or ‘(' before *{' token
Done testing
L . L G 5 - - - FAILED

test-postfix...knode.c: In function ‘main’:
knode.c:7: error: stray '\2' in program

best-iteration.kn test-ndeskn test-nude.kn Tesr- test-opkn 1es1-postEmpry. kn test-pasific.un tesl-—
rodesditisadges kn armaryFarenkn knode.c:7: error: called object ‘54" is not a function
L . L N error: stray ‘\2' im program
error: called object '5' is not a function
error: expected ';' before numeric constant
Lest-relaLan test-relasd.kn test- Test-unary.kn : error: lvalue required as increment operand
ctring concat kn knode.c:1@: error: lvalue reguired as increment operand

knode.c:12: error: lvalue required as increment operand
knode.c:12: error: expected ‘;" before numeric constant
knode.c:13: error: stray ‘\2' in program

knode.c:13: error: called object *2° is not a function
knode.c:13: error: expected ‘;' before numeric constant
knode.c:14: error: expected ';' before ‘}* token
knode.c:6: warning: return type of ‘main’ is not ‘int’

Verification

- Verification process combined test plan
and Github functionality
- Once all tests were passed it was
possible to move on to other features
. If tests failed it was back to the drawing
board!

{PRQN

asdas209 opened this pull request 3 days ago Edit

Cg dicts
No one is assigned () ~ No milestone) ~

Dictionary code generation added. Use test file dictfunctions(or something like that) to test- it can be found in testPass

2 participants t

<0~ asdas209 and others added some commits 3 days ago
asdas209 adding codegen for dictlist e@8e889
& irbalsano Dictlist code gen. zomg. 1d2789b
asdas209 fixed dicts issues 70a8bbd
asdas209 Merge branch ‘master' of github.com:jrbalsano/knode-language into CG_.. = clc82db

ﬂ ¥ jrbalsano commented 3daysago o° @

Looks cool. Compiles. :D

ﬂ | 4= jrbalsano referenced this pull request from a commit 3 days ago

& irbalsano Merge pull request #74 from jrbalsano/CG_dicts 11562cc
t jrbalsano merged commit 11562cc into master from CG_dicts 3 days ago

t jrbalsano closed the pull request 3 days ago

Prezl

N\

@:Prezi

Conclusions

- Working on a group project has its challenges
- Cat GIFs make late-night pull requests fun!

- Great people, great product

- Knode is highly capable and easy to use

- Low level efficiency, higher level coding

- Manage interrelated data easily

- Capable, convenient, and cross-platform

knode

a graph-based language

Project Manager: Krista Kohler
Language Guru: Jon Jia

System Architect: Jonathan Balsano
System Integrator: Maria Moresco
System Tester: Ruby Robinson

\
/’

Akn

Praject

Development

.

. acd

. UTHash \Elgm@ Q
e

Managemen;

[)Ehﬁ{j-T1hﬂE

/

Y

ade program

Testing

—

- Great people, great product

w o ‘e’
<1 8 |
\ Conclusions
The Solution: oy SyNLEX
k d : T « Warking on a group project has its challenges
n O e E i - Cat GIFs make late-night pull requests funt

[

- Knode is highly capable and easy to use
« Low level efficiency, higher level coding
« Manage interrelated data easily

+ Capable, conwenient, and cross-platform

