
Trowel
A programming language for journalists

David Tagatac
Hareesh Radhakrishnan
Pucong Han 
Robert Walport
Victoria Mo 

- Language Guru
- System Architect
- System Integrator
- System Tester
- Project Manager



The Problem

○ Journalists need to find relevant 
information online.

○ Web scraping quickens this 
process: requires knowledge of 
advanced programming 
languages

○ Typical journalist not technically 
proficient: does not code.



Trowel is...

A web-scraping programming language 
developed specifically for journalists.



Trowel is...



Trowel is...

Readable

Accessible

Concise

Easy-to-Learn

Intuitive

Domain-Specific



Design Goals

Readability - looks like English!

No Semi-colons

 indentation handles scoping

Assignment uses “is” instead of  “=”



Design Goals

Built in Functions Make Sense

“insert Url into UrlList” 

inserts the Url variable into the UrlList variable!



Live Demo: Liftoff!



Live Demo: Liftoff!

textlist paragraphs

url articleurl is ‘http://www.bbc.co.uk/news/science-
environment-22344398’

paragraphs is findtext in articleurl with "time" and 
"flight"

print paragraphs



System Architecture

We wanted to make Trowel as close to English as possible

# Flexibility vs Robust Design

> read "file.txt" into ul1

> ul2 is findurl in ul1 with "obama" and "romney"
  ul4 is combine ul3 with (findurl in ul2 with "taxes")

> ul5 is mydelete ul3 from ul2 except indexlist1



System Architecture



textlist para, words
url article is 'bit.ly/trowel'

para is findtext in article 
   with "time"
print para



textlist para, words
url article is 'bit.ly/trowel'

para is findtext in article 
   with "time"
print para

[['TEXTLIST', 'textlist'], ['UNKNOWN', 'paragraphs'], ['COMMA', 
','], ['UNKNOWN', 'words']]

[['URL', 'url'], ['UNKNOWN', 'articleurl'], ['IS', 'is'], 
['URLVAL', "'bit.ly/trowel'"]]

[['UNKNOWN', 'paragraphs'], ['IS', 'is'], ['UNKNOWN', 
'findtext'], ['UNKNOWN', 'in'], ['UNKNOWN', 'articleurl'], 
['UNKNOWN', 'with'], ['TEXTVAL', '"time"']]

[['UNKNOWN', 'print'], ['UNKNOWN', 'paragraphs']]



textlist para, words
url article is 'bit.ly/trowel'

para is findtext in article 
   with "time"
print para

['declaration', ['datatype', 'textlist'], [['paragraphs'], 
['words']]]

['declaration', ['datatype', 'url'], [['articleurl', 
['expression', ['value', ['url', 'bit.ly/trowel']]]]]]

['assignment', ['variable', 'paragraphs'], ['expression', 
['functioncall', ['functionname', 'findtext'], 'arguments', 
[['expression', ['insertword', 'in']], ['expression', 
['variable', 'articleurl']], ['expression', ['insertword', 
'with']], ['expression', ['value', ['text', 'time']]]]]]]

['functioncall', ['functionname', 'print'], 'arguments', 
[['expression', ['variable', 'paragraphs']]]]



textlist para, words
url article is 'bit.ly/trowel'

para is findtext in article 
   with "time"
print para

import trowelfunctions as tfl

paragraphs = ""
words = ""

articleurl = 'bit.ly/trowel'

tmp0 = 'in'
tmp1 = articleurl
tmp2 = 'with'
tmp3 = 'time'
paragraphs = tfl.r_findtext([tmp0,tmp1,tmp2,tmp3])

tmp0 = paragraphs
tfl.r_print([tmp0])



Example Function: FindText

● receive a URL to search and a logical expression
○ e.g. "Obama and Romney"

● Use Beautiful Soup to grab website and parse it
● convert the logical expression of terms into a logical 

expression of booleans for each paragraph
○ e.g. "Obama and Romney" --> "True and True"

● if expression evaluates to true: return the paragraph



Example Function: FindText

def r_findtext(arglist):

link = arglist[1]

parts = urlparse.urlsplit(link)

if not parts.scheme or not parts.netloc:

link = "http://" + link

html = urlopen(link)

soup = BeautifulSoup(html)

texts = soup.find_all('p')

keyparas = []

for para in texts:

para = para.get_text()

truthiList = ""

for entry in arglist[2:]:

if str(type(entry)) != "<type 'list'>":

if entry in LOGICALS:

truthiList = truthiList + " " + entry

elif entry in IGNORE:

pass

elif entry in para:

truthiList = truthiList + " True"

else:

truthiList = truthiList + " False"

if eval(truthiList): keyparas.append(para)

return keyparas

 

Para is findtext in Article



Development Environment

Python Lex-
Yacc

Beautiful Soup

Python



Testing

Regression testing: git hook disallows “git commit” if 
any test fails!

● Standard unit testing framework - unittest
● Tested the output of the lexer, the parser, the function 

modules and the whole compiler



Testing: Liftoff!

self.assertEqual(parsewrapper().gettokens("url spaceArticle is \
‘http://www.bbc.co.uk/news/science-environment-22344398\’"),
[['indentlevel', 0], ['declaration', ['datatype', 'url'], 
[['spacearticle', ['expression', ['value', ['text', \‘http://www.bbc.
co.uk/news/science-environment-22344398\’]]]]]]]

self.assertEqual(r_findtext(['in', 'http://www.bbc.co.
uk/news/science-environment-22344398']), 
[u"The vehicle was dropped from a carrier aircraft high above 
California's Mojave Desert and ignited its rocket engine to go 
supersonic for a few seconds...."])

Function test

Lexer test



Testing Statistics

24% Lexer tests 

10% Parser tests

44% Function tests

22% Type Checking



Example: Amy

● Amy wants the latest 
tweets of a list of 
politicians. 

● Amy has been given a 
similar assignment 
before.

● She thinks to herself... 
● Trowel!



Example: Amy
define getTweets of (text person) from twitter:

text prefix is ‘http://www.twitter.com/'
url twitterurl is combine prefix and person
results is findText in twitterurl
return results

textlist alltweets

for name in [‘BarackObama’, ‘MittRomney’, ‘JoeBiden’]:
textList tweets is getTweets of name from twitter
insert tweets into alltweets

save alltweets into "tweetsfile.txt"



Example: Amy - User Defined Func

'gettweets': ['textlist'],

define getTweets of (text person) from twitter:
text prefix is ‘http://www.twitter.com/'
url twitterurl is combine prefix and person
results is findText in twitterurl
return results



Example: Amy
textlist alltweets
for person in [‘BarackObama’, ‘MittRomney’, ‘JoeBiden’]:

textList tweets is getTweets of person from twitter
insert tweets into alltweets

alltweets = [...]



Example: Amy

save alltweets into "tweetsfile.txt"

alltweets = [...]

tweetsfile.txt



Example: Amy

define getTweets of (text person) searching twitter:
text prefix is ‘http://www.twitter.com/'
url twitterurl is combine prefix and person
results is findText in twitterurl
return results

for person in [‘BarackObama’, ‘MittRomney’, ‘JoeBiden’]:
textList tweets is getTweets of person searching twitter
insert tweets into (textList alltweets)

save alltweets into "tweetsfile.txt"



Project Management



1. Touch Base



2. Focus on the Big Picture



3. Respect Your Teammates



Lessons Learned



1. Know Git!

● Version Control: Git (GitHub)

● Repository Structure:
○ Use master by default
○ New branch for code that breaks regression tests

● Use descriptive commit messages!

https://github.com/puconghan/plt


2. Plan Well and Iterate Quickly

● Being modular up-front saves
time in testing and bug-fixing

● Planning before coding is important, but early coding 
helps the planning process



Possible Expansions to Trowel



1. Help Journalists be Good People

● GET request header with 
journalist's name and email

● Easy setting of a delay between 
GET requests

Anderson Cooper likes being a good person.



2. Other Cool, Useful Functionality

● Crawl a news website
● findText using other html tags
● Find the similarity index between two articles



Conclusion

Journalists are not Computer Scientists

They have different goals, challenges and 
thought patterns

Trowel works for them


