
MineTime Final Report

1 of 88

MineTime

Team 18:

Mirza Ali - Project Manager
Tanay Jaipuria - Language and Tools Guru

Don Yu - System Architect
Patrice Liang - System Integrator
Stephen Zhou - System Tester

MineTime Final Report

2 of 88

Table	 of	 Contents	

White	 Paper	 ...	 5	
Minecraft	 101	 ...	 5	
History	 ...	 5	
Gameplay	 ..	 5	
Building	 ...	 5	
Maps	 ..	 6	
External	 Applications	 ..	 6	

The	 Better	 Way	 to	 Craft	 ..	 7	
MineTime	 simplifies	 ...	 7	
MineTime	 saves	 time	 ...	 7	
MineTime	 is	 easy	 ...	 7	

Intended	 Users	 ...	 7	
Properties	 of	 Language	 &	 Buzzwords	 ..	 8	
Elegant	 ...	 8	
Simple	 ...	 8	
Portable	 ...	 8	

Related	 Languages	 ..	 8	
MCTerra	 ...	 8	
Mace	 ..	 8	
MCEdit	 ..	 8	
Why	 MineTime?	 ...	 8	

Conclusion	 ...	 9	
Example	 ..	 9	

Language	 Tutorial	 ..	 10	
Introduction	 ...	 10	
Input	 and	 Output	 ...	 10	
Hello	 World	 ...	 11	
Variables	 and	 Expressions	 ..	 12	
Control	 Flow	 ...	 13	
Loops	 ...	 13	
If	 Else	 Statements	 ...	 14	

Functions	 ...	 15	
Conclusion	 ...	 17	

Language	 Reference	 Manual	 ..	 18	
Introduction	 ...	 18	
Lexical	 Conventions	 ...	 18	
Comments	 ..	 18	
Identifiers	 ..	 18	
Keywords	 ...	 18	
Reserved	 ..	 18	

Types	 ...	 19	
Basic	 Types	 ...	 19	
Derived	 Types	 ..	 19	
Constants	 ...	 19	
Boolean	 Constants	 ...	 20	

Scope	 ...	 20	
Lexical	 Scope	 ..	 20	

MineTime Final Report

3 of 88

Global	 Scope	 ...	 20	
Function	 Scope	 ..	 20	
Statement	 Block	 Scope	 ...	 20	
Linkage	 Scope	 ..	 20	

Expressions	 ...	 20	
Primary	 Expressions	 ...	 20	
Function	 Calls	 ..	 21	
Class	 References	 ...	 21	
Multiplicative	 Operators	 ...	 21	
Additive	 Operators	 ..	 22	
Relational	 Operators	 ...	 22	
Equality	 Operators	 ..	 22	
Logical	 AND	 Operator	 ..	 23	
Logical	 OR	 Operator	 ..	 23	
Assignment	 Expressions	 ...	 23	
Declarations	 ..	 23	
Initialization	 ...	 24	
Statements	 ...	 24	

Grammar	 ..	 25	
Project	 Plan	 ..	 29	
Planning	 ...	 29	
Specifications	 ...	 29	
Development	 ..	 29	
Testing	 ..	 29	
Responsibilities	 ...	 29	
Implementation	 Style	 Sheet	 ..	 30	
Timeline	 ...	 30	

Language	 Evolution	 ...	 32	
Compiler	 Tools	 ..	 32	
Libraries	 ..	 32	
Consistency	 ...	 33	

Translator	 Architecture	 ...	 34	
Pre-‐Processor	 	 ..	 34	
Lexer	 ...	 34	
Parser	 ...	 34	
Code	 Generator	 ..	 35	

Development	 and	 Runtime	 Environment	 ..	 36	

Test	 plan	 ..	 38	
Tools	 ..	 38	
Relevant	 Files	 and	 Descriptions	 ..	 38	
Select	 Test	 Cases	 ...	 39	
Notable	 Bugs	 Encountered	 ..	 41	

Conclusions	 ..	 42	
Lessons	 learned	 as	 a	 team	 ...	 42	
Lessons	 learned	 Individually	 ..	 42	
Mirza	 Armaan	 ..	 42	

MineTime Final Report

4 of 88

Tanay	 Jaipuria	 ..	 42	
Don	 Yu	 ...	 43	
Patrice	 Liang	 ...	 43	
Stephen	 Zhou	 ...	 44	

Advice	 for	 future	 teams	 ..	 44	
Suggestions	 ...	 45	

Appendix	 ...	 46	
Git	 Log	 ...	 46	
Source	 Code	 ..	 52	
Tests	 ...	 52	
lexing.py	 ...	 61	
yaccing.py	 ..	 63	
traverse.py	 ..	 71	
minetime.py	 ..	 88	

	

	

MineTime Final Report

5 of 88

White Paper

Minecraft 101

History
Minecraft is a sandbox genre game developed by the independent game company Mojang.
Over the past few years, Minecraft has exploded in popularity and has sold over 10 million
copies as of April 2013. Content updates are frequent, continually offering players new content.

Gameplay
Minecraft revolves around combat, exploration, harvesting resources, and, most importantly,
building structures out of the various types of blocks available in the Minecraft universe.

Building is done by placing collected blocks from the player’s inventory onto the Minecraft map.
“Vanilla” Minecraft, e.g. Minecraft without using cheats or external editing programs, is typically
tedious and time-consuming as each block has to be individually collected and placed. As the
scale of a Minecraft project expands, the player has to increasingly worry about proper
scaffolding, lighting, and monster attack deterrents.
	

	
Figure: A selection of hostile creatures in a fence structure.

Building
There are currently over 170 different blocks that can be used as building material in Minecraft.
Each block type has a unique look and feel. Some blocks have other special properties. For
example, chests can store other blocks and act like external inventories, torches light up dark
areas, water flows radially outward from the source, sand falls down with “gravity,” etc.
	
	

MineTime Final Report

6 of 88

There are a couple of building restrictions:

1. Blocks can only be placed off of another block. This means blocks cannot be placed on
air alone.

2. There is no gravity acting on blocks in Minecraft (except with some special cases like
with sand).

3. Players can only place a block within 4 blocks of him or herself.
4. Blocks can only be placed one at a time through pointing and clicking.

Maps
Maps are automatically generated as the player explores an area. As such, maps do not have a
defined finite boundary.
	
All the information associated with a Minecraft map is stored within a directory. The directory is
roughly structured as the following:

 MapName/
 level.dat - global metadata of the map
 players/<player>.dat - information of each player in the map
 data/ - stores map item data

External Applications
Because of the potential for complexity in Minecraft structures, there exists programs and
libraries that can manipulate directly maps without the typical restrictions found in vanilla
Minecraft. In a similar sense, players can use the MineTime programming language to
algorithmically manipulate the map.

	

MineTime Final Report

7 of 88

The Better Way to Craft

Figure: A cobble and brick wall built with MineTime code.

MineTime simplifies
For example, making a large geometrically simple shape like a circle or rectangle typically
requires a fair amount of planning because of both the large scale of the map and the limited
reach of the player. A common method for players is to meticulously plan shapes on a gridded
template, like on paper or on Excel, in order to ensure symmetry. Using MineTime greatly
reduces the planning time. Creating regular structures is as easy as using trigonometric
equations within a loop.

MineTime saves time
Players do not have to worry about collecting resources to build structures because MineTime
directly modifies the map data when adding blocks.

MineTime is easy
Creating a map is as simple as initializing a FlatMap object. Adding a block is as easy as calling
an add method. The syntax and grammar is succinct and simple.

Intended Users
MineTime is intended for both existing and new players of Minecraft. The efficiency of the
language appeals to existing users that are already familiar with the game and wish to devote
more time to imagining new and complex structures. For new players, MineTime allows them to

MineTime Final Report

8 of 88

quickly dive into the game, as it renders the process of building structures logical and
accessible.

In terms of programming background, MineTime is intended for users that possess basic
understanding of programming constructs, as the syntax closely mirrors those of Python and
Java. Beyond that, MineTime is intuitive and does not require advanced skill sets in
programming.

Properties of Language & Buzzwords
A gaming language must be simple and intuitive, so that it will appeal to a majority of users.
Below are the design goals of our language:

Elegant
We would like our syntax to be elegant and easy to use. For this purpose, we have tried to keep
it similar to Python, which we believe has a very simple and clean syntax.

Simple
In Minecraft, structures are built block-by-block. This makes it very time consuming to build
large structures. In our language, one can combine blocks/towers to make a structure before
actually needing to place it. Therefore, we have abstracted away the work in figuring out how
the coordinates will work to some extent.

Portable
Since the final output of our programming language is a Minecraft map file, any computer that is
compatible with Minecraft can enjoy the benefits of the language and can utilize the output of
our program. Further, our target language is Python. Therefore any system that can run Python
can execute programs written in our language to create map files.
	
MineTime encapsulates a number of features that make it easy to use and portable, allowing for
innovative creation within the game.

Related Languages
There are no programming languages that interact with Minecraft but there are a various
applications that do so.

MCTerra
MCTerra is a generator that creates maps of different terrains, including flat maps, biosphere
maps, desert maps, golden tunnels maps, and planetoid maps. It aims to speed up the process
of generating terrain with user-specified features and settings.

Mace
Mace is a generator that creates a random structures at the spawn point.

MCEdit
MCEdit is an comprehensive GUI application that allows the user to edit and create worlds. Its
features include copy, clone, filters, and more.

Why MineTime?

MineTime Final Report

9 of 88

Though the Minecraft community has created many programs and editors to enhance the
Minecraft map creation process, MineTime distinguishes itself from all of them with its focus on
speed by eliminating repetitive and monotonous actions through function abstractions. Whereas
editors like MCTerra and Mace create maps quickly, they don’t grant the player the freedom to
fully exercise his or her creativity and whim. For example, MCTerra constrains the user to the
available settings and features and Mace creates every randomly. Contrast this to Minetime’s
endless number for possible programs.
	
MCEdit is the most powerful of the three MineTime program’s, but still requires the player to
navigate a GUI and drag n’ drop structures. MineTime’s algorithmic approach to cloning
embedded in the language is more efficient for building defined and symmetric structures.

Conclusion
MineTime addresses the specific case of programming from the gamer’s perspective rather than
from the developer’s side. Our language will be built ground-up to enable gamers to reach their
goals through intuitive programming logic rather than long unproductive gaming hours. While it
would typically require an hour to design and build a 200 block x 200 block wall in Minecraft, a
MineTime program, once written and compiled, will do the same in 2 minutes. Furthermore, as
the user becomes more familiar with the language, the time required to generate the code would
be further reduced.

The better way to develop Minecraft maps is here, now, brought to you by Team 18.

Example
It’s simple to build complex Minecraft structures using MineTime’s built-ins.
	
// Creates a 500x500 flat Minecraft map
map = FlatMap(“testmap”, 500, 500);

// Add wall at (0, 0, 0) point
map.add(wall, (0, 0, 0));

// Demonstration using loops

for (int x=0; i < 20; i++) {
 map.add(block(COBBLE), (x, 0, 0));
 for (int y=1; y <=4) {
 map.add(block(BRICK), (x, y, 0));

}
map.add(block(STONE), (x, 0, 5);

}

	
	

MineTime Final Report

10 of 88

Language Tutorial

Introduction
This will be a short tutorial of the MineTime language. Rather than bogging the reader down
with details, we will go through example programs that demonstrate the use of MineTime.

This tutorial will focus on the basics of the language - types, constants, expressions, inputs, and
outputs, so that the user can get to writing useful programs in MineTime fairly quickly.
Experienced programmers should be able to write advanced programs after going through
these tutorials. First, we will provide a brief introduction to Minecraft, the game for which
MineTime was created.

Minecraft is a sandbox construction game that allows users to create and destroy blocks in a 3D
environment. The user explores the virtual world and mines resources to build structures by
assembling basic resource blocks, ultimately create their own worlds.

MineTime is a programming language that takes away the drudgery of painstakingly laying
down every single Minecraft block so that players can concentrate on what they do best--
creating virtual architectural masterpieces. It alleviates the burden of having to rebuild from
scratch and enables users to play Minecraft algorithmically as well as extend previous creations,
which take the form of MineTime programs. Consider the scenario of building a tower. Originally,
a player would have to manually stack blocks repetitively to construct it, but MineTime provides
the means to iterate through the placement of blocks using control loops. In addition, recreating
previous Minecraft structures is as simple as instantiating an object.

Before we demonstrate a Hello World program, a quick word on the input and output of
MineTime.

Input and Output
The purpose of MineTime is to create Minecraft maps more quickly and efficiently. As such, the
output will always be a map file, which the user can then open directly in the Minecraft game.
The input will be some statements and expressions which are used to construct structures and
objects on the map.

For example, a completely minimal program would look like:

map = new FlatMap(“testmap”, 500, 500, 500);
map.close();

Upon running this program, an empty map would be outputted. Loading this map into Minecraft
would be the same as simply starting a new Minecraft game with an empty map which you can
build upon in the game.

MineTime Final Report

11 of 88

Now, a simple Hello World program to demonstrate some of the syntax of MineTime.

Hello World
A Hello World program in MineTime creates an empty 500px*500px*500px map and places a
cobble block at the origin. This is the simplest demonstration of the language because the
primary functionality of MineTime is to output a map, and the placement of the cobble block
demonstrates MineTime’s capacity to build structures, starting with the most basic block.

Program 1
map = FlatMap(“testmap”, 500, 500, 500); $ Initialise a map of 500px *
500px * 500px
p = new Point(0,0,0);
map.add(block(COBBLESTONE), p); $ Place a block of cobble at the
origin
map.close() $ finish

First, let’s explain what is going on here.

The first line simply creates an empty map of size 500px * 500px * 500px called “testmap.”

The second line creates a point at the origin.

The third line adds one block of cobble at the origin.

A block is the basic data structure of MineTime. It is a 1px*1px*1px block, of a given type. Types
include air, stone, brick, cobble and grass.

In general, the add function takes in two parameters - the first is a block and the second is a
point where the structure should be added.

The third line simply closes the map, implying that it cannot be further modified.

Another thing you might notice is the “$” string followed by some text. This is the notation used
for comments. Comments are ignored by the compiler, and are generally used to make a
program easier to understand.

So for example, the “$ Initialize a map of 500px * 500px * 500px” for example, is ignored by the
compiler.

Once you are clear with what is going on, save the above program in a file ending with .mt,
helloworld.mt for example.

Then, to run the program, use the command

MineTime Final Report

12 of 88

./minetime.py helloworld.mt

If everything goes as expected, once the program is compiled, upon typing the command ls, you
will notice a new file in the directory called “testmap.”

This is the output of the program and can be loaded as a map directly in Minecraft by opening
the game, selecting “Single Player,” then selecting “testmap” as the map file to import.

Start the game and load the map if you’d like - but come back to read the rest of the tutorial!

Variables and Expressions
Now we present a program that shows how operators and functions in MineTime work.

Program 2
map = new FlatMap(“testmap”, 500, 500, 500);
x = 10;
y = x+5;
z = x+5*2;
b = new Point(x,y,z);
c = block(BRICK);
map.add(c, b);
map.close();

This program is similar to the hello world one in that all it does is creates a couple of blocks, but
it gives us some more insight into how variables and expressions work.

As is seen above, the language is dynamically typed, and so specifying the type of a variable is
not needed. b refers to a point, and x,y and z to numbers.

The first line creates a map, as in the previous program.

The second, third and fourth lines all assign values to variables.

* has higher precedence than +, and so first 5 is multiplied by 2 before being added to x in line 4.
z therefore has a value of 20.

The line below, creates a new point with the values in x, y and z and stores it in b.
b = new Point(x,y,z);

The next line assigns the block type of air to the variable c.

The line below adds the block to the point b.
map.add(c, b);

MineTime Final Report

13 of 88

And lastly, this line is used to close the map.
map.close();

At this point, a couple of things should be mentioned.

First, every program should end with the close method being called on the map, or else the
blocks added won’t be saved to the map.

Control Flow

Loops
Above, we demonstrated how to build a wall using operators and the transpose function. Below
we will show how the same wall can be made using loops, and in the process demonstrate how
control flows in MineTime work.

The for statement: in the MineTime programming language we use loops to make building
constructs easier. We use it below to create a wall.

Creating walls is considered a simple repetition of blocks. First we build in the the z direction
and then recreate the construction across the x and y coordinates depending on the user’s
choice. Let’s take a look at a basic example. Note that we are only showing a code snippet and
not the entire program so as to focus on the new things here (we have left out the initialization
and closing of the map and the main function)

$* Demonstration using loops *$

for (x=0; x < 20; x = x+1) {
 t = new Point(x,0,0);
 map.add(block(COBBLE), t);
 for (y=1; y <=4; y=y+1)

{
 p = new Point(x,y,0);
 map.add(block(BRICK), p);

}
top = new Point(x,5,0);
map.add(block(STONE), top);

}

The implementation of block structures is done via nested loops, where the for statement is
formatted in a generic way. For the outer loop, we have the initialization of a temporary variable
x = 0, a condition x < 20 which limits the size of the given wall, and x=x+1, the increment step
after which the condition is re-evaluated. A loop terminates if its condition is false at any time.

MineTime Final Report

14 of 88

The outer loop creates a block of a given type at a particular location and repeats it across the
given range for the wall. The inner loop then stacks each of the constructed blocks for a given
height. Utilizing nested loops allows the user to create a simple wall in MineTime.

Our language also has while loops.

In a while loop, as long as the condition in the parentheses is true, the statement’s in the body
are executed.

Here is a code snippet that uses a while loop to build a tower:

y = 0;
while (y<20)
{
 p = new Point(0,y,0);
 map.add(block(GLASS), p);
 y = y + 1;
}

In the snippet above, y < 20 is true for twenty iterations, and so a tower of height twenty is built
since blocks are essentially added one on top of the other twenty times.

If Else Statements
We have seen how loops help the user in coding out a working program. MineTime also
supports if else statements so as to properly direct control flow.

if (expression)
{
 statements
}
else
{
 statements
}

Below is an example use-case:

if (x>5)
{
 p = new Point(x,0,0);

map.add(block(STONE), p);
}
else
{

p = new Point(x,0,0);

MineTime Final Report

15 of 88

map.add(block(BRICK), p);
}

In the above snippet, if x is greater than 5, a stone block is added. Otherwise, a brick block is
added.

The condition in the if has a number of options associated with it. We can check for:

equals by ‘==’
not equals by ‘!=’
greater than or lesser than by ‘>’ / ‘<’
or by ‘||’

Functions
In MineTime a function is equivalent to a subroutine, and it allows for an easier way to
encapsulate a given computation.

Here, we will look at how to define our own functions.

Functions are defined by the following syntax:

def function_name(parameter-list)
{
 function body
}

Here is an example function to create a tower, similar to the tower built in the loops section
above.

def create_tower(startx, startz, height)
{
 for (i = 0; i < height; i=i+1)
 {
 p = new Point(startx, height, startz);
 map.add(block(GLASS), p);
 }
}

This creates a tower of the height specified by looping through and adding glass blocks ‘height’
number of times.

Now to call this function, we simply use it’s name, and give it whatever parameters we want.
For example, to create a tower of height 10 at startx = 0, and startz = 0, we would do:

MineTime Final Report

16 of 88

create_tower(0,0,10);

The nice thing about having written this function is that we can now create walls of different
heights in a number of places. The code therefore becomes very reusable, as the example
below shows. It creates two different towers in different locations and of different heights.

def main()
{
map = FlatMap(“testmap”, 500, 500, 500);
create_tower(0,0,50);
create_tower(10,10,100);
map.close();
}

As you might have noticed, this code was written in a main function. The main function is not
strictly required, but encouraged, especially when you have multiple functions, some of which
you might not be calling. If a main function exists, when the program runs, all the code in it is
executed.

A quick note about functions: functions should be declared earlier in the input program than
where they are called.

For example, we cannot write:

def A(x):
{
 B(x);
}

def B(x):
{
}

The compiler would throw an error, since B(x) has not been defined yet. However, the following
is fine:

def B(x):
{
}

def A(x):
{
 B(x);
}

MineTime Final Report

17 of 88

Conclusion
This Language Tutorial covers the core of the MineTime programming language and hopefully
will assist users in writing their own programs of varied purposes and sizes. It showcases the
essentials of the language and offers a basic understanding of the grammar. A comprehensive
analysis can be found in the Language Reference Manual.

MineTime Final Report

18 of 88

Language Reference Manual

Introduction
This manual describes the numerous features that MineTime supplies to make creating complex
architecture within Minecraft easier. We start with an overview of the lexical conventions used
within the language, follow with the language syntax, and end with a grammar to represent
MineTime.

Lexical Conventions
Every program is reduced to a sequence of tokens. Each token can be one of five classes:
identifiers, keywords, constants, operators, and separators. In addition, spaces, tabs, newlines,
and comments, which we will collectively refer to as whitespace, separate tokens.

Comments
MineTime uses a dollar sign $ for single line comments. Single line comments extend to a
newline character. Block comment blocks start with $* and end with *$ and can span multiple
lines. A comment block cannot be nested within another comment block.

Identifiers
Identifiers must start with a letter or underscore. Otherwise, it can consist of any sequence of
letters, digits, and underscores. Any letters used in the identifier are case-sensitive.

An identifier can represent a primitive, object, function, and class.

Keywords
The following identifiers are reserved for use as keywords, and may not be used
otherwise:

if
else
def
for

while
return
import

new
true
false

FlatMap
Point
Block

Reserved
The following characters are reserved for use in the grammar.

+
-

(
)

{
}

<=
&&

MineTime Final Report

19 of 88

*
/
[
]

=
;
:
==

>
<
>=
,

||
!=
.
$

Types

Basic Types
MineTime has several primitive types.

Integer
Integer constants are the same as the implementation in Python 2.7. int is two’s complement,
128 bits in size. long has arbitrary precision, limited only by the memory available on the
machine. An int is automatically promoted to a long when its value falls out of the int’s bounds.

Float
Floating numbers are the same as the implementation in Python 2.7. float has arbitrary
precision and will handle as many decimal places and significant digits as allowed by the
available memory on the machine.

Boolean
A boolean encapsulates true and false values.

String
A string is a sequence of characters surrounded by double quotation marks.

Block
The basic building unit in Minecraft is. It is the cubic block of a certain type (i.e. Cobble, Air,
Stone, Grass, Dirt). Similarly, we have block constants consisting of a single cubic block that is
of constant block type initialized with an integer 1-172. Block constants will always preserve its
type.

Derived Types

Lists
A list is an ordered data structure that holds zero or more items. A list can be initialized with a
comma-separated list of items surrounded by ‘[‘ and ‘]’. List elements can be accessed using the
get() method. Additional items can be added and removed with the append() and delete()
methods respectively. Lists are dynamically sized as it grows and shrinks, limited only by the
machine’s available memory.

Point
A point is a wrapper for a three-integer tuple, representing an x, y, z coordinate in Minecraft. It
must contain 3 integers and cannot hold objects of any other type.

Constants

MineTime Final Report

20 of 88

Character Constants
Character constants are a sequence of one or more characters whose value cannot be changed.
Character constants are not an actual type; instead, they are implicitly converted to the primitive
string.

Certain special constants cannot be represented without conventional keys or are reserved.
They can instead be represented with escape sequences.

 newline \n
 horizontal tab \t
 carriage return \r
 backslash \\
 single quote \’
 double quote \”

Boolean Constants
Boolean constants are either true or false.

Scope

Lexical Scope
The lexical scope of an identifier for a declared variable will always start at the end of its
declaration and persist until its current scope exits. Variable names in the same scope must be
unique.

Global Scope
Variables declared outside of functions exist within all functions and persist through the entirety
of the program.

Function Scope
Variables declared inside functions persist within the function and dies upon exiting the function.

Statement Block Scope
Variables declared inside a statement block persist within the block and dies upon exiting the
block.

Linkage Scope
Every external library function or constant that is imported to the MineTime program can be
accessed through its identifier. Externally linked library identifiers are shared by the entire
program that it is imported into.

Expressions

Primary Expressions

MineTime Final Report

21 of 88

Primary expressions are identifiers, constants, strings, or parenthesized expressions.

primary-expression:
 ID
 STRING
 NUMBER
 point-gen
 ‘(‘ expression ‘)’

point-gen:

 POINT

Function Calls
A function call consist of the function name with its parameter list surrounded by parentheses.

function-expression:
 ID ‘(‘ parameter-list ‘)’

Parameters are passed in by value. Argument expressions are evaluated in the order they are
specified in the parameter list.

Class References
MineTime supports a couple of built-in class types like FlatMap.

initializer:
‘new’ ID ‘(‘ parameter-list ‘)’

 primary-expression

class-method-expression:
 ID ‘.’ function-expression ‘;’

An identifier is a class type when initialized with the class name preceded by the keyword new.
Class functions are called with the identifier name, period, and function name.

Multiplicative Operators
The multiplicative operators are * and /, and they group left-to-right. The usual type conversions
apply for arithmetic operators. Additional cases are noted below.

 multiplicative-expression:
 primary-expression
 multiplicative-expression ‘*’ primary-expression
 multiplicative-expression ‘/’ primary-expression

Arithmetic operations require operands of arithmetic types.

MineTime Final Report

22 of 88

* represents multiplication. If a string is an operand and an int is another operand, the result is
the string repeated the value of the int times.

/ represents division and yields the quotient. If the second operand is 0, an error is thrown.
Division with both int and/or long operands results in discarding the fractional portion of the
result.

Additive Operators
The additive operators are + and - group left-to-right. The usual type conversions apply for
arithmetic operators. Additional cases are noted below.

additive-expression:
multiplicative-expression
additive-expression ‘+’ multiplicative-expression
additive-expression ‘-’ multiplicative expression

Arithmetic operations require operands of arithmetic types.

+ represents the summation of the left operand and right operand. If the operands are strings,
then + represents concatenation.

- represents the left operand subtract the right operand.

Relational Operators
The relationship operators <, >, <=, and >= group left-to-right.

 relational-expression:
 additive-expression
 relational-expression ‘<’ additive-expression
 relational-expression ‘>’ additive-expression
 relational-expression ‘<=’ additive-expression
 relational-expression ‘>=’ additive-expression

If the operands are arithmetic, the < (less), > (greater), <= (less or equal), >= (greater or equal)
operators return a boolean value true if the specified relation is true and false if it is false.

If both operands are strings, then the same relation operation is carried out with the first string
character converted to its ASCII value. For two strings with equal ASCII value, the comparison
is carried on with the following character, and so on.

Equality Operators
The equality operators == and != function as the relational operators do, but they have lower
precedence. They are used as follows:

 equality-expression:

MineTime Final Report

23 of 88

 relational-expression
 equality-expression ‘==’ relational-expression
 equality-expression ‘!=’ relational-expression

The operands are arithmetic, the == (equal to) and != (not equal to) operators return a boolean
value true if the specified relation is true and false if it is false.

If both operands are strings, then the operation is analogous to the relational operators equal
with equality and inequality.

If one operand is arithmetic and the other is string, the equality always results in false and
inequality always results in true.

Logical AND Operator
The && operator groups left-to-right.

 logical-AND-expression:
 equality-expression
 logical-AND-expression ‘&&’ equality-expression

If both operands evaluate to true or a boolean equivalent, the logical OR expression yields a
boolean with value true; otherwise, it yields false.

Logical OR Operator
The || operator groups left-to-right.

logical-OR-expression:
 logical-AND-expression
 logical-OR-expression ‘||’ logical-AND-expression

If either of the two operands evaluate to true or a boolean equivalent, the logical OR expression
yields a boolean with value true; otherwise, it yields false.

Assignment Expressions
Assignment expressions evaluate right-to-left

 assignment-expression:
 ID ‘=’ NEW initializer
 ID ‘=’ assignment-expression
 logical-OR-expression

The left operand must be an identifier. Since MineTime is dynamically typed, the type of the left
operand is the type of the right operand.

Declarations

MineTime Final Report

24 of 88

Declarations specify how an identifier should be interpreted, and do not necessarily reserve
storage.

external-declaration:
function-definition
statement

function-definition:
 ‘def’ ID ‘(‘ parameter-list ‘)’ ‘{‘ statement-list ‘}’
 ‘def’ ID ‘(‘ parameter-list ‘)’ ‘{‘ ‘}’

Initialization
Initializers are used to initialize variables to a certain value or to create objects of types such as
Point or Map.

 initializer:
ID ‘(‘ parameter-list ‘)’

 primary-expression

An object may be initialized upon declaration. The initializer is preceded by the ‘=’ operator and
takes the form of an assignment expression.

Statements
Statements do not hold values and are executed for effect. Most statements are expression
statements, and these can be nested in a compound statement, which is usually a function
definition. If, if-else, for, and while are control flow statements.

 statement:
 expression-statement
 compound-statement
 selection-statement
 iteration-statement
 class-method-expression
 return-statement

Expression Statement
The most basic statement.

 expression-statement:
‘;’
expression ‘;’

Compound Statement
The compound statement allows for function definitions.

MineTime Final Report

25 of 88

 compound-statement:
 ‘{‘ ‘}’
 ‘{‘ statement-list ‘}’

Selection Statements
Selection statements are a form of control flow.

 selection-statement:
‘if’ ‘(‘ expression ‘)’ statement
‘if’ ‘(‘ expression ‘)’ statement ‘else’ statement

The if statement expression evaluates a boolean or boolean equivalent. If the expression is true,
then it executes the first statement.

The if-else statement evaluates the expression and executes the first statement if the
expression evaluates to true or the equivalent. Otherwise it executes the second statement.
There is an ambiguity with nested if-else. The ambiguity is resolved by binding the else with the
nearest if.

Iteration Statements
Iteration statements are a looping technique.

 iteration-statement:
 ‘for’ ‘(‘ expression-statement expression-statement expression ‘)’ statement
 ‘while’ ‘(‘ expression ‘)’ statement

In the for statement, the first expression in the parentheses is evaluated once and serves as an
initialization. The second expression is evaluated at the beginning of each iteration of the loop,
and if it evaluates to false the loops it terminated. If an expression is omitted for the second
expression, then it defaults to true. The third expressions is evaluated at the end of each
iteration and serves as a re-initialization and incrementation.

The while statement evaluates the parenthesized expression at the beginning of each iteration
and executes the statement if it evaluates to true.

Note that the loops are all equivalent to one another.

Grammar
translation-unit:
 external-declaration
 translation-unit external-declaration

external-declaration:

MineTime Final Report

26 of 88

 function-definition
 statement

function-definition:

‘def’ ID ‘(‘ parameter-list ‘)’ ‘{‘ statement-list ‘}’
 ‘def’ ID ‘(‘ parameter-list ‘)’ ‘{‘ ‘}’

statement:
 expression-statement
 compound-statement
 selection-statement
 iteration-statement
 class-method-expression
 return-statement

compound-statement:
 ‘{‘ ‘}’
 ‘{‘ statement-list ‘}’

statement-list:
 statement
 statement-list statement

expression-statement:

‘;’
expression ‘;’

expression:

 assignment-expression;

assignment-expression:
 ID ‘=’ NEW initializer
 ID ‘=’ assignment-expression
 logical-OR-expression

logical-OR-expression:
 logical-AND-expression
 logical-OR-expression ‘||’ logical-AND-expression

logical-AND-expression:
 equality-expression
 logical-AND-expression ‘&&’ equality-expression

equality-expression:
 relational-expression

MineTime Final Report

27 of 88

 equality-expression ‘==’ relational-expression
 equality-expression ‘!=’ relational-expression

relational-expression:
 additive-expression
 relational-expression ‘<’ additive-expression
 relational-expression ‘>’ additive-expression
 relational-expression ‘<=’ additive-expression
 relational-expression ‘>=’ additive-expression

additive-expression:

multiplicative-expression
additive-expression ‘+’ multiplicative-expression
additive-expression ‘-’ multiplicative expression

multiplicative-expression:
 primary-expression
 multiplicative-expression ‘*’ primary-expression
 multiplicative-expression ‘/’ primary-expression

initializer:

‘new’ ID ‘(‘ parameter-list ‘)’
 primary-expression

class-method-expression:
 ID ‘.’ function-expression ‘;’

parameter-declaration:
 initializer

primary-expression:
 ID
 STRING
 NUMBER
 point-gen
 ‘[‘ statement-list ‘]’
 ‘(‘ expression ‘)’

function-expression:
 ID ‘(‘ parameter-list ‘)’

parameter-list:
 parameter-declaration-optional
 parameter-list ‘,’ parameter-declaration

MineTime Final Report

28 of 88

point-gen:
 POINT

iteration-statement:
 ‘for’ ‘(‘ expression-statement expression-statement
expression ‘)’ statement
 ‘while’ ‘(‘ expression ‘)’ statement

selection-statement:

‘if’ ‘(‘ expression ‘)’ statement
‘if’ ‘(‘ expression ‘)’ statement ‘else’ statement

return-statement:
 ‘return’ ‘;’
 ‘return’ expression ‘;’

	

MineTime Final Report

29 of 88

Project Plan
 Mirza Ali

Our team brainstormed ideas for our programming language during the first week of February.
After multiple sessions of debating which idea had the best potential we decided to create
MineTime. To help keep track of our development cycle and keep everyone in the loop, we
created a GitHub repository and set up a virtual environment for testing on all our systems. This
ensured a speedy, up to date and efficient project management system.

Planning
Our team met every Friday to work on our project, recap the material covered in class as well as
assign responsibilities and tasks for the upcoming week. After writing the MineTime White paper
we used Google Docs to collaborate on deliverables and Asana for task management. This way
we were able to plan, organize and stay in sync.

Specifications
Once we had a working understanding of the procedure involved in creating our compiler we
met up with our mentor Melanie to show her our objectives and goals for the project plan. After
writing up our Language Tutorial and LRM we started working on implementation stage. As per
our tasks specification we divided up workloads into creating our grammar, defining the test
environment and building our Abstract Syntax Tree.

Development
We followed through the development of MineTime according to the stages outlined in a
compiler design. Having set up a fully functional version control system on GitHub, changes
were easy and everyone could work independently as well as share with the group. At each
stage of the development cycle we created a branch from the master repository so as to have a
working implementation. This enabled us to move quickly yet allow us the opportunity to retrace
our steps.

Testing
To make sure the entire workflow was smooth and without bugs we unit tested each stage of
our implementation. Over a period of time as new features were added, our system tester made
sure that everything from start to finish worked as expected. In several scenarios where some
commits caused errors we were able to roll back to a previous version and then fix the root of
the problem. The testing plan is covered in more detail in chapter 8.

Responsibilities
To collaborate in an efficient and fair manner, everyone’s responsibilities were outlined during
the weekly meeting and then updated in our task management system, Asana. Dividing the

MineTime Final Report

30 of 88

workload across the five team members allowed for quick implementation of the stages of our
project and also helped us remain organized.

Team Member Responsibility

· Don Yu
· Mirza Ali
· Patrice Liang
· Stephen Zhou
· Tanay Jaipuria

Scope and Type Checking, Semantics
Compiler Front End, Code Generation

Integrating code, Documentation
Test case creation, Building Grammar
Code generation and AST Traversal

Implementation Style Sheet
While building our project and moving from the design to the implementation phase, we knew
that programming environments could vary among the group due to different operating systems.
We decided to maintain a programming style consistent with Python as our final code
generation was in Python. We used indentation to indicate control structures, tabs to format
code, and spaces to keep the code aesthetically pleasing.

As a group we decided to use a text editor Sublime Text to keep everything consistent across all
platforms. We generally commented functions to describe their utility and also used single line
comments to explain specific code. This enabled us to keep our code neat and easy to
understand by everyone in the team. Another important factor was the use of GitHub to push
code and keep commits short and descriptive. This allowed the team to work in a productive
and efficient manner.

Timeline
The Project timeline we aimed for is shown in the below table:

Date Milestone

 Feburary 27
 March 27
 April 5
 April 19
 April 26
 May 3
 May 12

Language Proposal and whitepaper Complete
Language Reference Manual Complete
Compiler Front End (Lexer and Parser) Complete
Semantics & Type Checking Complete
Hello World Test Case Working
Debugging and Regression Testing
Final Report Complete

Project Log

MineTime Final Report

31 of 88

MineTime Final Report

32 of 88

Language Evolution
Tanay Jaipuria

Based on the feedback we received on the Language Proposal and the Language Reference
Manual, we knew that it would be nearly impossible to implement all the features we had
envisioned MineTime to have.

Therefore we first ranked all the features in three buckets—those that were essential, those that
we really should try to include and those that were not really needed.

We then got rid of the features we agreed to be unnecessary. These included a few built-in
functions such as tower and transpose and complex data-types such as struct.

The features we had listed as essential were: easy creation of the map type, if/else statements,
while loops, function declarations and function calls.

The features we had listed as useful but low-priority: for loops (since they are equivalent in
power to while loops), lists, and classes.

As Melanie suggested, we decided to employ a breadth-first approach. Our first goal was to get
hello world working completely. Then we updated the grammar and the traversal to add
selection statements. Afterwards, we implemented for loops, function calls, and so on. That way,
we would always have a working compiler.

As we continued to build our language, we eliminated classes.

Compiler Tools
Given the programming backgrounds of our team members, we settled on Python as the target
language for our compiler.

After conducting extensive research, we decided to use PLY1 (Python Lex-Yacc) for our Lexer
and parser. It was simple to use and had good documentation and numerous examples that
helped us get up and running.

We wrote the tree traversal module in-house.

Libraries
We used one external library in our compiler: pymclevel2. It is a library written in Python that
makes it easier to build Minecraft levels. Our compiler translates the input program written in

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 "PLY (Python Lex-Yacc)." 2005. 11 May. 2013 <http://www.dabeaz.com/ply/>
2 "mcedit/pymclevel · GitHub." 2012. 11 May. 2013 <https://github.com/mcedit/pymclevel> 2 "mcedit/pymclevel · GitHub." 2012. 11 May. 2013 <https://github.com/mcedit/pymclevel>

MineTime Final Report

33 of 88

MineTime to an output Python program. It imports and uses the pymclevel library to create
maps and add blocks to the map. In addition, pymclevel uses the libraries Numpy and PyYaml.

Consistency
After receiving feedback on the LRM and prior to working on our compiler, we updated our LRM
to match the new specifications of our language. For example, we removed the built-in functions
tower and transpose. We then used the LRM to list out all the features our language had and
ranked them after placing them into buckets, implementing them one by one. This way, we
made sure that we knew about everything in the LRM and that the feature we implement
already existed in the LRM.

Sometimes, we had to deviate from the LRM. For example, we found that we had to modify the
grammar to fix conflicts we encountered. We also made additions to Lex and Yacc in the form of
new reserved keywords or modified syntactic constructs. In both cases, we made sure to update
the LRM so consistency was always preserved.
	

MineTime Final Report

34 of 88

Translator Architecture
Don Yu

Pre-Processor
At the first step, we take the entire
MineTime input file and preprocess it for
imports. The input here will be the actual
MineTime file the user wants to compile
and the output of the Pre-Processor will
be a File Input Stream that results. The
Pre-Processor was written by Don.

Lexer
After preprocessing, the string contents of
the input file are passed to the Lexer,
which continuously matches the string
contents with Token specifications. The
initial Lexer was written by Tanay, but all
members of the team contributed to the
final version of the Lexer.

Parser
The Parser contains our grammar and
communicates with the Lexer to
continuously get tokens as needed. Here
a token is a class LexToken that contains
a type (the token class) and a value (the
string that resulted in this). As the Parser
evaluates the tokens, it is also creating
an AST. This AST comes in the form of
Nodes that contain children, a type (i.e.
the non-terminal or terminal name), and a
leaf value. The Parser will output the root
Node of the AST. Armaan wrote the class
definition for an AST Node and the entire
team contributed to creating the parser,
with Stephen responsible for ensuring
that the parser grammar matched our
LRM.

MineTime Final Report

35 of 88

Code Generator
The AST from the Parser is then passed on to the last step, the Code Generator, which we also
combined with the Semantic Analyzer. Here we traverse the tree, run semantic type-checking
and scope-checking, and then create the Python code. The Code Generator process was
initially written by Tanay, our Language Guru, and the semantic analysis parts were written by
Don. Other team members contributed to the final version of the Code Generator (i.e. fixing
things or adding a code creation mechanism for new code features). The resultant Python code
is captured as a string and written to a file that can then be executed by the user.

All of these modules are brought together and the whole process is run through our wrapper
module minetime.py, written by our System Integrator Patrice.

MineTime Final Report

36 of 88

Development and Runtime Environment
Patrice Liang

The compiler was developed under a Unix-based environment, specifically Ubuntu and Mac OS.
All members used vim and the Terminal to edit and test code. Git and Github were used for
version control and source-code sharing.

As we used Python 2.7.2 to create and test our compiler, a generic Makefile was not necessary.
Instead, our file minetime.py takes in as argument the user-defined .mt file containing MineTime
code and outputs the corresponding .py file that can be executed to create a map.

Minetime.py:

import yaccing as yacc
import sys
from lexing import Mtlex
from traverse import *
from preprocess import *

def main(argv):
 inputfile = argv[1]
 filename = inputfile.split(".")[0]
 source = open(inputfile).read()
generate the parser
 parser = yacc.getyacc()
generate the Lexer to be used with parser
 m = Mtlex()
 m.build()
preprocessing step
 preprocessor = Processor()
 source = preprocessor.preprocess(source)
 tree = parser.parse(source, lexer=m.lexer)

 firstline = '''import logging
import os
import sys
from pymclevel import mclevel
from pymclevel.box import BoundingBox
'''
 lastline = '''
if __name__ == '__main__':
 main()
'''

MineTime Final Report

37 of 88

 result = Traverse(tree).getpython()
 code = firstline + "\n" + result + "\n" + lastline + "\n"
 outputfile = filename + ".py"
 output = open(outputfile, 'w')
 output.write(code)

if __name__ == '__main__':
 main(sys.argv)

The compiler is run in a virtual environment to avoid conflicts with existing Python files.
Command-line instructions to set up the virtual environment and install all requirements are as
follows:

pip install virtualenv
virtualenv env
source env/bin/activate
pip install pyyaml
pip install ply
pip install numpy

MineTime Final Report

38 of 88

Test plan
Stephen Zhou

Tools
Testing of the compiler relies on Python’s unittest module in the standard library. Each part of
the compiler, lex, yac, and traverse, has its own set of unittests. Moreover, there is a unittest for
the external pymclevel library as a way for a group member to quickly check if he or she has
correctly installed pymclevel.

All testing harnesses are found within the tests/ directory of the project’s root. Each test suite is
listed and described as follows.

Relevant Files and Descriptions
tests/templevel.py

templevel.TempLevel takes in a filename and creates an empty Minecraft map. It uses
the atextit and shutil modules to delete itself upon finishing the test.

tests/mt_test_cases.py
 mt program test snippets that are used for testing the yacc and traverse are found within

tests/mt_test_cases.MTTests.

tests/level_test.py
 level_test.TestLevelCreation uses templevel.TempLevel to create an empty Minecraft

map, fill it with blocks, and checks whether or not the blocks exist in the game with
assertions.

tests/lexing_test.py
 lexing_test.TestLexing uses several equality assertions to check the correctness of

lexing.py.

 Test cases were created to test general code and potential edge cases.

tests/yaccing_test.py
 yaccing_test.TestYaccing does not do any direct testing of the parse tree generated by

yaccing.py. Instead, each test case prints out the tree generated by the cases found in
mt_test_cases.MTTests and is manually inspected by a group member.

Equality assertion tests were not made because of the complexity of checking for
equality of large parse trees. However, there tests/make_trees.py automatically
generates and writes the yaccing output of each test case into their individual files in
tests/testfiles/.

MineTime Final Report

39 of 88

tests/traverse_test.py
 traverse_test.TestTraverse prints out the translated Python code of

mt_test_cases.MTTests cases.

Like yaccing_test, traverse_test has few assertions. Code is inspected and run manually.

Select Test Cases
Selected test cases are as follows. A complete collection of test cases are found in
tests/mt_test_cases.py

helloworld = """
def main() {
 x = new flatmap("testfilesgitestmap", 500,500,500);
 b = new Point(10,20,30);
 x.add(block(STONE), b);
 x.close();
}"""

if_elseif_else = """
def main() {
 i = 2;
 if (i == 1)
 i = 2;
 else if (i==2) {
 i = 3;
 } else
 i = 4;
}"""

empty_function = """
def main(1,2) {
}"""

relations_arithmetic = """
def main() {
 a && b;
 a || b;
 a == b;
 a != b;
 a > b;
 a < b;
 a >= b;
 a <= b;

MineTime Final Report

40 of 88

 a + b;
 2 - 3;
 3 * 3;
}"""

make_blocks = '''
def makeblocks(start, end, x) {
 while (start < end) {
 c = new Point(0,0,start);
 x.add(block(COBBLESTONE), c);
 start = start + 1;
 }
 for (;start<end;start=start+1)
 {
 c = new Point(0,0,start);
 x.add(block(COBBLESTONE), c);
 }
}

def main() {
x = new Flatmap("testfiles/testmap",500,500,500);
makeblocks(0,10, x);
x.close();
}
'''

melanie = '''
def even(x) {
 answer = false;
 div2 = x/2;
 times2 = div2*2;
 if (times2 == x) {
 answer = true;
 }
 else {
 answer = false;
 }
 return answer;
}

def main() {
 map = new Flatmap("xmap", 300, 300, 100);

 for (x=0; x < 300; x = x+1) {
 for (y=0; y < 300; y = y+1) {

MineTime Final Report

41 of 88

 if (even(x)) {
 p = new Point(x,y,0);
 map.add(block(COBBLESTONE), p);
 }
 else {
 p = new Point(x,y,0);
 map.add(block(BRICK), p);
 }
 }
 }

 for (x=0; x < 300; x = x+1) {
 for (y=300; y > 0; y = y-1) {
 if (even(x)) {
 p = new Point(x,y,0);
 map.add(block(COBBLESTONE), p);
 }
 else {
 p = new Point(x,y,0);
 map.add(block(BRICK), p);
 }
 }
 }

 map.close();
}
'''

Notable Bugs Encountered

1. Empty functions, statements, etc. translated to Python initially had a hanging indent (e.g.
if i == 1:), which does not run. Must put a pass in the Python code upon translation.

2. Checking for existence of tree leaves using if self.leaf evaluates all strings and ints to
True except for 0, which evaluates to false which messed up type-checking for very
select cases.

3. Main method in MineTime not translating to Python, so no code runs.

MineTime Final Report

42 of 88

Conclusions

Lessons learned as a team

1. A great language idea is important, but at one point it becomes more important to just
settle on one idea, get started, and hone out the details later. This is particularly
important for a semester-long project like such.

2. The duration of meetings is nowhere as important as their productivity. Even if we could
only meet for an hour or two on some occasions, the momentum from each of these
focused and productive meetings carried through to personal work time and the next
meeting.

3. It’s fine to cut down. Though it may be hard to see a feature envisioned in the beginning
go, ultimately it’s more important to prioritize and first and foremost focus on building a
working compiler.

Lessons learned Individually

Mirza Armaan
Building a project from scratch, isn’t as easy as it seems. From the initial design phase till the
final completion stage we learnt to go back to the drawing board, look at what we had and come
up with an innovative way to move forward. Working in a team and collaborating effectively were
one of the key lessons learnt during this course.

1. Be organized, and keep everyone up to date with weekly tasks.
2. Have a good design and understanding of your project before you start working. In all

likelihood there will be modifications to your design along the way and making changes
will be easy if you have a clear view of your final goal.

3. Teamwork always boosts productivity. Working on the project together always allows for
creative exchange of ideas and this helps push the team forward.

4. A brief yet descriptive explanation of code check-ins helps everyone be on the same
page. Keep your GitHub commits short and sweet.

5. An interesting quote which summarizes the implementation of our project:
“ Without requirements or design, programming is the art of adding bugs to an empty
text file. ”

-Louis Srygley

Tanay Jaipuria
MineTime was my first large-scale group programming project at Columbia, and I greatly
enjoyed it. I learned a lot about how compilers worked and about working in teams. Below are
some my key takeaways from the project:

1. A good group makes things a lot simpler and a lot more fun.

MineTime Final Report

43 of 88

2. No matter how early you start, you will be working on your project right up to the
deadline.

3. Version control is a lifesaver - it makes programming in groups much easier
4. There are certain synergies that take place when everyone in the group is sitting and

working together. If I were to estimate, I would say that we got at least twice the amount
of work done when working together in a group for two hours than we did when we each
worked two hours separately. In other words, the team as a whole is more efficient than
the sum of its parts.

5. As Dwight Eisenhower once said, “Plans are worthless, but planning is everything.” We
tried to stay very organised and planned a lot, using asana to assign tasks and
deadlines and to divide up the work. Although deadlines were not always met and tasks
were not always done in the order we planned to do them in - the very act of planning
helped us chart out how much we had done and how much we had left and to ensure
that we had a working compiler by the deadline.

Don Yu
From the first day I picked up programming, there had always been nuances of programming
languages that I just didn’t understand. All those past grievances came to a culmination this
semester as I started to understand that every nuance of a language was meant to serve a
purpose, whether it be to help with type-checking, scope-checking, or make the programmers of
the language compiler-writer happy. For example, while implementing type checking for
functions in MineTime, I realized that it was impossible to type-check a function before it was
even defined by the user. So that was why C forces you to declare or define functions before
you use them. Even more important were all of the programming tips I learned.

1. Don’t take a shortcut or shrug off a poorly-written block of code in an attempt at speed.
They will come back to haunt you.

2. Python has a lot of features and if you think you’re writing too much code to get
something done, then you probably are

3. Don’t underestimate the time it takes to get a working development environment up and
running as some python libraries don’t always work the same on different environments

4. It’s okay to start with just one big file, but you have to know when it’s time to start
breaking it up into modules that individual members can work on.

5. Always have a designated tester for any programming team, even if every programmer
on the team plans to write test-cases and run tests himself or herself. The tester will still
find bugs for use-cases and scenarios that the code creator didn’t foresee.

Patrice Liang
Applying the topics we learned about in class to our project was extremely rewarding, and it
gave me a completely different understanding of the material. To me, though, an even more
valuable experience was working in a group and having everyone invested in the same
goal/product.

MineTime Final Report

44 of 88

1. Roles are good. Although each team member was not limited to tasks associated with
his/her role, I still found it important and useful to have official roles assigned. It was very
productive to have a go-to person for different concerns, and each member felt a greater
sense of responsibility for his/her scope. Furthermore, since our roles were actually
randomly selected at the outset, I was able to learn more about and work in an area I
would not have otherwise been exposed to.

2. Packaging and delivery are just as important as the product. In looking at past Language
White Papers, Language Reference Manuals, and Language Tutorials as well as writing
our own, I realized the importance of being able to effectively present a product and
communicate its specifications. Without clear communication of functionalities and
appeal, a language will be of little use and interest to the third party, however intricate.

3. Face-to-face meetings should not be overlooked. Compared to certain other tasks,
programming is generally considered to be more solitary, as members of a team can
essentially work on a project anywhere given a laptop and an Internet connection.
However, through this project I have learned further that in-person meetings are
absolutely essential, as it not only improves communication and efficiency, but also
boosts camaraderie and productivity.

Stephen Zhou
I learned a lot from my first significant group programming project at Columbia.

1. Tests are surprisingly hard to design. In the end, I ended up just hooking most of the
unittests up to print statements rather than assertions because the time it takes to design
and create good, persistent test cases is overkill for the time scope of this project.

2. One small, seemingly innocent change can break everything. Adding or moving around
productions in the grammar can completely mess up tree traversals.

3. GitHub is bigger and better than life. Version control is a life-saver.
4. Translating to Python without static typing is very difficult.
5. Regex search and replace is awesome. It makes refactoring and working with large

blocks of text a breeze.
6. No matter how much I think I know about Python, there’s always more to learn.
7. Comments are important, as many times I had a hard time understanding what other

people were doing.

Advice for future teams

1. Start early.
2. Use version control - the hour or so it takes to setup Github is most definitely worth it.
3. Don’t dilly-dally with language design decisions. Make a decision with the group quickly

and stick with it.
4. Do the majority of your planning before starting on the code.

MineTime Final Report

45 of 88

5. Work on your code in a breadth first manner. We adopted this approach and this
ensured that we always had some sort of working compiler to fall back on in case
calamity struck.

6. Meet the TA’s and Professor often to get feedback. Take that feedback into account and
work on your language further. Repeat.

Suggestions

1. It would be great to have milestones every few weeks in terms of where your group
should be at any point in time throughout the course. For our group, it was very hard to
determine how long a task would take and/or how far ahead we were or weren’t.
Milestones (not to be turned in but just as a guideline) would help all groups measure
their progress and keep on track.

2. The homework assignments helped us a great deal, especially in regards to working with
Lex and Yacc. However, we struggled more with figuring out how to implement type
checking and scoping. Particularly, this was a hard task to do when converting to an
interpreted language like Python. It would be very helpful to perhaps include more
coverage of this in the syllabus and also some implementation in homework
assignments.

MineTime Final Report

46 of 88

Appendix

Git Log
a3705c2 Stephen Zhou 2 hours ago organization stuff and forgot to add traverse_test

b3c88b2 Stephen Zhou 2 hours ago Merge branch 'master' of github.com:donyu/minetime

630ff5d Stephen Zhou 2 hours ago yaccing test revamp

432324f Tanay Jaipuria 2 hours ago Merge branch 'master' of https://github.com/donyu/minetime

f4b426c Tanay Jaipuria 2 hours ago Added pass for if/else/loops/functions

c5dca0f Don Yu 2 hours ago added in checking to see if function or initializer was defined before

56723fe Don Yu 13 hours ago Merge branch 'master' of github.com:donyu/minetime

e6e6fe2 Don Yu 13 hours ago type checking for user-defined functions complete

7e42376 Stephen Zhou 13 hours ago merged

925d9b0 Stephen Zhou 13 hours ago commenting and delete print

0785c23 Don Yu 13 hours ago Merge branch 'master' of github.com:donyu/minetime

34a813c Don Yu 13 hours ago Commenting out points in Lex because we use initializer now

02ce76a Patrice Liang 14 hours ago minetime.py outputs executable .py file

07672d1 Patrice Liang 14 hours ago Merge branch 'master' of github.com:donyu/minetime

f155e24 Patrice Liang 15 hours ago Takes in .mt file and outputs .py file

efbca6c Don Yu 15 hours ago making a point with the new data code example in yaccing

84c6de6 Don Yu 15 hours ago fixed block exception so that correct block type exception is thrown

3cb16ea Don Yu 16 hours ago changing fill method so that we indent if within curly braces

d06330f Don Yu 16 hours ago now traverse throws an error when using variable outside of something's scope

37f107d Don Yu 17 hours ago added in scope checking by curly braces

9085751 Don Yu 20 hours ago fixed traverse to not remove semicolons

ca825de Stephen Zhou 20 hours ago Merge branch 'master' of github.com:donyu/minetime

16fefce Stephen Zhou 20 hours ago added all block types

00f465b Don Yu 20 hours ago need to throw a compiler error if importing non-existant file

c8444c2 Don Yu 20 hours ago merging with last push

b4b5051 Don Yu 20 hours ago added in preprocessing for imports

c957ed0 Tanay Jaipuria 20 hours ago Added support for true and false in lex

03874dc Armaan 21 hours ago Added traverse function for FOR LOOP

cf6c560 Stephen Zhou 23 hours ago update grammar to match lrm

b580add Stephen Zhou 3 days ago remove grammar redundancy and added comments

MineTime Final Report

47 of 88

7a0d223 Stephen Zhou 3 days ago better yacc error messages

6274f6f Don Yu 3 days ago more extensible way to check initializer arguments (types and number of)

dd66584 Tanay Jaipuria 4 days ago
Updated readme with tasks - someone has to do type checking and scoping and
then we're in a good place

135d415 Tanay Jaipuria 4 days ago Works for multiple functions

7554891 Armaan 4 days ago Merge branch 'master' of https://github.com/donyu/minetime

78c3ca2 Armaan 4 days ago
Updated traverse to handle new grammar. Multiple Functions NOT implemented
yet

2062268 Patrice Liang 4 days ago Removed redundant reserved keyword in dict

c421888 Armaan 4 days ago Added Stephens update to grammar.txt

67cd737 Stephen Zhou 5 days ago
did grammar changes in readme. NOTE: added new keyword for objects to
eliminate reduce/reduce conflict

46d14ca Armaan 5 days ago Updated Readme with tasks

41beee4 Tanay Jaipuria 5 days ago Updated Readme

5fc357c Tanay Jaipuria 5 days ago
Updated Grammar to allow for map.add etc to be called within it and also within for
loops. Also updated readme.

4b6388d Tanay Jaipuria 5 days ago Merge branch 'master' of https://github.com/donyu/minetime

3c286dc Tanay Jaipuria 5 days ago Handled a bit of stuff for flatmap and allowed for params for functions

41672c1 Armaan 5 days ago Added while implementation

1.64E+12 Armaan 6 days ago Merge branch 'master' of https://github.com/donyu/minetime

347bdc7 Armaan 6 days ago Handling if control flow

8ac3149 Tanay Jaipuria 6 days ago Statements within if and else kinda work now...

4f7ba41 Armaan 6 days ago Merged with Tanay

577244 Armaan 6 days ago Added operations for if control flow

084bcab Tanay Jaipuria 6 days ago Taking care of points function so that variables can be used within a point

099ad49 Tanay Jaipuria 6 days ago works for Point(a

02de1ae Tanay Jaipuria 6 days ago Merge branch 'master' of https://github.com/donyu/minetime

12d5cba Tanay Jaipuria 6 days ago Hello world works again yayyy

9eb5a50 Stephen Zhou 6 days ago small correction

063e6d7 Stephen Zhou 6 days ago formatted grammar

54644c0 Stephen Zhou 6 days ago oops forgot I changed lexing too

f2940bf Stephen Zhou 6 days ago almost complete grammar

37c170d Stephen Zhou 6 days ago added function definitions and changed test cases to reflect new grammar

1.12E+10 Don Yu 6 days ago using traverse.py now

b06da5b Don Yu 6 days ago renaming because we don't need traverse and NewTraverse

7848fe2 Stephen Zhou 11 days ago added grammar and tests for for loop and if elif else

MineTime Final Report

48 of 88

c6100ef Stephen Zhou 11 days ago Merge branch 'master' of github.com:donyu/minetime

f82066c Stephen Zhou 11 days ago added for

f274f83 Tanay Jaipuria 11 days ago Added > and < to LEX

e575eae Tanay Jaipuria 13 days ago
Changed grammar slightly and added functionality to initialize points and use
those in add function

cac670f Stephen Zhou 13 days ago more testing instructions. please read

cb39bbe Stephen Zhou 13 days ago removed lex_yacc folder (unnecessary)

5fca678 Stephen Zhou 13 days ago readme updated to reflect proper

99bd308 Stephen Zhou 13 days ago
yaccing tests commented out -- run yaccing_test.py in tests/ for test modular test
suite

a50ac4b Stephen Zhou 13 days ago yaccing-extended now yaccing. old yaccing versions 1

e1dc7c9 Stephen Zhou 13 days ago redid some tests

cb347f8 Tanay Jaipuria 13 days ago Sorry Stephen

d39091f Tanay Jaipuria 13 days ago Got code working when given as one string

739d5e6 Stephen Zhou 13 days ago renaming and moving files around

eaf3e0f Tanay Jaipuria 2 weeks ago Added new traverse to work for hello world with yaccing extended

98f44e4 Stephen Zhou 2 weeks ago Merge branch 'master' of https://github.com/donyu/minetime

f8d91c7 Stephen Zhou 2 weeks ago and traverse...

64b28e0 Stephen Zhou 2 weeks ago big grammar revamp

64b838b Tanay Jaipuria 2 weeks ago
Changed grammar and moved point to primary expression and got traverse to
work with new grammar

292754a Tanay Jaipuria 2 weeks ago Added error checking for blocks

57a0f13 Stephen Zhou 2 weeks ago some minor changes + blockid textfile

f293476 Tanay Jaipuria 2 weeks ago Added error checking for add and block

e0b90a3 Tanay Jaipuria 2 weeks ago Added error handling for blocks

55aaf71 Tanay Jaipuria 2 weeks ago Added error handling for blocks

2962d4d Tanay Jaipuria 2 weeks ago Simplified code for hello world

5c641dc Tanay Jaipuria 2 weeks ago Creates a python file

c0f439e Stephen Zhou 2 weeks ago merge style fixes

db16874 Stephen Zhou 2 weeks ago small style changes

d43be19 Tanay Jaipuria 2 weeks ago Merged traverse

c784afe Tanay Jaipuria 2 weeks ago Hello world kinda working

81f355e Stephen Zhou 2 weeks ago helloworld2

d8e9069 Armaan 2 weeks ago Added translation for add function

3a49e5a Tanay Jaipuria 2 weeks ago Added translation for blocks to traverse

MineTime Final Report

49 of 88

0f5edea Tanay Jaipuria 2 weeks ago Added stuff

b646c59 Tanay Jaipuria 2 weeks ago Merge branch 'master' of https://github.com/donyu/minetime

efcd742 Tanay Jaipuria 2 weeks ago Changed traverse

15b3927 Stephen Zhou 2 weeks ago rename vars

049172a Stephen Zhou 2 weeks ago Merge branch 'master' of github.com:donyu/minetime

f5c5e8e Stephen Zhou 2 weeks ago merge fix

2e6ed90 Stephen Zhou 2 weeks ago tostr

3122fdc Tanay Jaipuria 2 weeks ago Added functions to traverse

64caf12 Tanay Jaipuria 2 weeks ago Merge branch 'master' of https://github.com/donyu/minetime

16703a8 Tanay Jaipuria 2 weeks ago Added traverse link

b1154bb Stephen Zhou 2 weeks ago some more testing hookups for lex

03f3544 Tanay Jaipuria 2 weeks ago Updated ast again

1cf777f Tanay Jaipuria 2 weeks ago Updated ast

5311c57 Tanay Jaipuria 2 weeks ago Added code for AST

4535ae7 Don Yu 2 weeks ago indentation was weird cause I wasn't using spaces

4122063 Don Yu 2 weeks ago Merge branch 'master' of github.com:donyu/minetime

22da353 Don Yu 2 weeks ago grammar for hello world program complete

b920634 Stephen Zhou 2 weeks ago lexing point regex and test

edcae84 Stephen Zhou 2 weeks ago lexing test

96d6ff4 Don Yu 2 weeks ago grammar for line #1 complete

399823 Don Yu 2 weeks ago adding grammar rules for 1st line

30c135c Don Yu 2 weeks ago Merge branch 'master' of github.com:donyu/minetime

9ca56d2 Stephen Zhou 2 weeks ago tests

73cda71 Don Yu 2 weeks ago merge with tanay

f8ec3d2 Don Yu 2 weeks ago need semicolons

3195ad0 Tanay Jaipuria 2 weeks ago Updated lex to handle functions

503fb2f Don Yu 2 weeks ago making lexing easier to use at least for me

07056f7 Stephen Zhou 3 weeks ago clean up dir

84ad120 Stephen Zhou 3 weeks ago readme formatting

7b7870a Stephen Zhou 3 weeks ago adding testing portion to readme and commenting in tests

5e7e597 Stephen Zhou 3 weeks ago JESUS CHRIST

44e9509 Stephen Zhou 3 weeks ago Added __init__.pys for modularity

c1db706 Stephen Zhou 3 weeks ago seperating code sandbox and actual unittests

53f5725 Tanay Jaipuria 3 weeks ago Added functionality to lex

MineTime Final Report

50 of 88

a8c9d3e Stephen Zhou 4 weeks ago unnitest

67cb91f Stephen Zhou 4 weeks ago added setup.py link to readme

fc406c9 Don Yu 4 weeks ago tutorial for lex_yacc

4e432eb Don Yu 4 weeks ago added back in lex_yacc folder

06c7fcd Don Yu 4 weeks ago adding dot operator to lexing

0c29e05 Don Yu 4 weeks ago merging old repo with new

25bb378 Stephen Zhou 4 weeks ago Merge branch 'master' of github.com:donyu/minetime

655e8dd Stephen Zhou 4 weeks ago changelog added

ee7c417 stepzhou 4 weeks ago Readme formatting

ddb167c Tanay Jaipuria 4 weeks ago Adding lexing file

28b6154 Tanay Jaipuria 4 weeks ago Merge branch 'master' of https://github.com/donyu/minetime

fd5c857 Stephen Zhou 4 weeks ago basic hello world

e92b648 Stephen Zhou 4 weeks ago new site-packages

835e2e6 Stephen Zhou 4 weeks ago rm site-packages

6c56987 Stephen Zhou 4 weeks ago mcedit site-packages

e842220 Stephen Zhou 4 weeks ago remove gitignores

ac713c6 Don Yu 4 weeks ago pip install rather than easy_install numpy

9ddf8a8 Don Yu 4 weeks ago git clone pymclevel

bbc12ba Don Yu 4 weeks ago update pip install virtualenv

f076f5d Don Yu 4 weeks ago Merge branch 'master' of github.com:donyu/minetime

727ba3b Don Yu 4 weeks ago dont want these files anymore cause ply can be pip installed

d63e033 Don Yu 4 weeks ago dont want these files anymore cause ply can be pip installed

428a782 Don Yu 4 weeks ago update README

7b441e4 Don Yu 4 weeks ago trying virtual environment again

972659c Don Yu 4 weeks ago delete this site-packages from repo

cf8c0c3 Don Yu 4 weeks ago merging

9206ca5 Don Yu 4 weeks ago want to override this

d9c0201 Don Yu 4 weeks ago Initial commit

285727c Stephen Zhou 4 weeks ago site-packages

4df4e99 Stephen Zhou 4 weeks ago only track site-packages

32612ae Stephen Zhou 4 weeks ago pymclevel no longer submodule

ca8cb9d Stephen Zhou 4 weeks ago env

b92c208 Stephen Zhou 4 weeks ago tests

d5fbb06 Don Yu 4 weeks ago Merge branch 'master' of github.com:donyu/minetime

MineTime Final Report

51 of 88

02059c0 Don Yu 4 weeks ago using virtual env so dont need this

f64cb2a armaan110 4 weeks ago Update README.md

8193471 armaan110 4 weeks ago Create README.md

a7f387a Don Yu 4 weeks ago lex yacc python

254da60 Don Yu 4 weeks ago added in lexer and yacc python modules

bdf9a73 Don Yu 4 weeks ago do we want pymclevel included always

	

MineTime Final Report

52 of 88

Source Code

Tests

level_test.py

import sys
import unittest
import filecmp
from filecmp import dircmp

sys.path.append('..')
from pymclevel.box import BoundingBox
import templevel

STANDARD = 'testfiles/Standard'

class TestLevelCreation(unittest.TestCase):

 def setUp(self):
 self.testlevel = templevel.TempLevel("Temp")

 def test_chunk_creation(self):
 level = self.testlevel.level

 level.createChunk(0, 0)
 level.saveInPlace()
 self.assertTrue(level.containsChunk(0, 0))

 def test_fill(self):
 level = self.testlevel.level

 level.createChunk(0, 0)
 cx, cz = level.allChunks.next()
 box = BoundingBox((cx * 16, 0, cz * 16), (32, level.Height,
32))
 level.fillBlocks(box, level.materials.WoodPlanks)
 level.fillBlocks(box, level.materials.WoodPlanks,
[level.materials.Stone])
 level.saveInPlace()
 c = level.getChunk(cx, cz)

 assert (c.Blocks == 5).all()

if __name__ == "__main__":
 unittest.main(verbosity=2)

lexing_test.py

import unittest
import sys

MineTime Final Report

53 of 88

from cStringIO import StringIO
from itertools import izip

sys.path.append('..')
import lexing

class TestLexingSyntax(unittest.TestCase):

 def setUp(self):
 self.lex = lexing.Mtlex()
 self.lex.build()
 self.lexer = self.lex.lexer

 def test_tokens(self):
 """
 Checks the correctness of single tokens
 """
 cases = {1 : 'NUMBER',
 12345 : 'NUMBER',
 '+' : 'PLUS',
 '-' : 'MINUS',
 '/' : 'DIVIDE',
 '(' : 'LPAREN',
 ')' : 'RPAREN',
 'but34' : 'ID',
 '=' : 'ASSIGN',
 '{' : 'LCURL',
 '}' : 'RCURL',
 '"H3#;.LLO WORLD"' :'STRING',
 '# #h32.ello' : 'COMMENT',
 ',' : 'COMMA',
 '(1, 2, 3)' : 'POINT',
 ';' : 'SEMICOLON',
 ':' : 'COLON'}
 self.assert_tokens_eq(cases)

 def assert_tokens_eq(self, cases):
 """
 Takes in dictionary of value inputs and checks for type and
value
 correctness of the LexToken output
 """
 for key, val in cases.iteritems():
 self.lexer.input(str(key))
 token = self.lexer.token()
 self.assertEqual(key, token.value)
 self.assertEqual(val, token.type)

 def test_helloworld(self):
 """
 Checks the correctness of helloworld.mt
 """
 progfile = open('testfiles/helloworld.mt', 'r')

MineTime Final Report

54 of 88

 expfile = open('testfiles/helloworld.out', 'r')

 self.assert_prog(progfile, expfile)

 def test_sandbox(self):
 """
 Sandbox for mt program lex output
 """
 progfile = open('testfiles/sandbox.mt', 'r')
 print self.lex.tok_str(progfile.read())

 def assert_prog(self, progfile, expfile):
 """
 Takes in a mt programming file and expected output file and
checks for
 correctness
 """
 tokens = StringIO(self.lex.tok_str(progfile.read()))

 for t, o in izip(tokens, expfile):
 self.assertEqual(t, o)

if __name__ == "__main__":
 unittest.main(verbosity=2)

make_trees.py

import re
import sys
from mt_test_cases import MTTests

sys.path.append('..')
import yaccing

parser = yaccing.parser

for attr in MTTests.__dict__.keys():
 if not re.match(r'^__.*__$', attr):
 result = parser.parse(getattr(MTTests, attr))
 f = open('testfiles/' + attr, 'w')
 f.write(result.__str__())

mt_test_cases.py

class MTTests(object):
 """
 Wrapper class for yaccing and traverse test cases. These are mt
code
 snippets
 """

MineTime Final Report

55 of 88

 helloworld = """
def main() {
 x = new flatmap("testfilesgitestmap", 500,500,500);
 b = new Point(10,20,30);
 x.add(block(STONE), b);
 x.close();
}"""

 compound = """
def main() {
 { i=0;i=1;i=2; }
}"""

 while_loop = """
def main() {
 while (i=1) {i=1;i=1;i=1;}
 i = 0;
}"""
 for_loop = """
def main() {
 for (i = 1; i = 1; i = 1) {
 i = 1;
 }
}"""
 if_stmt = """
def main() {
 if (i=222220) {}
}"""

 if_else = """
def main() {
 i = 2;
 if (i = 1)
 i = 2;
 else {
 i = 3;
 }
}"""
 if_elseif_else = """
def main() {
 i = 2;
 if (i == 1)
 i = 2;
 else if (i==2) {
 i = 3;
 } else
 i = 4;
}"""

 zero_bug = """
def main() {
 i = 0;

MineTime Final Report

56 of 88

 i = 1;
}"""
 relations_arithmetic = """
def main() {
 a && b;
 a || b;
 a == b;
 a != b;
 a > b;
 a < b;
 a >= b;
 a <= b;
 a + b;
 2 - 3;
 3 * 3;
}"""
 empty_function = """
def main(1,2) {
}"""
 complicated = """
def main() {
 a * (b - 3) + 3 || 5;
}"""
 external = """
i = 1;

def f(1, 2) {
}

def main() {
 if (a > 3) {
 i;
 }
}"""

 return_stmt = """
def main() {
 i = 1;
 return 1;
 return;
}"""

 assignment = """
def main() {
 i = a + 2;
 j = 3 < 2;
}"""

 make_blocks = '''
def makeblocks(start, end, x) {
 while (start < end) {
 c = new Point(0,0,start);
 x.add(block(COBBLESTONE), c);

MineTime Final Report

57 of 88

 start = start + 1;
 }
 for (;start<end;start=start+1)
 {
 c = new Point(0,0,start);
 x.add(block(COBBLESTONE), c);
 }
}

def main() {
x = new Flatmap("testfiles/testmap",500,500,500);
makeblocks(0,"hi", x);
x.close();
}
'''

 add_block = '''
def main() {
 a = 2;
 if (a > 1) {
 b = 2;
 }
 x = new Flatmap("testfiles/testmap", 500, 500, 500);
 c = new Point(0, 0, 0);
 x.add(block(STONE), c);
 x.close();
}
'''

 def __init__(self):
 pass

runtests.py

import unittest
import sys
import os

if __name__ == "__main__":
 all_tests = unittest.TestLoader().discover('.',
pattern="*_test.py")
 unittest.TextTestRunner(verbosity=2).run(all_tests)

templevel.py

import atexit
import os
from os.path import join
import shutil
from pymclevel import mclevel

TEST_DIR = 'testfiles/'

MineTime Final Report

58 of 88

class TempLevel(object):

 def __init__(self, filename, delete=True):
 self.filename = filename
 self.testpath = join(TEST_DIR, filename)

 if os.path.exists(self.testpath) and delete:
 shutil.rmtree(self.testpath)

 self.level = mclevel.MCInfdevOldLevel(self.testpath,
create=True)
 atexit.register(self.removeTemp)

 def removeTemp(self):
 if os.path.isdir(self.testpath):
 shutil.rmtree(self.testpath)

traverse_test.py

import unittest
import sys
import ply.yacc as yacc
from mt_test_cases import MTTests

sys.path.append('..')
import yaccing
from traverse import Traverse

class TestTraverse(unittest.TestCase):
 """
 Tests the traverse for correctness
 """

 firstline = '''
import logging
import os
import sys
from pymclevel import mclevel
from pymclevel.box import BoundingBox'''

 def setUp(self):
 self.parser = yaccing.parser

 def test_helloworld(self):
 self.traverse(MTTests.helloworld)

 def test_compound(self):
 self.traverse(MTTests.compound)

 def test_while_loop(self):
 self.traverse(MTTests.while_loop)

MineTime Final Report

59 of 88

 def test_if(self):
 self.traverse(MTTests.if_stmt)

 def test_if_elseif_else(self):
 self.traverse(MTTests.if_elseif_else)

 def test_make_blocks(self):
 """
 Check for type mismatch
 """
 with self.assertRaises(Exception):
 self.traverse(MTTests.make_blocks)

 def test_add_block(self):
 self.traverse(MTTests.add_block)

 def test_empty_function(self):
 self.traverse(MTTests.empty_function)

 def traverse(self, prog):
 result = self.parser.parse(prog)
 translated = Traverse(result).getpython()
 code = "\n{0}\n{1}\n\n".format(self.firstline, translated)
 print code

if __name__ == "__main__":
 unittest.main(verbosity=2)

yaccing_test.py

import unittest
import sys
import ply.yacc as yacc
from mt_test_cases import MTTests
from os.path import join

sys.path.append('..')
import yaccing
from textwrap import dedent
from lexing import Mtlex

test_dir = 'testfiles'

class TestYaccing(unittest.TestCase):

 def setUp(self):
 self.parser = yaccing.parser

 def test_helloworld(self):

MineTime Final Report

60 of 88

 self.print_result(MTTests.helloworld)

 def test_compound(self):
 self.print_result(MTTests.compound)

 def test_while(self):
 self.print_result(MTTests.while_loop)

 def test_for(self):
 self.print_result(MTTests.for_loop)

 def test_if(self):
 self.print_result(MTTests.if_stmt)

 def test_if_else(self):
 self.print_result(MTTests.if_else)

 def test_if_elseif_else(self):
 self.print_result(MTTests.if_elseif_else)

 def test_0_bug(self):
 """
 bug: does not display 0 when assigned
 """
 self.print_result(MTTests.zero_bug)

 def test_relations_and_arithmetic(self):
 self.print_result(MTTests.relations_arithmetic)

 def test_empty_function(self):
 self.print_result(MTTests.empty_function)

 def test_complicated(self):
 self.print_result(MTTests.complicated)

 def test_external(self):
 self.print_result(MTTests.external)

 def test_return(self):
 self.print_result(MTTests.return_stmt)

 def test_assignment(self):
 self.print_result(MTTests.assignment)

 def print_result(self, prog):
 result = self.parser.parse(prog)
 print
 print result

if __name__ == "__main__":
 unittest.main(verbosity=2)

MineTime Final Report

61 of 88

lexing.py

import ply.lex as lex

class Mtlex:

 reserved = {'if' : 'IF',
 'then' : 'THEN',
 'else' : 'ELSE',
 'elif' : 'ELIF',
 'def' : 'DEF',
 'for' : 'FOR',
 'while' : 'WHILE',
 'return' : 'RETURN',
 'new' : 'NEW',
 'true' : 'TRUE',
 'false' : 'FALSE'
 }

 tokens = ['NUMBER',
 'PLUS',
 'MINUS',
 'TIMES',
 'DIVIDE',
 'LPAREN',
 'RPAREN',
 'ID',
 'ASSIGN',
 'LCURL',
 'RCURL',
 'STRING',
 'COMMENT',
 'ML_COMMENT',
 'COMMA',
 # 'POINT',
 'DOTOPERATOR',
 'SEMICOLON',
 'COLON',
 'G_OP',
 'L_OP',
 'GE_OP',
 'LE_OP',
 'AND',
 'OR',
 'EQ',
 'NEQ'] + list(reserved.values())

 # Regular expression rules for simple tokens
 t_PLUS = r'\+'
 t_MINUS = r'-'
 t_TIMES = r'*'
 t_DIVIDE = r'/'

MineTime Final Report

62 of 88

 t_LPAREN = r'\('
 t_RPAREN = r'\)'
 t_ASSIGN = r'='
 t_SEMICOLON = r';'
 t_COLON = r':'
 t_LCURL = r'{'
 t_RCURL = r'}'
 t_STRING = r'"(\\.|[^"])*"'
 t_G_OP = r'>'
 t_L_OP = r'<'
 t_GE_OP = r'>='
 t_LE_OP = r'<='
 t_AND = r'&&'
 t_OR = r'\|\|'
 t_EQ = r'=='
 t_NEQ = r'!='
 # t_COMMMENT = r'/*.**/'
 t_COMMA = r','
 t_DOTOPERATOR = r'\.'
 NUMBER = r'\d+'
 # t_POINT = t_LPAREN + NUMBER + t_COMMA + NUMBER + t_COMMA +
NUMBER + t_RPAREN

 # A regular expression rule with some action code
 def t_NUMBER(self,t):
 r'\d+'
 # BUG: FIX, DON. 0 DOES NOT WORKKKK
 # TODO: UNARY MINUS OR FORCE NEGATIVE NUMBER?
 t.value = int(t.value)
 return t

 def t_ID(self,t):
 r'[a-zA-Z_][a-zA-Z_0-9]*'
 t.type = self.reserved.get(t.value,'ID') # Check for
reserved words
 return t

 # Define a rule so we can track line NUMBERs
 def t_newline(self,t):
 r'\n+'
 t.lexer.lineno += len(t.value)

 # Skips over comment tokens
 t_ignore_COMMENT = r'\$(.*)(\n)?'

 t_ignore_ML_COMMENT = r'\$*[^\$*]**\$'

 # A string containing ignored characters (spaces and tabs)
 t_ignore = ' \t'

 # Error handling rule
 def t_error(self,t):
 print "Illegal character '%s'" % t.value[0]

MineTime Final Report

63 of 88

 t.lexer.skip(1)

 def build(self,**kwargs):
 self.lexer = lex.lex(module=self, **kwargs)

 def get_lexer(self):
 return self.lexer

 def tok_str(self, data):
 self.lexer.input(data)
 tok_str = ""
 while True:
 tok = self.lexer.token()
 if not tok:
 break
 tok_str += str(tok) + "\n"
 return tok_str

m = Mtlex()
data = '''
map = Flatmap("testmap.dat",500,500) /* hi */
map.add(block(COBBLE), (0,0,0))
map.close()
'''
m.build() # Build the lexer
m.test(data) # Test it

if __name__ == "__main__":
 m = Mtlex()
 m.build()
 l = m.get_lexer()
 print "Enter a string to be tokenized"
 while 1:
 line = raw_input()
 print m.tok_str(line)
 print "Enter a string to be tokenized”

yaccing.py

import ply.yacc as yacc
import sys
from lexing import Mtlex
from traverse import *
from preprocess import *

tokens = Mtlex.tokens

precedence = (
 ('left', 'PLUS', 'MINUS'),
 ('left', 'TIMES', 'DIVIDE')
)

MineTime Final Report

64 of 88

def getyacc():
 return yacc.yacc()

class Node(object):

 def __init__(self, type, children=None, leaf=None, token=None):
 self.type = type
 if children:
 self.children = children
 else:
 self.children = []
 self.leaf = leaf
 self.token = token

 def __str__(self):
 return self.traverse(1)

 def traverse(self, i):
 s = self.type
 indent = "\n" + i*' |'
 if self.leaf != None:
 if isinstance(self.leaf, Node):
 print "Node"
 s += indent + self.leaf.traverse(i+1)
 else:
 s += indent + str(self.leaf)
 for children in self.children:
 s += indent + children.traverse(i+1)
 return s

def p_translation_unit(p):
 '''
 translation_unit : external_declaration
 | translation_unit external_declaration
 '''
 if len(p) == 2:
 p[0] = Node('translation_unit', [p[1]])
 else:
 p[0] = Node('translation_unit', [p[1], p[2]])

def p_external_declaration(p):
 '''
 external_declaration : function_definition
 | statement
 '''
 p[0] = Node('external_declaration', [p[1]])

def p_function_definition(p):
 '''
 function_definition : DEF ID LPAREN parameter_list RPAREN LCURL
statement_list RCURL
 | DEF ID LPAREN parameter_list RPAREN LCURL

MineTime Final Report

65 of 88

RCURL
 '''
 if len(p) == 9:
 p[0] = Node('function_definition', [p[4], p[7]], p[2])
 else:
 p[0] = Node('function_definition', [p[4]], p[2])

def p_class_definition(p):
'''
class_definition : CLASS ID LPAREN ID RPAREN LCURL

#def p_declaration_list(p):
'''
declaration_list : declaration
| declaration_list declaration
'''

if len(p) == 2:
p[0] = Node('declaration_list', [p[1]])
else:
p[0] = Node('declaration_list', [p[1], p[2]])

#def p_declaration(p):
'''
declaration : statement
'''
p[0] = Node('declaration', [p[1]])

def p_statement(p):
 '''
 statement : compound_statement
 | expression_statement
 | iteration_statement
 | selection_statement
 | class_method_expression
 | function_expression
 | return_statement
 '''
 p[0] = Node('statement', [p[1]])

def p_compound_statement(p):
 '''
 compound_statement : LCURL RCURL
 | LCURL statement_list RCURL
 '''
 if len(p) == 3:
 p[0] = Node('compound_statement', [], 'emptychange')
 else:
 p[0] = Node('compound_statement', [p[2]])

def p_statement_list(p):
 '''
 statement_list : statement

MineTime Final Report

66 of 88

 | statement_list statement
 '''
 if len(p) == 2:
 p[0] = Node('statement_list', [p[1]])
 else:
 p[0] = Node('statement_list', [p[1], p[2]])

def p_expression_statement(p):
 '''
 expression_statement : SEMICOLON
 | expression SEMICOLON
 '''
 if len(p) == 2:
 p[0] = Node('expression_statement', [], 'emptychange')
 else:
 p[0] = Node('expression_statement', [p[1]])

def p_expression(p):
 '''
 expression : assignment_expression
 '''
 p[0] = Node('expression', [p[1]])

def p_assignment_expression(p):
 '''
 assignment_expression : ID ASSIGN NEW initializer
 | ID ASSIGN assignment_expression
 | logical_or_expression
 | function_expression
 '''
 if len(p) == 4:
 p[0] = Node('assignment_expression', [p[3]], p[1])
 elif len(p) == 5:
 p[0] = Node('assignment_expression', [p[4]], p[1])
 else:
 p[0] = Node('assignment_expression', [p[1]])

def p_logical_or_expression(p):
 '''
 logical_or_expression : logical_and_expression
 | logical_or_expression OR
logical_and_expression
 '''
 if len(p) == 2:
 p[0] = Node('logical_or_expression', [p[1]])
 else:
 p[0] = Node('logical_or_expression', [p[1], p[3]], p[2])

def p_logical_and_expression(p):
 '''
 logical_and_expression : equality_expression

MineTime Final Report

67 of 88

 | logical_and_expression AND
equality_expression
 '''
 if len(p) == 2:
 p[0] = Node('logical_and_expression', [p[1]])
 else:
 p[0] = Node('logical_and_expression', [p[1], p[3]], p[2])

def p_equality_expression(p):
 '''
 equality_expression : relational_expression
 | equality_expression EQ relational_expression
 | equality_expression NEQ
relational_expression
 '''
 if len(p) == 2:
 p[0] = Node('equality_expression', [p[1]])
 else:
 p[0] = Node('equality_expression', [p[1], p[3]], p[2])

def p_relational_expression(p):
 '''
 relational_expression : additive_expression
 | relational_expression G_OP
additive_expression
 | relational_expression L_OP
additive_expression
 | relational_expression GE_OP
additive_expression
 | relational_expression LE_OP
additive_expression
 '''
 if len(p) == 2:
 p[0] = Node('relational_expression', [p[1]])
 else:
 p[0] = Node('relational_expression', [p[1], p[3]], p[2])

def p_additive_expression(p):
 '''
 additive_expression : multiplicative_expression
 | additive_expression PLUS
multiplicative_expression
 | additive_expression MINUS
multiplicative_expression
 '''
 if len(p) == 2:
 p[0] = Node('additive_expression', [p[1]])
 else:
 p[0] = Node('additive_expression', [p[1], p[3]], p[2])

def p_multiplicative_expression(p):
 '''
 multiplicative_expression : primary_expression

MineTime Final Report

68 of 88

 | multiplicative_expression TIMES
primary_expression
 | multiplicative_expression DIVIDE
primary_expression
 '''
 if len(p) == 2:
 p[0] = Node('multiplicative_expression', [p[1]])
 else:
 p[0] = Node('multiplicative_expression', [p[1], p[3]], p[2])

def p_initializer(p):
 '''
 initializer : ID LPAREN parameter_list RPAREN
 | primary_expression
 '''
 if len(p) == 2:
 p[0] = Node('initializer', [p[1]])
 else:
 p[0] = Node('initializer', [p[3]], p[1])

def p_class_method_expression(p):
 '''
 class_method_expression : ID DOTOPERATOR function_expression
SEMICOLON
 '''
 p[0] = Node('class_method_expression',[p[3]], p[1])

def p_function_expression(p):
 '''
 function_expression : ID LPAREN parameter_list RPAREN
 '''
 if len(p) == 5:
 p[0] = Node('function_expression',[p[3]], p[1])
 else:
 p[0] = Node('function_expression', [], p[1])

def p_parameter_list(p):
 '''
 parameter_list : parameter_declaration
 | parameter_list COMMA parameter_declaration
 |
 '''
 if len(p) == 2:
 p[0] = Node('parameter_list', [p[1]])
 elif len(p) == 4:
 p[0] = Node('parameter_list',[p[1], p[3]])
 else:
 p[0] = Node('parameter_list')

def p_parameter_declaration(p):
 '''
 parameter_declaration : initializer
 '''

MineTime Final Report

69 of 88

 p[0] = Node('parameter_declaration', [p[1]])

def p_primary_expression(p):
 '''
 primary_expression : ID
 | STRING
 | NUMBER
 | TRUE
 | FALSE
 | LPAREN expression RPAREN
 '''
 if not isinstance(p[1], basestring) and not isinstance(p[1],int):
 p[0] = Node('primary_expression', [p[1]])
 elif len(p) == 4:
 p[0] = Node('primary_expression', [p[2]])
 else:
 p[0] = Node('primary_expression', [], p[1])

def p_id_name(p):
'''
id_name : ID
'''
p[0] = Node('id_name',[], p[1])

def p_point_gen(p):
'''
point_gen : POINT
'''
p[0] = Node('point_gen',[], p[1])

def p_iteration_statement(p):
 '''
 iteration_statement : WHILE LPAREN expression RPAREN statement
 | FOR LPAREN expression_statement
expression_statement expression RPAREN statement
 '''
 if p[1] == "while":
 p[0] = Node('iteration_statement', [p[3], p[5]])
 else:
 p[0] = Node('iteration_statement', [p[3], p[4], p[5], p[7]])

def p_selection_statement(p):
 '''
 selection_statement : IF LPAREN expression RPAREN statement
 | IF LPAREN expression RPAREN statement ELSE
statement
 '''
 if len(p) == 6:
 p[0] = Node('selection_statement', [p[3], p[5]])
 else:
 p[0] = Node('selection_statement', [p[3], p[5], p[7]])

MineTime Final Report

70 of 88

def p_return_statement(p):
 '''
 return_statement : RETURN SEMICOLON
 | RETURN expression SEMICOLON
 '''
 if len(p) == 4:
 p[0] = Node('return_statement', [p[2]])
 else:
 p[0] = Node('return_statement')

def p_error(p):
 # we should throw compiler error in this case
 if p == None:
 print "Syntax error at last token."
 else:
 print "Syntax error around line number \n %d : %s " %
(p.lineno, p.value)

data_1 = '''
def makeblocks(start, end, x) {
 while (start < end) {
 c = new Point(0,0,start);
 x.add(block(COBBLESTONE), c);
 start = start + 1;
 }
 for (;start<end;start=start+1)
 {
 c = new Point(0,0,start);
 x.add(block(COBBLESTONE), c);
 }
}

def main() {
x = new Flatmap("testfiles/testmap",500,500,500);
makeblocks(0,10, x);
x.close();
}
'''

data_2 = '''
a = (10,20,30);
'''

data_3 = '''
a = 2
if (a> 1) { a = 1;}
'''

data_4 = '''
def foo() {
 return true;
}
def main() {

MineTime Final Report

71 of 88

 a = 2;
 if (foo()) {
 b = 3;
 }
 x = new Flatmap("testfiles/testmap", 500, 500, 500);
 c = new Point(0, 0, 0);
 x.add(block(STONE), c);
 x.close();
}
'''

generate the parser
parser = yacc.yacc()
generate the lexer to be used with parser
m = Mtlex()
m.build()
preprocessing step
preprocessor = Processor()
data_4 = preprocessor.preprocess(data_4)

result1 = parser.parse(data_4, lexer=m.lexer)
print result1

firstline = '''
import logging
import os
import sys
from pymclevel import mclevel
from pymclevel.box import BoundingBox'''
t = Traverse(result1).getpython()
code = firstline + "\n" + t + "\n"
#f = open("hello.py",'w')
#f.write(code)
print code

traverse.py

import sys
import StringIO
import types
import re

class Traverse(object):

 def __init__(self, tree, file = sys.stdout):
 self.f = file
 self.flist = {"Flatmap": "Flatmap",
 "block": "materials.blockWithID",
 "add": "fillBlocks",
 "close": "saveInPlace"}
 # function argument types for type-checking

MineTime Final Report

72 of 88

 self.fargs = {"Flatmap": [str, int, int, int],
 "Point": [int, int, int],
 "List": "every"}
 self.class_meths = {"LIST": {
 'append': "every",
 'get': [int],
 'delete': [int]
 }
 }
 self.class_meth_impls = {"LIST": {
 'append': (lambda name, params : '%s.append(%s)' %
(name, params)),
 'get': (lambda name, params : '%s[%s]' % (name,
params)),
 'delete': (lambda name, params : 'del %s[%s]' % (name,
params))
 }
 }
 # will be used for scope checking
 self.var_scopes = [[]]
 self.scope_depth = 0
 self.flistsymbol = {"close" : "MAP"}
 self.blocks = {"STONE":1,
 "GRASS":2,
 "DIRT":3,
 "COBBLESTONE":4,
 "WOODENPLANK":5,
 "SAPLING":6,
 "BEDROCK":7,
 "WATER":8,
 "WATER":9,
 "LAVA":10,
 "LAVA":11,
 "SAND":12,
 "GRAVEL":13,
 "GOLDORE":14,
 "IRONORE":15,
 "COALORE":16,
 "WOOD":17,
 "LEAVES":18,
 "SPONGE":19,
 "GLASS":20,
 "LAPISLAZULIORE":21,
 "LAPISLAZULIBLOCK":22,
 "DISPENSER":23,
 "SANDSTONE":24,
 "NOTEBLOCK":25,
 "BED":26,
 "POWEREDRAIL":27,
 "DETECTORRAIL":28,
 "STICKYPISTON":29,
 "COBWEB":30,
 "TALLGRASS":31,

MineTime Final Report

73 of 88

 "DEADSHRUB":32,
 "PISTON":33,
 "PISTON":34,
 "WOOL":35,
 "PISTON":36,
 "DANDELION":37,
 "ROSE":38,
 "BROWNMUSHROOM":39,
 "REDMUSHROOM":40,
 "BLOCKOFGOLD":41,
 "BLOCKOFIRON":42,
 "STONESLAB":43,
 "STONESLAB":44,
 "BRICK":45,
 "TNT":46,
 "BOOKCASE":47,
 "MOSSSTONE":48,
 "OBSIDIAN":49,
 "TORCH":50,
 "FIRE":51,
 "MOBSPAWNER":52,
 "WOODENSTAIRS":53,
 "CHEST":54,
 "REDSTONEWIRE":55,
 "DIAMONDORE":56,
 "BLOCKOFDIAMOND":57,
 "WORKBENCH":58,
 "WHEAT":59,
 "FARMLAND":60,
 "FURNACE":61,
 "FURNACE":62,
 "SIGN":63,
 "WOODDOOR":64,
 "LADDER":65,
 "RAIL":66,
 "COBBLESTONESTAIRS":67,
 "SIGN":68,
 "LEVER":69,
 "STONEPRESSUREPLATE":70,
 "IRONDOOR":71,
 "WOODENPRESSUREPLATE":72,
 "REDSTONEORE":73,
 "REDSTONEORE":74,
 "REDSTONETORCH":75,
 "REDSTONETORCH":76,
 "BUTTON":77,
 "SNOW":78,
 "ICE":79,
 "SNOWBLOCK":80,
 "CACTUS":81,
 "CLAYBLOCK":82,
 "SUGARCANE":83,
 "JUKEBOX":84,

MineTime Final Report

74 of 88

 "FENCE":85,
 "PUMPKIN":86,
 "NETHERRACK":87,
 "SOULSAND":88,
 "GLOWSTONE":89,
 "PORTAL":90,
 "JACKOLANTERN":91,
 "CAKE":92,
 "REDSTONEREPEATER":93,
 "REDSTONEREPEATER":94,
 "LOCKEDCHEST":95,
 "TRAPDOOR":96,
 "SILVERFISHSTONE":97,
 "STONEBRICKS":98,
 "BROWNMUSHROOM":99,
 "REDMUSHROOM":100,
 "IRONBARS":101,
 "GLASSPANE":102,
 "MELON":103,
 "PUMPKINVINE":104,
 "MELONVINE":105,
 "VINES":106,
 "FENCEGATE":107,
 "BRICKSTAIRS":108,
 "STONEBRICKSTAIRS":109,
 "MYCELIUM":110,
 "LILYPAD":111,
 "NETHERBRICK":112,
 "NETHERBRICKFENCE":113,
 "NETHERBRICKSTAIRS":114,
 "NETHERWART":115,
 "ENCHANTMENTTABLE":116,
 "BREWINGSTAND":117,
 "CAULDRON":118,
 "ENDPORTAL":119,
 "ENDPORTALFRAME":120,
 "ENDSTONE":121,
 "DRAGONEGG":122,
 "REDSTONELAMP":123,
 "REDSTONELAMP":124,
 "OAKWOODSLAB":125,
 "COCAPLANT":127,
 "SANDSTONESTAIRS":128,
 "EMERALDORE":129,
 "ENDERCHEST":130,
 "TRIPWIREHOOK":131,
 "TRIPWIRE":132,
 "BLOCKOFEMERALD":133,
 "WOODENSTAIRS":134,
 "WOODENSTAIRS":135,
 "WOODENSTAIRS":136,
 "COMMANDBLOCK":137,
 "BEACON":138,

MineTime Final Report

75 of 88

 "COBBLESTONEWALL":139,
 "FLOWERPOT":140,
 "CARROT":141,
 "POTATOES":142,
 "BUTTON":143,
 "HEADBLOCK":144,
 "ANVIL":145,
 "TRAPPEDCHEST":146,
 "WEIGHTEDPRESSUREPLATE":147,
 "WEIGHTEDPRESSUREPLATE":148,
 "REDSTONECOMPARATOR":149,
 "REDSTONECOMPARATOR":150,
 "DAYLIGHTSENSOR":151,
 "BLOCKOFREDSTONE":152,
 "NETHERQUARTZORE":153,
 "HOPPER":154,
 "QUARTZBLOCK":155,
 "QUARTZSTAIRS":156,
 "ACTIVATORRAIL":157,
 "DROPPER":158,
 "HAYBALE":170,
 "CARPET":171,
 "HARDENEDCLAY":172
 }
 self.relops = {'<', '>', '<=', '>=', '==', '!=',
 '+', '-', '*', '/', '%'}
 self.future_imports = []
 self.tempPoints = set()
 # Type table for variables
 self.symbols = {}
 self.values = {}
 self.waitingfor = set()
 self._indent = 0
 self.x = self.dispatch(tree)
 self.f.write("")
 self.f.flush()

 def fill(self, text = ""):
 "Indent a piece of text, according to the current indentation
level"
 s = ""
 buf = StringIO.StringIO(text)
 print "indenting ", self._indent
 for line in buf:
 if self._indent:
 s += " " + line
 else:
 s += line
 return s

 def getpython(self):
 return self.x

MineTime Final Report

76 of 88

 def flatten(self, x):
 result = []
 for el in x:
 if hasattr(el, "__iter__") and not isinstance(el,
basestring):
 result.extend(self.flatten(el))
 else:
 result.append(el)
 return result

 def write(self, text):
 "Append a piece of text to the current line."
 self.f.write(text)

 def enter(self):
 "Print ':', and increase the indentation and create a new
scope"
 # initialize depth
 self.scope_depth += 1
 # print "depth ", self._indent
 self.var_scopes.append([])
 self._indent += 1
 return ":"

 def leave(self):
 "Decrease the indentation level and remove out-of-scope
symbols"
 # remove symbols from this scope and then return s
 print self.symbols
 for var in self.var_scopes[self.scope_depth]:
 del self.symbols[var]
 if (var + str(self.scope_depth)) in self.symbols:
 self.symbols[var] = self.symbols[var +
str(self.scope_depth)]
 del self.symbols[var + str(self.scope_depth)]
 if var in self.values:
 del self.values[var]
 if (var + str(self.scope_depth)) in self.values:
 self.values[var] = self.values[var +
str(self.scope_depth)]
 del self.values[var + str(self.scope_depth)]
 del self.var_scopes[self.scope_depth]
 self.scope_depth -= 1
 self._indent -= 1
 # print "leaving ", self._indent

 # calls the function corresponding to the name of the node of the
tree. Call on a single node and not a list
 def dispatch(self, tree, flag=None):
 "Dispatcher function, dispatching tree type T to method _T."
 if isinstance(tree, list):
 for t in tree:
 self.dispatch(t,flag)

MineTime Final Report

77 of 88

 return
 meth = getattr(self, "_"+tree.type)
 x = meth(tree,flag)
 return x

 def _primary_expression(self,tree,flag=None):
 if tree.leaf in self.blocks:
 return str(self.blocks[tree.leaf])
 elif flag == "block":
 raise Exception("Not a valid block type")
 elif tree.leaf == "true":
 return "True"
 elif tree.leaf == "false":
 return "False"
 elif tree.leaf:
 # print str(tree.leaf)
 return str(tree.leaf)
 elif len(tree.children) == 1: # It is a point
 return self.dispatch(tree.children[0],flag)
 else:
 return "0"

 def _class_method_expression(self,tree,flag=None):
 s = tree.leaf
 a = self.dispatch(tree.children[0], s)
 return a

 def _function_expression(self,tree,flag=None): # not complete
 if self.symbols.get(flag) == "MAP":
 if tree.leaf == "add":
 return self.add_method(tree,flag)
 else:
 return flag + "." + self.flist[tree.leaf] + "()"
 elif flag:
 if self.symbols.get(flag) in self.class_meths:
 class_methods =
self.class_meths[self.symbols.get(flag)]
 print tree.leaf
 if tree.leaf in class_methods:
 params = self.dispatch(tree.children[0],flag)
 typed_params = [self.num_or_str(param) for param
in params]
 init_args = [self.get_type(param) for param in
typed_params]
 if class_methods[tree.leaf] != "every":
 for (e_p, p) in zip(class_methods[tree.leaf],
init_args):
 if e_p != "all" and e_p != p:
 raise Exception("Class Method %s of %s
excepted %s but got %s"
 % (tree.leaf, flag,
class_methods[tree.leaf], init_args))

MineTime Final Report

78 of 88

 s = self.listtoparams(params)
 s =
self.class_meth_impls[self.symbols.get(flag)][tree.leaf](flag, s)
 print s
 return s
 elif tree.leaf in self.flist:
 if tree.leaf in self.flistsymbol:
 if not self.symbols.get(flag) ==
self.flistsymbol[tree.leaf]:
 raise Exception(tree.leaf + " method called on a
non " + self.flistsymbol[tree.leaf] + " type")
 return flag + "." + self.flist[tree.leaf] + "()"
 else:
 if tree.leaf not in self.fargs:
 raise Exception("Function %s is not user-defined nor
is it part of the MineTime library"
 % (tree.leaf))
 if len(tree.children)==1:
 params = self.dispatch(tree.children[0],flag)
 if tree.leaf in self.fargs:
 typed_params = [self.num_or_str(param) for param
in params]
 init_args = [self.get_type(param) for param in
typed_params]
 print tree.leaf, init_args, params, self.symbols
 if self.fargs[tree.leaf] != "every" and
init_args != self.fargs[tree.leaf]:
 raise Exception("Function Type Check Error
for %s, expected %s but got %s"
 % (tree.leaf, str(self.fargs[tree.leaf]),
str(init_args)))
 s = self.listtoparams(params)
 # print s
 else:
 s = ""
 return tree.leaf + "(" + s + ")"

 def add_method(self,tree,flag=None):
 # add must be called on a map type
 if not self.symbols.get(flag) == "MAP":
 raise Exception("Add method called on a non map type")
 a = flag + "." + self.flist[tree.leaf] + "("
 x = self.dispatch(tree.children[0],flag) # x[0] has block with
number, x[1] has point
 if len(x) != 2:
 raise Exception("Wrong number of parameters given to add
method")
 # print "It is:",x[1]
 if not self.symbols.get(x[1]) == "POINT" and not x[1] in
self.tempPoints:
 raise Exception("Not a valid point")
 if x[1] in self.tempPoints:
 self.tempPoints.remove(x[1])

MineTime Final Report

79 of 88

 p1 = "BoundingBox(origin=" + x[1] + ",size=(1,1,1)),"
 p2 = flag + "." + x[0]
 a+= p1 + p2 + ")"
 return a

 def _expression(self,tree,flag=None):
 return self.dispatch(tree.children[0],flag)

 def _assignment_expression(self, tree,flag=None):
 # print "assignmnet ", tree.leaf
 x = self.dispatch(tree.children[0],flag) # x has name, y has
params
 #print x
 if not tree.leaf:
 return x
 else:
 # add x to the scoping dict to be removed when out of
scope
 self.var_scopes[self.scope_depth].append(tree.leaf)
 # all symbols seen (but may not be defined)
 if type(x) is tuple:
 if x[0] == "Flatmap":
 self.symbol_add_helper(tree.leaf, "MAP")
 return self.flatmap_method(tree.leaf, x[1])
 elif x[0] == "Point":
 self.symbol_add_helper(tree.leaf, "POINT")
 return self.point_method(tree.leaf, x[1])
 elif x[0] == "List":
 self.symbol_add_helper(tree.leaf, "LIST")

 list_init = str([int(e) for e in x[1] if
self.isNum(e)])
 return "%s = %s" % (tree.leaf, list_init)
 else: # assigning a point right now
 if x in self.tempPoints:
 self.symbols[tree.leaf] = "POINT"
 self.tempPoints.remove(x)
 elif self.isNum(x) or x == '0': # int
 self.symbol_add_helper(tree.leaf, int,
self.isNum(x))
 else:
 # check if we need to do type conversion
 relopslist = ['+', '-', '/', '*']
 if [e for e in relopslist if e in x]:
 self.symbol_add_helper(tree.leaf,
self.get_inference_type(x))
 else:
 self.symbol_add_helper(tree.leaf, float)
 print self.symbols
 return tree.leaf + "=" + x

 def symbol_add_helper(self, var, type_val, value=None):
 if var in self.symbols:

MineTime Final Report

80 of 88

 self.symbols[var + str(self.scope_depth)] =
self.symbols[var]
 if value and var in self.values:
 self.values[var + str(self.scope_depth)] =
self.values[var]
 self.symbols[var] = type_val
 if value:
 self.values[var] = value

 def listtoparams(self,l,x=None):
 s = ""
 comma = False
 for a in l:
 if comma:
 s += ","
 else:
 comma = True
 s += a
 if x:
 self.waitingfor.add(a)
 return s

 def _logical_or_expression(self,tree,flag=None):
 if tree.leaf:
 s = self.dispatch(tree.children[0],flag) + " or " +
self.dispatch(tree.children[1],flag)
 return s
 return self.dispatch(tree.children[0],flag)

 def _logical_and_expression(self,tree,flag=None):
 if tree.leaf:
 s = self.dispatch(tree.children[0],flag) + " and " +
self.dispatch(tree.children[1],flag)
 return s
 return self.dispatch(tree.children[0],flag)

 def _equality_expression(self,tree,flag=None):
 if tree.leaf:
 s = self.dispatch(tree.children[0],flag) + tree.leaf +
self.dispatch(tree.children[1],flag)
 return s
 return self.dispatch(tree.children[0],flag)

 def _relational_expression(self,tree,flag=None):
 if tree.leaf:
 s = self.dispatch(tree.children[0],flag) + tree.leaf +
self.dispatch(tree.children[1],flag)
 return s
 return self.dispatch(tree.children[0],flag)

 def _additive_expression(self,tree,flag=None):
 if tree.leaf:
 s = self.dispatch(tree.children[0],flag) + tree.leaf +

MineTime Final Report

81 of 88

self.dispatch(tree.children[1],flag)
 return s
 return self.dispatch(tree.children[0],flag)

 def _multiplicative_expression(self,tree,flag=None):
 if tree.leaf:
 s = self.dispatch(tree.children[0],flag) + tree.leaf +
self.dispatch(tree.children[1],flag)
 return s
 return self.dispatch(tree.children[0],flag)

 def flatmap_method(self, name, param):
 # print "hello" + param[3]
 if self.getint(param[1]) and self.getint(param[2]) and
self.getint(param[3]):
 sizex = self.getint(param[1])
 sizey = self.getint(param[2])
 sizez = self.getint(param[3])
 x = str(int(int(sizex) * 1/2 * -1))
 y = str(0)
 z = str(int(int(sizez) * 1/2 * -1))
 if sizey > 255:
 sizey = 255
 size = "(" + str(sizex) + "," + str(sizey) + "," +
str(sizez) + ")"
 point = "(" + x + "," + y + "," + z + ")"
 else:
 point = "(" + param[1] + "*-0.5," + param[2] + "*-0.5," +
param[3] + "*-0.5)"
 size = "(" + param[1] + "," + param[2] + "," + param[3] +
")"
 fline = "mclevel.MCInfdevOldLevel(" + param[0] + ",
create=True)"
 line = name + ".createChunksInBox(BoundingBox(" + point + ","
+ size + "))"
 comp = name + "=" + fline + "\n" + line
 return comp

 def point_method(self, name, param):
 if len(param) != 3:
 raise Exception("Wrong number of params passed to
Flatmap")
 elif not (self.checkint(param[0]) and self.checkint(param[1])
and self.checkint(param[2])):
 raise Exception("Parameters passed were not integers")
 else:
 self.symbols[name] = "POINT"
 return name + "=(" + param[0] + "," + param[1] + "," +
param[2] + ")"
 #print self.symbols

 def checkint(self,s):

MineTime Final Report

82 of 88

 if not s : return False
 try:
 ret = int(s)
 except ValueError:
 if s in self.values:
 return self.values[s]
 return True

 def getint(self,s):
 if self.checkint(s):
 try:
 return int(s)
 except ValueError:
 return self.values.get(s)

 def num_or_str(self, x):
 """The argument is a string; convert to a number if possible,
or strip it.
 >>> num_or_str('42')
 42
 >>> num_or_str(' 42x ')
 '42x'
 """
 if hasattr(x, '__int__'): return x
 try:
 return int(x)
 except ValueError:
 try:
 return float(x)
 except ValueError:
 return str(x).strip()

 def _initializer(self, tree, flag=None):
 if tree.leaf:
 if tree.leaf == "block":
 x = self.flist[tree.leaf]
 y = self.dispatch(tree.children[0],"block")
 return x + "(" + y + ")"
 if tree.leaf in self.flist:
 x = self.flist[tree.leaf]
 else:
 x = tree.leaf
 if x not in self.fargs:
 raise Exception("Initializer %s not defined in
this language"
 % x)
 if tree.children:
 params = self.dispatch(tree.children[0],flag)
 # print params
 # initializer argument type checking
 if tree.leaf in self.fargs:
 typed_params = [self.num_or_str(param) for param
in params]

MineTime Final Report

83 of 88

 init_args = [self.get_type(param) for param in
typed_params]
 if self.fargs[tree.leaf] != "every" and
init_args != self.fargs[tree.leaf]:
 raise Exception("Initializer Type Check Error
for %s, excepted %s but got %s"
 % (tree.leaf, str(self.fargs[tree.leaf]),
str(init_args)))
 return (x, params)
 else:
 return x
 else:
 return self.dispatch(tree.children[0],flag)

 def get_type(self, param):
 """given a symbol variable or primary expression, will return
its type"""
 if type(param) == str and not re.search(r'"(\\.|[^"])*"',
param):
 if param in self.symbols:
 return self.symbols[param]
 else:
 raise Exception("Variable %s never initialized within
this scope" % param)
 return type(param)

 def _parameter_list(self, tree, flag=None): # HAVE TO HANDLE
FUNCTION PARAMETERS
 if len(tree.children) == 0:
 return ""
 if len(tree.children) == 1:
 return self.dispatch(tree.children[0],flag)
 else:
 x = self.dispatch(tree.children[0],flag)
 y = self.dispatch(tree.children[1],flag)
 z = [x] + [y]
 return self.flatten(z)
 # if len(tree.children) == 1:
 # self.dispatch(tree.children)
 # else:
 # self.dispatch(tree.children[0])
 # self.write(",")
 # self.dispatch(tree.children[1])

 # the following are incomplete and won't work with more
complicated statements
 def _parameter_declaration(self, tree, flag=None):
 return self.dispatch(tree.children[0],flag)

 def _declaration_list(self, tree, flag=None):
 if len(tree.children) == 1:
 return self.dispatch(tree.children[0],flag)
 else:

MineTime Final Report

84 of 88

 return self.dispatch(tree.children[0],flag) + "\n" +
self.dispatch(tree.children[1],flag)

 def _declaration(self, tree, flag=None):
 return self.dispatch(tree.children[0],flag)

 def _expression_statement(self,tree,flag=None):
 #print "HI",self.dispatch(tree.children[0],flag)
 return self.dispatch(tree.children[0],flag)

 def _statement(self,tree,flag=None):
 return self.dispatch(tree.children[0],flag)

 def _statement_list(self,tree,flag=None):
 if len(tree.children) == 1:
 return self.dispatch(tree.children[0],flag)
 else:
 return self.dispatch(tree.children[0],flag) + "\n" +
self.dispatch(tree.children[1],flag)

 def _expression_statement(self,tree,flag=None):
 if len(tree.children) != 0:
 return self.dispatch(tree.children[0],flag)
 else:
 return ""

 def _compound_statement(self,tree,flag=None):
 if len(tree.children) == 0:
 return ""
 else:
 return self.dispatch(tree.children[0],flag)

 def _point_gen(self,tree,flag=None):
 self.tempPoints.add(tree.leaf)
 return tree.leaf

 def _selection_statement(self,tree,flag=None):
 # print "selection"
 if len(tree.children) == 2: # if statement
 s = "if " + self.dispatch(tree.children[0],flag) + ":\n"
 self.enter()
 r = self.dispatch(tree.children[1],flag) + "\npass"
 # adding the indent yo
 # print self.symbols
 s += self.fill(r)
 self.leave()
 # print self.symbols
 return s
 else:
 s = "if " + self.dispatch(tree.children[0],flag) + ":\n"
 self.enter()
 r = self.dispatch(tree.children[1],flag)
 s += self.fill(r + "\n")

MineTime Final Report

85 of 88

 self.leave()
 s+= "else:\n"
 self.enter()
 t = self.dispatch(tree.children[2],flag) + "\npass"
 s += self.fill(t)
 self.leave()
 return s

 def _iteration_statement(self,tree,flag=None):
 if len(tree.children) == 2: # while statement
 s = "while " + self.dispatch(tree.children[0],flag) +
":\n"
 # adding the indent yo
 self.enter()
 r = self.dispatch(tree.children[1],flag)
 r = r + "\npass"
 s += self.fill(r)
 self.leave()
 return s
 else: #for statement
 s = self.dispatch(tree.children[0],flag) + "\n" + "while "
+ self.dispatch(tree.children[1],flag) + ":\n"
 # adding the indent yo
 self.enter()
 r = self.dispatch(tree.children[3],flag) + "\n" +
self.dispatch(tree.children[2],flag) + "\npass"
 s += self.fill(r)
 self.leave()
 return s

 def _external_declaration(self,tree,flag=None):
 return self.dispatch(tree.children[0],flag)

 def _translation_unit(self,tree,flag=None):
 if len(tree.children) == 1:
 return self.dispatch(tree.children[0],flag)
 else:
 s = self.dispatch(tree.children[0],flag)
 t = self.dispatch(tree.children[1],flag)
 return s + "\n\n" + t

 def get_param_types(self, params, tree):
 ''' will return a list of type objects'''
 typed_params = []
 for param in params:
 typed_params.append(self.get_param_type(param, tree))
 return typed_params

 def get_param_type(self, param, tree):
 '''traverse tree until we find spot where param has to be
certain type'''
 if tree.leaf == param:
 if tree.type == "class_method_expression":

MineTime Final Report

86 of 88

 for class_obj in self.class_meths:
 if tree.children[0].leaf in
self.class_meths[class_obj]:
 return class_obj
 else:
 return True
 for child in tree.children:
 ret_val = self.get_param_type(param, child)
 if ret_val:
 if tree.leaf in self.relops:
 params = self.dispatch(tree.children[0])
 return int
 if tree.leaf in self.fargs:
 print "hello"
 params = self.dispatch(tree.children[0])
 print params
 # print "hi " + params
 return ret_val

 def _function_definition(self, tree, flag=None):
 fname = tree.leaf
 s = "def " + tree.leaf + "("
 if len(tree.children) == 2:
 self.enter()
 params = self.dispatch(tree.children[0],flag)

 # find out the necessary types for this new function
 self.fargs[fname] = self.get_param_types(params,
tree.children[1])
 for (param, param_type) in zip(params, self.fargs[fname]):
 print (param, param_type)
 self.symbols[param] = param_type
 self.var_scopes[self.scope_depth].append(param)
 #print self.symbols
 comma = False
 for a in params:
 if comma:
 s += ","
 else:
 comma = True
 s += a
 self.waitingfor.add(a)
 s = s + "):\n"
 #print self.waitingfor
 r = self.dispatch(tree.children[1],flag)
 r += "\npass"
 s += self.fill(r)
 self.leave()
 else:
 p = self.dispatch(tree.children[0],flag)
 comma = False
 for a in p:
 if comma:

MineTime Final Report

87 of 88

 s += ","
 else:
 comma = True
 s += a
 self.waitingfor.add(a)
 s = s + "):"+"\n"
 self.enter()
 self.fill("pass")
 return s

 def _return_statement(self, tree, flag=None):
 if tree.children:
 s = "return " + self.dispatch(tree.children[0],flag)
 return s
 return "return "

 def isNum(self, s):
 """Convert string to either int or float."""
 #print s
 #print self.is_same_type(s)
 try:
 ret = int(s)
 except ValueError:
 return False
 return ret

 def get_inference_type(self, s):
 esc_relops = map(re.escape, self.relops)
 delimit = r'|'.join(esc_relops)
 tokens = re.split(delimit, s)

 typ = self.get_type_t(tokens[0])
 for t in tokens:
 if self.get_type_t(t) != typ:
 raise Exception('Type Conversion Error between %s
and %s'
 % (t, typ))
 return typ

 def get_type_t(self, s):
 try:
 int(s)
 return int
 except ValueError:
 if s in self.symbols:
 return self.symbols[s]
 else:
 # Should not default to str actually. Doesn't exist
should throw
 # error and check for string separately
 return str

MineTime Final Report

88 of 88

minetime.py

#!/usr/bin/env python

import yaccing as yacc
import sys
from lexing import Mtlex
from traverse import *
from preprocess import *

def main(argv):
 inputfile = argv[1]
 filename = inputfile.split(".")[0]
 source = open(inputfile).read()
generate the parser
 parser = yacc.getyacc()
generate the Lexer to be used with parser
 m = Mtlex()
 m.build()
preprocessing step
 preprocessor = Processor()
 source = preprocessor.preprocess(source)
 tree = parser.parse(source, lexer=m.lexer)

 firstline = '''import logging
import os
import sys
from pymclevel import mclevel
from pymclevel.box import BoundingBox
'''
 lastline = '''
if __name__ == '__main__':
 main()
'''
 result = Traverse(tree).getpython()
 code = firstline + "\n" + result + "\n" + lastline + "\n"
 outputfile = filename + ".py"
 output = open(outputfile, 'w')
 output.write(code)

if __name__ == '__main__':
 main(sys.argv)

