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Overview 

• Aims and constraints 
• C++ in four slides 
• Resource management 

– RAII 
– Move semantics 

• Generic Programming 
– Templates 
– Requirements checking 
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What did/do I want? 

• Type safety 
– Encapsulate necessary unsafe operations 

• Resource safety 
– It’s not all memory 

• Performance 
– For some parts of almost all systems, it’s important 

• Predictability  
– For hard and soft real time 

• Teachability 
– Complexity of code should be proportional to the complexity of the task 

• Readability 
– People and machines (“analyzability”) 
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Who did/do I want it for? 

• Primary concerns 
– Systems programming 
– Embedded systems 
– Resource constrained systems 
– Large systems 

 
• Experts 

– “C++ is expert friendly” 

• Novices 
– C++ Is not just expert friendly 
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What is C++? 

A multi-paradigm 
programming language 

It’s C! 

A hybrid language 

An object-oriented 
programming language 

Template 
meta-programming! 

A random collection 
of features 

Embedded systems 
programming language 

Low level! 

Buffer 
overflows 

Too big! 

Generic programming 

Class hierarchies 

Classes 
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C++ 

Key strengths: 
• software infrastructure 
• resource-constrained applications 

A light-weight abstraction 
programming language 
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Programming Languages 

Assembler 

Cobol 

Fortran 

C++ 

C 

Simula 

C++11 

General-purpose abstraction 

Domain-specific 
abstraction 

Direct mapping to 
hardware 

Java 

C# BCPL 
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What does C++ offer? 
• Not perfection 

– Of course 
• Not everything for everybody 

– Of course 
• A solid fundamental model 

– Yes, really 
• 30+ years of real-world “refinement” 

– It works  
• Performance 

– A match for anything 
• The best is buried in “compatibility stuff’’ 

– long-term stability is a feature 
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What does C++ offer?  

• C++ in Four slides 
– Map to hardware 
– Classes 
– Inheritance 
– Parameterized types 

 
 
 

• If you understand int and vector, you understand C++ 
– The rest is “details” (1,300+ pages of details) 
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• Primitive operations => instructions 
– +, %, ->, [], (), … 

• int, double, complex<double>, Date, … 
 

• vector, string, thread, Matrix, … 
 

 

• Objects can be composed by simple concatenation: 
– Arrays 
– Classes/structs 

 
 

 

Map to Hardware 
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Classes: Construction/Destruction 

• From the first week of “C with Classes” (1979) 
 

class X {  // user-defined type 
public: // interface 
 X(Something); // constructor from Something 
 ~X();  // destructor 
 // … 
private:  // implementation 
 // … 
}; 
 

“A constructor establishes the environment for the members to 
run in; the destructor reverses its actions.” 
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Abstract Classes and Inheritance 
• Insulate the user from the implementation 

struct Device {   // abstract class 
 virtual int put(const char*) = 0; // pure virtual function 
 virtual int get(const char*) = 0; 
}; 

• No data members, all data in derived classes 
– “not brittle” 

• Manipulate through pointer or reference 
– Typically allocated on the free store (“dynamic memory”) 
– Typically requires some form of lifetime management (use resource 

handles) 
• Is the root of a hierarchy of derived classes 

 
 Stroustrup - Essence, short - Columbia'14 13 



Parameterized Types and Classes 

• Templates 
– Essential: Support for generic programming 
– Secondary: Support for compile-time computation 
template<typename T> 
class vector { /* … */ };  // a generic type 
 
vector<double> constants = {3.14159265359, 2.54, 1, 6.62606957E-34, };   // a use 
 
 
template<typename C> 
void sort (C& c) { /* … */ } // a generic function 
 
sort(constants);  // a use 
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Not C++ (fundamental) 

• No crucial dependence on a garbage collector 
– GC is a last and imperfect resort 

• No guaranteed type safety 
– Not for all constructs, but mot code can be type safe 
– C compatibility, history, pointers/arrays, unions, casts, … 

• No virtual machine required 
– For many reasons, we often want to run on the real machine 
– You can run on a virtual machine (or in a sandbox) if you want to 
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Not C++ (market realities) 

• Lots and lots of libraries 
• No huge “standard” library 

– No owner 
• To produce “free” libraries to ensure market share 

– No central authority 
• To approve, reject, and help integration of libraries 

• No standard 
– Graphics/GUI 

• Competing frameworks 
– XML support 
– Web support 
– … 
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Resource Management 
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Resource management 
• A resource should be owned by a “handle” 

– A “handle” should present a well-defined and useful abstraction 
• E.g. a vector, string, file, thread 

• Use constructors and a destructor 
 

class Vector {           // vector of doubles 
 Vector(initializer_list<double>);  // acquire memory; initialize elements 
 ~Vector();        // destroy elements; release memory 
 // … 
private: 
 double* elem; // pointer to elements 
 int sz;  // number of elements 
}; 
 
void fct() 
{ 
 Vector v {1, 1.618, 3.14, 2.99e8}; // vector of doubles 
 // … 
} 
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Resource management 

• A handle usually is scoped 
– Handles lifetime (initialization, cleanup), and more 
 
Vector::Vector(initializer_list<double> lst) 
 :elem {new double[lst.size()]}, sz{lst.size()};  // acquire memory 
{ 
 uninitialized_copy(lst.begin(),lst.end(),elem);  // initialize elements 
} 
 
Vector::~Vector() 
{ 
 delete[] elem; // destroy elements; release memory 
}; 
 

 Stroustrup - Essence, short - Columbia'14 19 



Resource management 

• What about errors? 
– A resource is something you acquire and release 
– A resource should have an owner 
– Ultimately “root” a resource in a (scoped) handle 
– “Resource Acquisition Is Initialization” (RAII) 

• Acquire during construction 
• Release in destructor 

– Throw exception in case of failure 
• Can be simulated, but not conveniently 

– Never throw while holding a resource not owned by a handle 

• In general 
– Leave established invariants intact when leaving a scope 
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“Resource Acquisition is Initialization” (RAII) 
• For all resources 

– Memory (done by std::string, std::vector, std::map, …) 
– Locks (e.g. std::unique_lock), files (e.g. std::fstream), sockets, threads 

(e.g. std::thread), … 
 
std::mutex mtx; // a resource 
int sh;  // shared data 
 
void f() 
{ 
  std::lock_guard lck {mtx}; // grab (acquire) the mutex 
  sh+=1;   // manipulate shared data 
}      // implicitly release the mutex 
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Pointer Misuse 
• Many (most?) direct uses of pointers in local scope are not exception safe 

 
void f(int n, int x) 
{ 
 Gadget* p = new Gadget{n};  // look I’m a java programmer!  
 // … 
 if (x<100) throw std::runtime_error{“Weird!”}; // leak 
 if (x<200) return;     // leak 
 // … 
 delete p;  // and I want my garbage collector!  
} 
 
– But, garbage collection would not release non-memory resources anyway 
– But, why use a “naked” pointer? 
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Resource Handles and Pointers 
• A std::shared_ptr releases its object at when the last shared_ptr to 

it is destroyed 
 
void f(int n, int x) 
{ 
 shared_ptr<Gadget> p {new Gadget{n}}; // manage that pointer! 
 // … 
 if (x<100) throw std::runtime_error{“Weird!”}; // no leak 
 if (x<200) return;     // no leak 
 // … 
} 
 
– shared_ptr provides a form of garbage collection 
– But I’m not sharing anything 

• use a unique_ptr 
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Resource Handles and Pointers 

• But why use a pointer at all? 
• If you can, just use a scoped variable 

 
void f(int n, int x) 
{ 
 Gadget g {n};   
 // … 
 if (x<100) throw std::runtime_error{“Weird!”}; // no leak 
 if (x<200) return;     // no leak 
 // … 
} 
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Why do we use pointers? 

• And references, iterators, etc. 
 

• To represent ownership 
– Don’t! Instead, use handles 

• To reference resources 
– from within a handle 

• To represent positions 
– Be careful 

• To pass large amounts of data (into a function) 
– E.g. pass by const reference 

• To return large amount of data (out of a function) 
– Don’t! Instead use move operations 
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How to get a lot of data cheaply out of a function? 

• Ideas 
– Return a pointer to a new’d object 

• Who does the delete? 
- Return a reference to a new’d object 

- Who does the delete? 
- Delete what? 

- Pass a target object 
- We are regressing towards assembly code 

- Return an object 
- Copies are expensive 
- Tricks to avoid copying are brittle 
- Tricks to avoid copying are not general 

- Return a handle 
- Simple and cheap 
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Move semantics 
• Return a Matrix 

Matrix operator+(const Matrix& a, const Matrix& b) 
{ 
  Matrix r; 
  // copy a[i]+b[i] into r[i] for each i 
  return r; 
} 
Matrix res = a+b; 

• Define move a constructor for Matrix 
– don’t copy; “steal the representation” 

 
 

…….. 

res: 

r: 
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Move semantics 
• Direct support in C++11: Move constructor 

class Matrix { 
  Representation rep; 
  // … 

Matrix(Matrix&& a) // move constructor 
{ 
  rep = a.rep; // *this gets a’s elements 
  a.rep = {}; // a becomes the empty Matrix 
} 

}; 
 
Matrix res = a+b; 

 

…….. 

res: 

r: 
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No garbage collection needed 

• For general, simple, implicit, and efficient resource management 
• Apply these techniques in order: 

1. Store data in containers 
• The semantics of the fundamental abstraction is reflected in the interface 
• Including lifetime 

2. Manage all resources with resource handles 
• RAII 
• Not just memory: all resources 

3. Use “smart pointers” 
• They are still pointers 

4. Plug in a garbage collector 
• For “litter collection” 
• C++11 specifies an interface 
• Can still leak non-memory resources 
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Range-for, auto, and move 
• As ever, what matters is how features work in combination 

template<typename C, typename V> 
vector<Value_type<C>*> find_all(C& c, V v)  // find all occurrences of v in c 
{ 
 vector<Value_type<C>*> res; 
 for (auto& x : c) 
  if (x==v) 
   res.push_back(&x); 
 return res; 
} 
 

string m {"Mary had a little lamb"}; 
for (const auto p : find_all(m,'a')) // p is a char* 
 if (*p!='a') 
  cerr << "string bug!\n"; 
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RAII and Move Semantics 

• All the standard-library containers provide it 
• vector 
• list, forward_list (singly-linked list), … 
• map, unordered_map (hash table),… 
• set, multi_set, … 
• … 
• string 

• So do other standard resources 
• thread, lock_guard, … 
• istream, fstream, … 
• unique_ptr, shared_ptr 
• … 
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GP 
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Generic Programming: Templates 

• 1980: Use macros to express generic types and functions 
• 1987 (and current) aims: 

– Extremely general/flexible 
• “must be able to do much more than I can imagine” 

– Zero-overhead 
• vector/Matrix/… to compete with C arrays 

– Well-specified interfaces 
• Implying overloading, good error messages, and maybe separate 

compilation 
 

• “two out of three ain’t bad” 
– But it isn’t great either 
– it has kept me concerned/working for 20+ years 
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Templates 
• Compile-time duck typing 

– Leading to template metaprogramming 
 

• A massive success in C++98, better in C++11, better still in C++14 
– STL containers 

• template<typename T> class vector { /* … */ }; 
– STL algorithms 

• sort(v.begin(),v.end()); 
– And much more 

 
• Better support for compile-time programming 

– C++11: constexpr (improved in C++14) 
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Containers and Algorithms 
• The  C++ standard-library algorithms are expressed in terms of half-

open sequences [first:last) 
– For generality and efficiency 
– If you find that verbose, define container algorithms 

 

namespace Extended_STL { 
 // … 
 template<typename C, typename Predicate> 
 Iterator<C> find_if(C& c, Predicate pred) 
 { 
  return std::find_if(c.begin(),c.end(),pred); 
 } 
 // … 
} 
 
auto p = find_if(v, [](int x) { return x%2; } ); // assuming v is a vector<int> 
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Duck Typing is Insufficient 

• There are no proper interfaces 
• Leaves error detection far too late 

– Compile- and link-time in C++ 

• Encourages a focus on implementation details 
– Entangles users with implementation 

• Leads to over-general interfaces and data structures 
– As programmers rely on exposed implementation “details” 

• Does not integrate well with other parts of the language 
– Teaching and maintenance problems 

• We must think of generic code in ways similar to other code 
– Relying on well-specified interfaces (like OO, etc.) 
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Using Constraints: Concept 
• We must specify what we expect of template arguments 
• Concept: 

– A set of requirements on one or more template arguments 
– A compile-time predicate on a set of types and values 
– For example 

• Sequence<T>  is T a sequence type 
• Container<T>   is T a container type 
• Forward_iterator<T> is T a forward iterator 
• Integer<T>   is T and integer type 
• Function<T,A>   can a T be called with an argument of type A 

– Use 
• template<typename C> requires Container<C>() void sort(C& c); 
• template<Container C> void sort(C& c); // shorthand notation 
• void sort(Container& c);   // terse notation 
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Generic Programming is just Programming 

• Traditional code 
double sqrt(double d); // C++84: accept any d that is a double 
double d = 7; 
double d2 = sqrt(d); // fine: d is a double 
double d3 = sqrt(&d); // error: &d is not a double 
 

• Generic code 
void sort(Container& c); // C++14: accept any c that is a Container 
vector<string> vs { "Hello", "new", "World" }; 
sort(vs);   // fine: vs is a Container 
sort(&vs);   // error: &vs is not a Container 
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C++14 Concepts: Error handling 
• Error handling is simple (and fast) 

 
template<Sortable Cont> 
 void sort(Cont& container); 
 
vector<double> vec {1.2, 4.5, 0.5, -1.2}; 
list<int> lst {1, 3, 5, 4, 6, 8,2}; 
 
sort(vec); // OK: a vector is Sortable 
sort(lst); // Error at (this) point of use: Sortable requires random access 
 

• Actual error message 
error: ‘list<int>’ does not satisfy the constraint ‘Sortable’ 
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C++14 Concepts: Overloading 

• Overloading is easy 
template <Sequence S, Equality_comparable<Value_type<S>> T> 
 Iterator_of<S> find(S& seq, const T& value); 
 
template<Associative_container C> 
 Iterator_type<C> find(C& assoc, const Key_type<C>& key); 
 
vector<int> v { /* ... */ }; 
multiset<int> s { /* … */ }; 
auto vi = find(v, 42);   // calls 1st overload: 
    // a vector is a Sequence 
auto si = find(s, 12-12-12); // calls 2nd overload: 
    // a multiset is an Associative_container 
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C++14 Concepts 

• We have reached the conventional notation 
– with the conventional meaning 

• Traditional code 
double sqrt(double d); // C++84: accept any d that is a double 
double d = 7; 
double d2 = sqrt(d); // fine: d is a double 
double d3 = sqrt(&d); // error: &d is not a double 

• Generic code 
void sort(Container& c); // C++14: accept any c that is a Container 
vector<string> vs { "Hello", "new", "World" }; 
sort(vs);   // fine: vs is a Container 
sort(&vs);   // error: &vs is not a Container 
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“Paradigms” 
• Much of the distinction between object-oriented 

programming, generic programming, and “conventional 
programming” is an illusion 
– based on a focus on language features 
– incomplete support for a synthesis of techniques 
– The distinction does harm 

• by limiting programmers, forcing workarounds 

 
void draw_all(Container& c)  // is this OOP, GP, or conventional? 
 requires Same_type<Value_type<Container>,Shape*> 
{ 
      for_each(c, [](Shape* p) { p->draw(); } ); 
} 
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Questions? 

Key strengths: 
• software infrastructure 
• resource-constrained applications 

C++: A light-weight abstraction 
programming language 
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Practice type-rich 
programming 
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