
Team 19: Skit
Andrew Figpope: Project Manager
Michelle Zhang: Language Guru
Márcio Paiva: System Architect

Thomas Huzij: System Integrator

Skit
The Settlers of Catan Customization Kit Language

● There exists numerous
ways to set up and play
Settlers, including using
custom boards, new
rules, expansion packs,
and spinoffs

● Skit is a language that is
tailored to building
customized Settlers of
Catan games

● Allows users to to tweak
or redefine their behaviors
in a simple,
straightforward, JSON-
like syntax

Skit
acc

ess
ibl

e flexible

easy to read
eas

y t
o w

rit
e

Translator Architecture
● Skit uses two intercommunicating translators to

generate the configuration dictionary stored in a Python
dict, which is then loaded into the engine

Source
program

Configuration
Parser

Imperative
Parser

Configuration
dictionary

Input

Engine

Fun

Configuration Parser
● Digging in deeper, you can see that what we refer to as

the Configuration Parser obviously includes a
preprocessor, a lexical analyzer, and a syntax analyzer.

Source
Program

Preprocessor Lexical
Analyzer

Syntax
Analyzer

Imperative
Parser

Configuration
Dictionary

Configuration Parser
● The preprocessor is responsible for handling @import

statements.

Source
Program

Preprocessor Lexical
Analyzer

Syntax
Analyzer

Imperative
Parser

Configuration
Dictionary

Configuration Parser
● The lexical analyzer was pretty straightforward.
● The one exception: how it tokenized the imperative

function definitions.

Source
Program

Preprocessor Lexical
Analyzer

Syntax
Analyzer

Imperative
Parser

Configuration
Dictionary

Configuration Parser
● Whenever a function token is encountered, the

configuration parser just passes it to the imperative
parser and expects a Python function object in return.

Source
Program

Preprocessor Lexical
Analyzer

Syntax
Analyzer

Imperative
Parser

Configuration
Dictionary

● The imperative parser is only invoked to parse a Skit
function into a Python function, and tokenizes the input
into the operator classes standard to most languages

Imperative Parser

Source
Program

Configuration
Parser

Configuration
Dictionary

Lexical
Analyzer

Syntax
Analyzer

Post
Processing

Code
Generation

● Syntax-directed translation was then used to parse the
Skit grammar directly into Python ASTs

Imperative Parser

Source
Program

Configuration
Parser

Configuration
Dictionary

Lexical
Analyzer

Syntax
Analyzer

Post
Processing

Code
Generation

● After translation, references to parameters of the top-
level function are replaced with Oracle calls to facilitate
dependency injection

Imperative Parser

Source
Program

Configuration
Parser

Configuration
Dictionary

Lexical
Analyzer

Syntax
Analyzer

Post
Processing

Code
Generation

● The last stage is the execution of the AST representing
the definition of the function in an environment where
the Oracle is present, facilitating late-binding

Imperative Parser

Source
Program

Configuration
Parser

Configuration
Dictionary

Lexical
Analyzer

Syntax
Analyzer

Post
Processing

Code
Generation

The Engine
● The dictionary parsed and

translated by the configuration
and imperative parsers working
together is placed on a static
Config class

● The config is then accessed by
classes throughout the entire
engine to initialize member
values and instantiate different
objects

● In addition to the default player-built structures, now the
Config dictionary will also have an entry for a Big City
structure.

● This dictionary entry is accessed e.g. in the player class
when allocating structures to players, i.e.

An Example

Another Example

Of course, users can also use
Skit to set custom behavior by
defining functions

The play-card function defined
to the left, for example, would
be run during a call to e.g.
development_card.play_card()

Project Management

Project Management

Initially:
- Delegation of tasks was vague
- Not much accountability
- Very broad objectives
- Code disorganized
- Ended up behind the schedule

Project Management

Restructure:
- Very specific tasks. Deadlines
- Code style guide
- Rewrote everything from scratch
- Code reviews established
- Productivity went up

Development Environment

● Python 2.7.6
● PLY 3.6
● Local Mac OS X / Ubuntu

Compiler-generator tools

Began w/ the standard Lex + Yacc, but added
some metaprogramming magic:
● Trivial production generation
● Registry of trivial productions
● Automatic grammar composition

Testing

● Imperative
parser compared
ASTs generated
by Skit to ASTs
generated by
Python Code

Testing

● Configuration
parser was hand
tested with
example .skit
files

Testing

● Engine was hand
tested by trying
to perform game
actions, such as
playing a card, or
placing a
structure

Demo

Conclusion
● Start early and set regular, concrete deadlines as a team
● As a team, have a high-level understanding of your project’s

design, but don’t be afraid to iterate and refactor the small(er) stuff

What Worked Well

● Slack / Trello / Github
● Weekly stand-ups

What We Would Have Changed

● Start implementation early!
● More unit tests for the engine

