
The Essence of C++
with examples in C++84, C++98, C++11, and C++14

Bjarne Stroustrup
Morgan Stanley, Columbia University, Texas A&M University

www.stroustrup.com

Overview

• Aims and constraints
• C++ in four slides
• Resource management

– RAII
– Move semantics

• Generic Programming
– Templates
– Requirements checking

Stroustrup - Essence, short - Columbia'14 3

What did/do I want?

• Type safety
– Encapsulate necessary unsafe operations

• Resource safety
– It’s not all memory

• Performance
– For some parts of almost all systems, it’s important

• Predictability
– For hard and soft real time

• Teachability
– Complexity of code should be proportional to the complexity of the task

• Readability
– People and machines (“analyzability”)

Stroustrup - Essence, short - Columbia'14 4

Who did/do I want it for?

• Primary concerns
– Systems programming
– Embedded systems
– Resource constrained systems
– Large systems

• Experts

– “C++ is expert friendly”

• Novices
– C++ Is not just expert friendly

Stroustrup - Essence, short - Columbia'14 5

What is C++?

A multi-paradigm
programming language

It’s C!

A hybrid language

An object-oriented
programming language

Template
meta-programming!

A random collection
of features

Embedded systems
programming language

Low level!

Buffer
overflows

Too big!

Generic programming

Class hierarchies

Classes

Stroustrup - Essence, short - Columbia'14 6

C++

Key strengths:
• software infrastructure
• resource-constrained applications

A light-weight abstraction
programming language

Stroustrup - Essence, short - Columbia'14 7

Programming Languages

Assembler

Cobol

Fortran

C++

C

Simula

C++11

General-purpose abstraction

Domain-specific
abstraction

Direct mapping to
hardware

Java

C# BCPL

Stroustrup - Essence, short - Columbia'14 8

What does C++ offer?
• Not perfection

– Of course
• Not everything for everybody

– Of course
• A solid fundamental model

– Yes, really
• 30+ years of real-world “refinement”

– It works
• Performance

– A match for anything
• The best is buried in “compatibility stuff’’

– long-term stability is a feature

Stroustrup - Essence, short - Columbia'14 9

What does C++ offer?

• C++ in Four slides
– Map to hardware
– Classes
– Inheritance
– Parameterized types

• If you understand int and vector, you understand C++
– The rest is “details” (1,300+ pages of details)

Stroustrup - Essence, short - Columbia'14 10

• Primitive operations => instructions
– +, %, ->, [], (), …

• int, double, complex<double>, Date, …

• vector, string, thread, Matrix, …

• Objects can be composed by simple concatenation:
– Arrays
– Classes/structs

Map to Hardware

Stroustrup - Essence, short - Columbia'14

value

handle

value

value

value

handle

handle
value

value

11

Classes: Construction/Destruction

• From the first week of “C with Classes” (1979)

class X { // user-defined type
public: // interface
 X(Something); // constructor from Something
 ~X(); // destructor
 // …
private: // implementation
 // …
};

“A constructor establishes the environment for the members to
run in; the destructor reverses its actions.”

Stroustrup - Essence, short - Columbia'14 12

Abstract Classes and Inheritance
• Insulate the user from the implementation

struct Device { // abstract class
 virtual int put(const char*) = 0; // pure virtual function
 virtual int get(const char*) = 0;
};

• No data members, all data in derived classes
– “not brittle”

• Manipulate through pointer or reference
– Typically allocated on the free store (“dynamic memory”)
– Typically requires some form of lifetime management (use resource

handles)
• Is the root of a hierarchy of derived classes

 Stroustrup - Essence, short - Columbia'14 13

Parameterized Types and Classes

• Templates
– Essential: Support for generic programming
– Secondary: Support for compile-time computation
template<typename T>
class vector { /* … */ }; // a generic type

vector<double> constants = {3.14159265359, 2.54, 1, 6.62606957E-34, }; // a use

template<typename C>
void sort (C& c) { /* … */ } // a generic function

sort(constants); // a use

Stroustrup - Essence, short - Columbia'14 14

Not C++ (fundamental)

• No crucial dependence on a garbage collector
– GC is a last and imperfect resort

• No guaranteed type safety
– Not for all constructs, but mot code can be type safe
– C compatibility, history, pointers/arrays, unions, casts, …

• No virtual machine required
– For many reasons, we often want to run on the real machine
– You can run on a virtual machine (or in a sandbox) if you want to

Stroustrup - Essence, short - Columbia'14 15

Not C++ (market realities)

• Lots and lots of libraries
• No huge “standard” library

– No owner
• To produce “free” libraries to ensure market share

– No central authority
• To approve, reject, and help integration of libraries

• No standard
– Graphics/GUI

• Competing frameworks
– XML support
– Web support
– …

 Stroustrup - Essence, short - Columbia'14 16

Resource Management

Stroustrup - Essence, short - Columbia'14 17

Resource management
• A resource should be owned by a “handle”

– A “handle” should present a well-defined and useful abstraction
• E.g. a vector, string, file, thread

• Use constructors and a destructor

class Vector { // vector of doubles
 Vector(initializer_list<double>); // acquire memory; initialize elements
 ~Vector(); // destroy elements; release memory
 // …
private:
 double* elem; // pointer to elements
 int sz; // number of elements
};

void fct()
{
 Vector v {1, 1.618, 3.14, 2.99e8}; // vector of doubles
 // …
}

Stroustrup - Essence, short - Columbia'14

handle

Value

18

Resource management

• A handle usually is scoped
– Handles lifetime (initialization, cleanup), and more

Vector::Vector(initializer_list<double> lst)
 :elem {new double[lst.size()]}, sz{lst.size()}; // acquire memory
{
 uninitialized_copy(lst.begin(),lst.end(),elem); // initialize elements
}

Vector::~Vector()
{
 delete[] elem; // destroy elements; release memory
};

 Stroustrup - Essence, short - Columbia'14 19

Resource management

• What about errors?
– A resource is something you acquire and release
– A resource should have an owner
– Ultimately “root” a resource in a (scoped) handle
– “Resource Acquisition Is Initialization” (RAII)

• Acquire during construction
• Release in destructor

– Throw exception in case of failure
• Can be simulated, but not conveniently

– Never throw while holding a resource not owned by a handle

• In general
– Leave established invariants intact when leaving a scope

Stroustrup - Essence, short - Columbia'14 20

“Resource Acquisition is Initialization” (RAII)
• For all resources

– Memory (done by std::string, std::vector, std::map, …)
– Locks (e.g. std::unique_lock), files (e.g. std::fstream), sockets, threads

(e.g. std::thread), …

std::mutex mtx; // a resource
int sh; // shared data

void f()
{
 std::lock_guard lck {mtx}; // grab (acquire) the mutex
 sh+=1; // manipulate shared data
} // implicitly release the mutex

Stroustrup - Essence, short - Columbia'14 21

Pointer Misuse
• Many (most?) direct uses of pointers in local scope are not exception safe

void f(int n, int x)
{
 Gadget* p = new Gadget{n}; // look I’m a java programmer! 
 // …
 if (x<100) throw std::runtime_error{“Weird!”}; // leak
 if (x<200) return; // leak
 // …
 delete p; // and I want my garbage collector! 
}

– But, garbage collection would not release non-memory resources anyway
– But, why use a “naked” pointer?

Stroustrup - Essence, short - Columbia'14 22

Resource Handles and Pointers
• A std::shared_ptr releases its object at when the last shared_ptr to

it is destroyed

void f(int n, int x)
{
 shared_ptr<Gadget> p {new Gadget{n}}; // manage that pointer!
 // …
 if (x<100) throw std::runtime_error{“Weird!”}; // no leak
 if (x<200) return; // no leak
 // …
}

– shared_ptr provides a form of garbage collection
– But I’m not sharing anything

• use a unique_ptr

Stroustrup - Essence, short - Columbia'14 23

Resource Handles and Pointers

• But why use a pointer at all?
• If you can, just use a scoped variable

void f(int n, int x)
{
 Gadget g {n};
 // …
 if (x<100) throw std::runtime_error{“Weird!”}; // no leak
 if (x<200) return; // no leak
 // …
}

Stroustrup - Essence, short - Columbia'14 24

Why do we use pointers?

• And references, iterators, etc.

• To represent ownership
– Don’t! Instead, use handles

• To reference resources
– from within a handle

• To represent positions
– Be careful

• To pass large amounts of data (into a function)
– E.g. pass by const reference

• To return large amount of data (out of a function)
– Don’t! Instead use move operations

 Stroustrup - Essence, short - Columbia'14 25

How to get a lot of data cheaply out of a function?

• Ideas
– Return a pointer to a new’d object

• Who does the delete?
- Return a reference to a new’d object

- Who does the delete?
- Delete what?

- Pass a target object
- We are regressing towards assembly code

- Return an object
- Copies are expensive
- Tricks to avoid copying are brittle
- Tricks to avoid copying are not general

- Return a handle
- Simple and cheap

Stroustrup - Essence, short - Columbia'14 26

Move semantics
• Return a Matrix

Matrix operator+(const Matrix& a, const Matrix& b)
{
 Matrix r;
 // copy a[i]+b[i] into r[i] for each i
 return r;
}
Matrix res = a+b;

• Define move a constructor for Matrix
– don’t copy; “steal the representation”

……..

res:

r:

Stroustrup - Essence, short - Columbia'14 27

Move semantics
• Direct support in C++11: Move constructor

class Matrix {
 Representation rep;
 // …

Matrix(Matrix&& a) // move constructor
{
 rep = a.rep; // *this gets a’s elements
 a.rep = {}; // a becomes the empty Matrix
}

};

Matrix res = a+b;

……..

res:

r:

Stroustrup - Essence, short - Columbia'14 28

No garbage collection needed

• For general, simple, implicit, and efficient resource management
• Apply these techniques in order:

1. Store data in containers
• The semantics of the fundamental abstraction is reflected in the interface
• Including lifetime

2. Manage all resources with resource handles
• RAII
• Not just memory: all resources

3. Use “smart pointers”
• They are still pointers

4. Plug in a garbage collector
• For “litter collection”
• C++11 specifies an interface
• Can still leak non-memory resources

Stroustrup - Essence, short - Columbia'14 29

Range-for, auto, and move
• As ever, what matters is how features work in combination

template<typename C, typename V>
vector<Value_type<C>*> find_all(C& c, V v) // find all occurrences of v in c
{
 vector<Value_type<C>*> res;
 for (auto& x : c)
 if (x==v)
 res.push_back(&x);
 return res;
}

string m {"Mary had a little lamb"};
for (const auto p : find_all(m,'a')) // p is a char*
 if (*p!='a')
 cerr << "string bug!\n";

Stroustrup - Essence, short - Columbia'14 30

RAII and Move Semantics

• All the standard-library containers provide it
• vector
• list, forward_list (singly-linked list), …
• map, unordered_map (hash table),…
• set, multi_set, …
• …
• string

• So do other standard resources
• thread, lock_guard, …
• istream, fstream, …
• unique_ptr, shared_ptr
• …

Stroustrup - Essence, short - Columbia'14 31

GP

Stroustrup - Essence, short - Columbia'14 32

Generic Programming: Templates

• 1980: Use macros to express generic types and functions
• 1987 (and current) aims:

– Extremely general/flexible
• “must be able to do much more than I can imagine”

– Zero-overhead
• vector/Matrix/… to compete with C arrays

– Well-specified interfaces
• Implying overloading, good error messages, and maybe separate

compilation

• “two out of three ain’t bad”
– But it isn’t great either
– it has kept me concerned/working for 20+ years

Stroustrup - Essence, short - Columbia'14 33

Templates
• Compile-time duck typing

– Leading to template metaprogramming

• A massive success in C++98, better in C++11, better still in C++14
– STL containers

• template<typename T> class vector { /* … */ };
– STL algorithms

• sort(v.begin(),v.end());
– And much more

• Better support for compile-time programming

– C++11: constexpr (improved in C++14)

Stroustrup - Essence, short - Columbia'14 34

Containers and Algorithms
• The C++ standard-library algorithms are expressed in terms of half-

open sequences [first:last)
– For generality and efficiency
– If you find that verbose, define container algorithms

namespace Extended_STL {
 // …
 template<typename C, typename Predicate>
 Iterator<C> find_if(C& c, Predicate pred)
 {
 return std::find_if(c.begin(),c.end(),pred);
 }
 // …
}

auto p = find_if(v, [](int x) { return x%2; }); // assuming v is a vector<int>

 Stroustrup - Essence, short - Columbia'14 35

Duck Typing is Insufficient

• There are no proper interfaces
• Leaves error detection far too late

– Compile- and link-time in C++

• Encourages a focus on implementation details
– Entangles users with implementation

• Leads to over-general interfaces and data structures
– As programmers rely on exposed implementation “details”

• Does not integrate well with other parts of the language
– Teaching and maintenance problems

• We must think of generic code in ways similar to other code
– Relying on well-specified interfaces (like OO, etc.)

Stroustrup - Essence, short - Columbia'14 36

Using Constraints: Concept
• We must specify what we expect of template arguments
• Concept:

– A set of requirements on one or more template arguments
– A compile-time predicate on a set of types and values
– For example

• Sequence<T> is T a sequence type
• Container<T> is T a container type
• Forward_iterator<T> is T a forward iterator
• Integer<T> is T and integer type
• Function<T,A> can a T be called with an argument of type A

– Use
• template<typename C> requires Container<C>() void sort(C& c);
• template<Container C> void sort(C& c); // shorthand notation
• void sort(Container& c); // terse notation

Stroustrup - Essence, short - Columbia'14 37

Generic Programming is just Programming

• Traditional code
double sqrt(double d); // C++84: accept any d that is a double
double d = 7;
double d2 = sqrt(d); // fine: d is a double
double d3 = sqrt(&d); // error: &d is not a double

• Generic code
void sort(Container& c); // C++14: accept any c that is a Container
vector<string> vs { "Hello", "new", "World" };
sort(vs); // fine: vs is a Container
sort(&vs); // error: &vs is not a Container

 Stroustrup - Essence, short - Columbia'14 38

C++14 Concepts: Error handling
• Error handling is simple (and fast)

template<Sortable Cont>
 void sort(Cont& container);

vector<double> vec {1.2, 4.5, 0.5, -1.2};
list<int> lst {1, 3, 5, 4, 6, 8,2};

sort(vec); // OK: a vector is Sortable
sort(lst); // Error at (this) point of use: Sortable requires random access

• Actual error message
error: ‘list<int>’ does not satisfy the constraint ‘Sortable’

Stroustrup - Essence, short - Columbia'14 39

C++14 Concepts: Overloading

• Overloading is easy
template <Sequence S, Equality_comparable<Value_type<S>> T>
 Iterator_of<S> find(S& seq, const T& value);

template<Associative_container C>
 Iterator_type<C> find(C& assoc, const Key_type<C>& key);

vector<int> v { /* ... */ };
multiset<int> s { /* … */ };
auto vi = find(v, 42); // calls 1st overload:
 // a vector is a Sequence
auto si = find(s, 12-12-12); // calls 2nd overload:
 // a multiset is an Associative_container

Stroustrup - Essence - UNT'13 40

C++14 Concepts

• We have reached the conventional notation
– with the conventional meaning

• Traditional code
double sqrt(double d); // C++84: accept any d that is a double
double d = 7;
double d2 = sqrt(d); // fine: d is a double
double d3 = sqrt(&d); // error: &d is not a double

• Generic code
void sort(Container& c); // C++14: accept any c that is a Container
vector<string> vs { "Hello", "new", "World" };
sort(vs); // fine: vs is a Container
sort(&vs); // error: &vs is not a Container

Stroustrup - Essence, short - Columbia'14 41

“Paradigms”
• Much of the distinction between object-oriented

programming, generic programming, and “conventional
programming” is an illusion
– based on a focus on language features
– incomplete support for a synthesis of techniques
– The distinction does harm

• by limiting programmers, forcing workarounds

void draw_all(Container& c) // is this OOP, GP, or conventional?
 requires Same_type<Value_type<Container>,Shape*>
{
 for_each(c, [](Shape* p) { p->draw(); });
}

Stroustrup - Essence, short - Columbia'14 42

Questions?

Key strengths:
• software infrastructure
• resource-constrained applications

C++: A light-weight abstraction
programming language

Stroustrup - Essence, short - Columbia'14

Practice type-rich
programming

43

	The Essence of C++�with examples in C++84, C++98, C++11, and C++14
	Overview
	What did/do I want?
	Who did/do I want it for?
	What is C++?
	C++
	Programming Languages
	What does C++ offer?
	What does C++ offer?
	Map to Hardware
	Classes: Construction/Destruction
	Abstract Classes and Inheritance
	Parameterized Types and Classes
	Not C++ (fundamental)
	Not C++ (market realities)
	Resource Management
	Resource management
	Resource management
	Resource management
	“Resource Acquisition is Initialization” (RAII)
	Pointer Misuse
	Resource Handles and Pointers
	Resource Handles and Pointers
	Why do we use pointers?
	How to get a lot of data cheaply out of a function?
	Move semantics
	Move semantics
	No garbage collection needed
	Range-for, auto, and move
	RAII and Move Semantics
	GP
	Generic Programming: Templates
	Templates
	Containers and Algorithms
	Duck Typing is Insufficient
	Using Constraints: Concept
	Generic Programming is just Programming
	C++14 Concepts: Error handling
	C++14 Concepts: Overloading
	C++14 Concepts
	“Paradigms”
	Questions?

