Team 19: Skit

Andrew Figpope: Project Manager
Michelle Zhang: Language Guru
Marcio Paiva: System Architect
Thomas Huzij: System Integrator

s
<

-

-

Skit

The Settlers of Catan Customization Kit Language

There exists numerous 1 bigger-n-better: {

ways to set up and play 2 game: {

Settlers, including using 3 @extend: default.game,

custom boards, new 4 points-to-win: 15,

rules, expansion packs, board: {

and spinoffs @extend: default.game.board,

Skit is a language that is
tailored to building

customized Settlers of 9 radius: default.game.board.radius + 1
Catan games 10 }

Allows users to to tweak 11 }

or redefine their behaviors 1 }

in a simple,

straightforward, JSON-
like syntax

flexible

Skit

Translator Architecture

e Skit uses two intercommunicating translators to
generate the configuration dictionary stored in a Python
dict, which is then loaded into the engine

Source Configuration Configuration
program :> Parser <:> dictionary |:>

ﬁ Input
Imperative @
Parser

Fun

Engine

Configuration Parser

e Digging in deeper, you can see that what we refer to as
the Configuration Parser obviously includes a
preprocessor, a lexical analyzer, and a syntax analyzer.

Source |:> Preprocessor |:> Lexical E> Syntax Configuration
Program Analyzer Analyzer Dictionary

Imperative
Parser

Configuration Parser

e The preprocessor is responsible for handling @import
statements.

Source |:> Preprocessor » Lexical Syntax Configuration
Program Analyzer Analyzer Dictionary

Imperative
Parser

Configuration Parser

e The lexical analyzer was pretty straightforward.
e The one exception: how it tokenized the imperative
function definitions.

Source
Program

|:> Preprocessor » Lexical Syntax
Analyzer Analyzer

1

Imperative
Parser

Configuration
Dictionary

Configuration Parser

e \Whenever a function token is encountered, the
configuration parser just passes it to the imperative
parser and expects a Python function object in return.

Source |:> Preprocessor |:> Lexical E> Syntax Configuration
Program Analyzer Analyzer Dictionary

{

Imperative
Parser

Imperative Parser

e The imperative parser is only invoked to parse a Skit
function into a Python function, and tokenizes the input
Into the operator classes standard to most languages

Source |:> Configuration <:> Configuration
Program Parser Dictionary

4 A

Lexical Syntax Post Code
» Analyzer » Processing » Generation

Imperative Parser

e Syntax-directed translation was then used to parse the
Skit grammar directly into Python ASTs

Source |:> Configuration <:> Configuration
Program Parser Dictionary

4 D

Lexical » Syntax Post » Code
Analyzer Analyzer Processing Generation

Imperative Parser

e After translation, references to parameters of the top-
level function are replaced with Oracle calls to facilitate
dependency injection

Source |:> Configuration <:> Configuration
Program Parser Dictionary

4 A

Lexical Syntax Post Code
» Analyzer » Processing » Generation

Imperative Parser

e The last stage is the execution of the AST representing
the definition of the function in an environment where
the Oracle is present, facilitating late-binding

Source |:> Configuration <:> Configuration
Program Parser Dictionary

4 A

Lexical Syntax Post Code
» Analyzer » Processing » Generation

The Engine

The dictionary parsed and
translated by the configuration
and imperative parsers working
together is placed on a static
Config class

The config is then accessed by
classes throughout the entire
engine to initialize member
values and instantiate different
objects

Receives config dict
from config parser

Config

Develop
ment
Cards

> Bank

Structures

etc

big-city: {
@extend: {

An Example

explicit-overwrite-only: true

iz e In addition to the default player-built structures, now the
game: { Config dictionary will also have an entry for a Big City
structure: { structure.
player-built: { e This dictionary entry is accessed e.g. in the player class
big-city: { when allocating structures to players, i.e.
name: "Big City",
cost: {
def init_structure_counts(self):
ore: 5
} self.remaining_structure_counts = {}
count: 2, for structure in Config.get('game.structure.player_built').values():
point-value: 3 self.remaining_structure_counts[structure['name']] = structure['count']
base-yield: 3,
upgrades: "City",
position-type: "vertex"
}
}
}
}

Another Example

1w tile-swap-card: {

2 count: 1,

3 name: "Tile Swap Card",

< description: "Swap the resource type of two tiles on the board.",

5V play-card: func{game, player) {

6 prompt = "Choose a location of the {} tile"

& game.input_manager.output(prompt.format{"first")) Of course, users can also use
G x1l, yl = game.input_manager.prompt_tile_coordinates(game) : :

o Sklf[t_o set cugtom behavior by
11 game.input_manager.output{prompt.format("second")) deflnlng functions

12 X2, y2 = game.input_manager.prompt_tile_coordinates({game)

13 i i

14 tilel = game.board.get_tile_with_coords({xl, yl) The play card function defined
15 tilez = game.board.get_tile_with_coords{x2, y2) to the left, for example, would

16 be run during a call to e.g.

17 resourcel = tilel.resource_type

18 resourceZz = tileZ.resource_type development_card.pIay_card()
19

20 tilel.resource_type = resourcez

21 tileZ.resource_type = resourcel

23 msg = "Successfully swapped resources of tiles {} {}".format(tilel, tile2)

24 game.input_manager.output{msg)

25

26 self.played = True

Project Management

y’ B 7rellr

Project Management

Initially:

- Delegation of tasks was vague
- Not much accountability

- Very broad objectives

- Code disorganized
- Ended up behind the schedule

Project Management

Restructure:

- Very specific tasks. Deadlines

- Code style guide

- Rewrote everything from scratch
- Code reviews established

- Productivity went up

Development Environment

Python 2.7.6
PLY 3.6
_ocal Mac OS X/ Ubuntu

Compiler-generator tools

Began w/ the standard Lex + Yacc, but added
some metaprogramming magic:

e Trivial production generation
e Registry of trivial productions
e Automatic grammar composition

Testing

e Imperative
parser compared
ASTs generated
by Skit to ASTs
generated by
Python Code

def

def

def

def

def

test_string_single_quotes(self):
self.assertSameParse("'test'", "'test'")

test_string_double_quotes(self):
self.assertSameParse('"test"', '"test"')

test_stmt_assignment(self):
self.assertSameParse("test = 1", "test

test_multi_stmt_assignment(self):
self.assertSameParse("a, b = tpl”, "a, b

test_stmt_assign_property(self):
self.assertSameParse("a.b.c = 1", "a.b.c

1")

tplll)

1")

Testing

bigger-n-better: {

e Configuration
parser was hand " textond: dotaute.gane,
tested with U et soterse gume boncts
example .skit PSS SR a——

files

e Engine was hand
tested by trying
to perform game
actions, such as
playing a card, or
placing a
structure

M, select where you would like to place your Road
Please specify a tile x coordinate:

0

Please specify a tile y coordinate:

<)

(1) WEST: (-1, @, 1)

(2) NORTH_WEST:
(3) SOUTH_WEST:
(4) NORTH_EAST:
(5) SOUTH_EAST:

(-1: 1, 0)
e, -1, 1)
(e, 1, -1)
(1, -1,)

(6) EAST: (1, @, -1)

>

Please enter the number (e.g. '1') of the direction from the

center of the tile to the edge you would like to place a struct
ure on.

<
>

>
>
>
>
>
>
>
>
>
>

2

Distributing resources.

M received 1 brick cards.
M received 1 lumber cards.
M's turn:

M: roll

Player rolled a 7
Distributing resources.

M: aybabtu

M: buy_card

You received a Monopoly Card!

Demo

Conclusion

e Start early and set regular, concrete deadlines as a team
e As ateam, have a high-level understanding of your project’s
design, but don’t be afraid to iterate and refactor the small(er) stuff

What Worked Well What We Would Have Changed

e Slack/ Trello / Github e Start implementation early!
e Weekly stand-ups e More unit tests for the engine

