
Goodle Manager – Lindsey Heller
Goodle Guru – Joseph Corbisiero

Goodle Architect – Ilan Elkobi
Goodle Integrator – Henrique Maia

Goodle Tester – Elayna Tuck

makes
programming
decision trees

easy!

 Flexible

 Familiar

 User-Friendly / Easy to Use

 Useful

  Professionals

  Students

  Publications

Similar to Java & C GDL Specific

for! begin!

while! graph!

if! state!

else! start!

return! accept!

true/false! func!

goto!

string! equivalent to a Java String!

number! equivalent to the Java primitive
double!

bool! equivalent to the Java primtive
boolean!

  while!
  for!
  if/else!

  goto!

! !goto, {list_states}, condition;!

  begin

 begin()!
! !{!
! ! !//states and functions!
! !}!

  graph

 graph <name>()!
! !{!
! ! !//states and functions!
! !}!

  start = the start state of a graph

! !start <name>()!
! !{!
! ! !//actions!
! !}

  accept = accepting state of a graph

! !accept <name>()!
! !{!
! ! !//actions!
! !}

  standard = any state that is neither the start nor accept stat of a graph

! !state <name>()!
! !{!
! ! !//actions!
! !}

!func return_type : <name> (parameter_list)!
!{!
! !//actions!
!}!

  Returns Tokens

  Keywords of the language

  Using BYAAC/J
  Creates an AST

  Creates .java file, GDLMain.java

creates DOT
file to produce

a graph

• Makefile calls:
• Lex and Yacc

• Creates Parser
• Parser generates files in output folder

• Helper classes are compiled and used
• GDLMain is created with user program

• Program executes on terminal
• GDL_graph.dot is generated

  User sees the results of accept states
immediately after running the program

  A dot file is generated so the average user
can better understand the results of the
graph

GDL has already been put to use for
one of our AI projects this year and is

currently being used by two team
members to create FSM for Embedded

Architectures!

It’s Useful!

Sprint Dates Sprint Number

March 6th – March 9th Sprint 0

March 10th – March 16th Sprint 1

March 17th – March 30th Sprint 2

March 31st – April 14th Sprint 3

April 15th – April 27th Sprint 4

April 20th – May 11th Sprint 5

Unit Testing

Black Box Testing

Regression Testing

Tested
Parser

Tested
Semantics

Tested general
functionality

  ensure all are using the same version
  always pull before you commit
  communication is key

  test
  test the test
  test the test that tested the test

